organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(5R,6R)-rel-9-tert-Butyl-trans-5,6-dimeth­­oxy-6,7-di­hydro-5H-benzo­cyclo­heptene

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada, and bDepartment of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
*Correspondence e-mail: alough@chem.utoronto.ca

Edited by J. Simpson, University of Otago, New Zealand (Received 29 September 2017; accepted 2 October 2017; online 6 October 2017)

The relative stereochemistry of the title compound, C17H24O2, has been confirmed by the X-ray analysis. The seven-membered ring is in a pseudo-boat conformation with both meth­oxy substituents in equatorial sites.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In recent years, we have been investigating the acid-catalysed ring-opening reactions of cyclo­propanated 7-oxabenzonorbornadienes with alcohols (Tigchelaar et al., 2014[Tigchelaar, A., Haner, J., Carlson, E. & Tam, W. (2014). Synlett, 25, 2355-2359.]). When bridgehead tert-butyl­ated substrate I (Fig. 1[link]) was reacted with methanol in the presence of catalytic para-toluene­sulfonic acid, it was found that di­hydro-5H-benzo­cyclo­heptene II was produced alongside meth­oxy­methyl­naphthalene III. The relative stereochemistry of the two meth­oxy groups in II was determined by this single-crystal X-ray analysis. Of the cis or trans isomers which were possible, the reaction was found to give solely the trans stereoisomer.

[Figure 1]
Figure 1
The reaction scheme.

The mol­ecular structure of the title compound is shown in Fig. 2[link]. The seven-membered ring is in a psuedo-boat conformation with atom C3 at the prow and atoms C6 and C11 forming the stern. Both meth­oxy substituents are in equatorial sites.

[Figure 2]
Figure 2
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Synthesis and crystallization

In a small screw-cap vial containing a stir-bar, cyclo­propanated oxabenzonorbornadiene I (23.4 mg, 0.109 mmol, 1.0 equiv.) was dissolved in methanol (0.5 ml). The reaction was cooled to 273 K, and p-toluene­sulfonic acid monohydrate (3.0 mg, 0.016 mmol, 0.1 equiv.) was added as a solid. The vial was sealed and heated to 313 K with continuous stirring for 48 h. The crude product was concentrated in vacuo and purified by column chromatography (EtOAc:hexa­nes=1:9), followed by static vacuum sublimation for two weeks over a 313–343 K gradient to give clear, colourless crystals of II.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C17H24O2
Mr 260.36
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 147
a, b, c (Å) 8.9716 (10), 9.5283 (10), 9.8080 (12)
α, β, γ (°) 80.493 (3), 73.205 (4), 69.547 (3)
V3) 750.14 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.33 × 0.29 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEX DUO CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.723, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 24158, 3493, 2784
Rint 0.029
(sin θ/λ)max−1) 0.654
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 1.03
No. of reflections 3493
No. of parameters 176
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.24
Computer programs: APEX2 (and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: APEX2 (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

(5R,6R)-rel-9-tert-Butyl-trans-5,6-dimethoxy-6,7-dihydro-5H-benzocycloheptene top
Crystal data top
C17H24O2Z = 2
Mr = 260.36F(000) = 284
Triclinic, P1Dx = 1.153 Mg m3
a = 8.9716 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5283 (10) ÅCell parameters from 8137 reflections
c = 9.8080 (12) Åθ = 2.5–27.5°
α = 80.493 (3)°µ = 0.07 mm1
β = 73.205 (4)°T = 147 K
γ = 69.547 (3)°Block, colourless
V = 750.14 (15) Å30.33 × 0.29 × 0.20 mm
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
2784 reflections with I > 2σ(I)
Radiation source: sealed tube with Bruker Triumph monochromatorRint = 0.029
φ and ω scansθmax = 27.7°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1111
Tmin = 0.723, Tmax = 0.746k = 1212
24158 measured reflectionsl = 1212
3493 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.3109P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3493 reflectionsΔρmax = 0.29 e Å3
176 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were placed in calculated positions with C–H = 0.95–1.00 Å and included in the refinement with Uiso(H)=1.2Ueq(C) or 1.5Ueq(Cmethyl).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25107 (11)1.06653 (9)0.84723 (9)0.0240 (2)
O20.02295 (10)1.05373 (9)0.68789 (10)0.0265 (2)
C10.26686 (14)0.93904 (12)0.77944 (12)0.0183 (2)
H1A0.19750.88160.84610.022*
C20.19875 (14)0.99851 (13)0.64668 (13)0.0196 (2)
H2A0.24121.08200.59540.023*
C30.24839 (15)0.87513 (13)0.54445 (13)0.0221 (3)
H3A0.17860.90870.47580.027*
H3B0.36390.85850.48950.027*
C40.23111 (14)0.72916 (13)0.62286 (13)0.0208 (2)
H4A0.14250.69910.61780.025*
C50.33519 (14)0.64025 (12)0.69922 (12)0.0183 (2)
C60.47614 (14)0.68980 (13)0.70089 (12)0.0182 (2)
C70.64007 (15)0.60102 (14)0.65369 (13)0.0230 (3)
H7A0.66410.50450.62250.028*
C80.76832 (15)0.65192 (15)0.65179 (14)0.0260 (3)
H8A0.87890.58970.62050.031*
C90.73536 (15)0.79289 (15)0.69531 (14)0.0257 (3)
H9A0.82290.82690.69590.031*
C100.57333 (15)0.88461 (14)0.73825 (13)0.0219 (3)
H10A0.55080.98220.76630.026*
C110.44351 (14)0.83514 (13)0.74073 (12)0.0180 (2)
C120.2426 (2)1.03586 (17)0.99566 (14)0.0348 (3)
H12A0.23181.12711.03660.052*
H12B0.14711.00271.04330.052*
H12C0.34290.95661.00940.052*
C130.04585 (17)1.20808 (15)0.71351 (17)0.0341 (3)
H13A0.16531.23930.72780.051*
H13B0.00061.26720.63130.051*
H13C0.02051.22460.79910.051*
C140.30606 (15)0.50389 (13)0.79729 (14)0.0221 (3)
C150.15674 (19)0.47157 (17)0.78247 (18)0.0381 (4)
H15A0.05870.55900.80790.057*
H15B0.14190.38420.84640.057*
H15C0.17370.45070.68360.057*
C160.2732 (2)0.54034 (18)0.95218 (16)0.0406 (4)
H16A0.36470.56770.96280.061*
H16B0.26280.45211.01660.061*
H16C0.17120.62450.97600.061*
C170.45407 (19)0.36098 (16)0.7681 (2)0.0488 (5)
H17A0.54720.37350.79200.073*
H17B0.48380.34230.66690.073*
H17C0.42590.27570.82670.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0318 (5)0.0196 (4)0.0224 (4)0.0064 (4)0.0091 (4)0.0059 (3)
O20.0193 (4)0.0208 (4)0.0385 (5)0.0004 (3)0.0108 (4)0.0066 (4)
C10.0194 (6)0.0168 (5)0.0192 (6)0.0047 (4)0.0055 (4)0.0041 (4)
C20.0187 (6)0.0182 (5)0.0211 (6)0.0031 (4)0.0069 (5)0.0025 (4)
C30.0252 (6)0.0207 (6)0.0207 (6)0.0030 (5)0.0102 (5)0.0037 (5)
C40.0194 (6)0.0207 (6)0.0236 (6)0.0044 (4)0.0066 (5)0.0075 (5)
C50.0166 (5)0.0173 (5)0.0200 (6)0.0034 (4)0.0024 (4)0.0065 (4)
C60.0170 (5)0.0194 (5)0.0174 (5)0.0046 (4)0.0057 (4)0.0004 (4)
C70.0197 (6)0.0215 (6)0.0242 (6)0.0031 (5)0.0047 (5)0.0013 (5)
C80.0160 (6)0.0322 (7)0.0254 (6)0.0041 (5)0.0047 (5)0.0011 (5)
C90.0206 (6)0.0363 (7)0.0234 (6)0.0136 (5)0.0077 (5)0.0029 (5)
C100.0235 (6)0.0248 (6)0.0201 (6)0.0103 (5)0.0073 (5)0.0003 (5)
C110.0184 (5)0.0200 (6)0.0154 (5)0.0058 (4)0.0056 (4)0.0007 (4)
C120.0471 (9)0.0370 (8)0.0219 (7)0.0116 (6)0.0093 (6)0.0090 (6)
C130.0282 (7)0.0242 (7)0.0445 (8)0.0020 (5)0.0086 (6)0.0116 (6)
C140.0194 (6)0.0187 (6)0.0273 (6)0.0055 (4)0.0051 (5)0.0017 (5)
C150.0379 (8)0.0361 (8)0.0498 (9)0.0231 (6)0.0172 (7)0.0074 (7)
C160.0574 (10)0.0447 (9)0.0275 (7)0.0300 (8)0.0095 (7)0.0048 (6)
C170.0337 (8)0.0187 (7)0.0731 (12)0.0022 (6)0.0057 (8)0.0053 (7)
Geometric parameters (Å, º) top
O1—C121.4218 (16)C9—C101.3908 (18)
O1—C11.4248 (13)C9—H9A0.9500
O2—C131.4160 (15)C10—C111.3939 (16)
O2—C21.4316 (14)C10—H10A0.9500
C1—C111.5218 (16)C12—H12A0.9800
C1—C21.5376 (16)C12—H12B0.9800
C1—H1A1.0000C12—H12C0.9800
C2—C31.5334 (16)C13—H13A0.9800
C2—H2A1.0000C13—H13B0.9800
C3—C41.5095 (17)C13—H13C0.9800
C3—H3A0.9900C14—C151.5252 (18)
C3—H3B0.9900C14—C171.5313 (18)
C4—C51.3388 (16)C14—C161.5361 (19)
C4—H4A0.9500C15—H15A0.9800
C5—C61.5014 (16)C15—H15B0.9800
C5—C141.5365 (17)C15—H15C0.9800
C6—C71.3997 (16)C16—H16A0.9800
C6—C111.4090 (16)C16—H16B0.9800
C7—C81.3907 (18)C16—H16C0.9800
C7—H7A0.9500C17—H17A0.9800
C8—C91.3830 (19)C17—H17B0.9800
C8—H8A0.9500C17—H17C0.9800
C12—O1—C1113.00 (9)C11—C10—H10A119.6
C13—O2—C2115.05 (10)C10—C11—C6119.80 (11)
O1—C1—C11112.30 (9)C10—C11—C1120.67 (10)
O1—C1—C2107.02 (9)C6—C11—C1119.47 (10)
C11—C1—C2111.61 (9)O1—C12—H12A109.5
O1—C1—H1A108.6O1—C12—H12B109.5
C11—C1—H1A108.6H12A—C12—H12B109.5
C2—C1—H1A108.6O1—C12—H12C109.5
O2—C2—C3107.31 (9)H12A—C12—H12C109.5
O2—C2—C1110.13 (10)H12B—C12—H12C109.5
C3—C2—C1111.78 (9)O2—C13—H13A109.5
O2—C2—H2A109.2O2—C13—H13B109.5
C3—C2—H2A109.2H13A—C13—H13B109.5
C1—C2—H2A109.2O2—C13—H13C109.5
C4—C3—C2112.00 (10)H13A—C13—H13C109.5
C4—C3—H3A109.2H13B—C13—H13C109.5
C2—C3—H3A109.2C15—C14—C17107.98 (12)
C4—C3—H3B109.2C15—C14—C16108.03 (12)
C2—C3—H3B109.2C17—C14—C16108.57 (13)
H3A—C3—H3B107.9C15—C14—C5111.73 (10)
C5—C4—C3122.84 (11)C17—C14—C5112.59 (11)
C5—C4—H4A118.6C16—C14—C5107.80 (10)
C3—C4—H4A118.6C14—C15—H15A109.5
C4—C5—C6116.82 (10)C14—C15—H15B109.5
C4—C5—C14123.59 (11)H15A—C15—H15B109.5
C6—C5—C14119.15 (10)C14—C15—H15C109.5
C7—C6—C11118.47 (11)H15A—C15—H15C109.5
C7—C6—C5122.24 (10)H15B—C15—H15C109.5
C11—C6—C5119.11 (10)C14—C16—H16A109.5
C8—C7—C6121.03 (11)C14—C16—H16B109.5
C8—C7—H7A119.5H16A—C16—H16B109.5
C6—C7—H7A119.5C14—C16—H16C109.5
C9—C8—C7120.18 (11)H16A—C16—H16C109.5
C9—C8—H8A119.9H16B—C16—H16C109.5
C7—C8—H8A119.9C14—C17—H17A109.5
C8—C9—C10119.61 (11)C14—C17—H17B109.5
C8—C9—H9A120.2H17A—C17—H17B109.5
C10—C9—H9A120.2C14—C17—H17C109.5
C9—C10—C11120.85 (11)H17A—C17—H17C109.5
C9—C10—H10A119.6H17B—C17—H17C109.5
C12—O1—C1—C1182.00 (13)C6—C7—C8—C90.77 (19)
C12—O1—C1—C2155.18 (10)C7—C8—C9—C101.28 (19)
C13—O2—C2—C3147.34 (11)C8—C9—C10—C111.29 (18)
C13—O2—C2—C190.77 (12)C9—C10—C11—C60.74 (17)
O1—C1—C2—O275.43 (11)C9—C10—C11—C1176.41 (11)
C11—C1—C2—O2161.33 (9)C7—C6—C11—C102.72 (17)
O1—C1—C2—C3165.38 (9)C5—C6—C11—C10177.88 (10)
C11—C1—C2—C342.13 (13)C7—C6—C11—C1174.46 (10)
O2—C2—C3—C477.69 (12)C5—C6—C11—C10.69 (16)
C1—C2—C3—C443.16 (13)O1—C1—C11—C1016.07 (15)
C2—C3—C4—C573.62 (14)C2—C1—C11—C10104.12 (12)
C3—C4—C5—C61.72 (17)O1—C1—C11—C6166.77 (10)
C3—C4—C5—C14170.68 (11)C2—C1—C11—C673.04 (13)
C4—C5—C6—C7121.27 (13)C4—C5—C14—C157.05 (17)
C14—C5—C6—C765.98 (15)C6—C5—C14—C15179.28 (11)
C4—C5—C6—C1153.70 (15)C4—C5—C14—C17128.78 (14)
C14—C5—C6—C11119.05 (12)C6—C5—C14—C1759.00 (16)
C11—C6—C7—C82.76 (18)C4—C5—C14—C16111.50 (13)
C5—C6—C7—C8177.75 (11)C6—C5—C14—C1660.73 (14)
 

Funding information

AJL thanks NSERC Canada for funding.

References

First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTigchelaar, A., Haner, J., Carlson, E. & Tam, W. (2014). Synlett, 25, 2355–2359.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]