metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[(1,2,5,6-η)-Cyclo­octa-1,5-diene](1-ethyl-3-iso­propyl-1,3-imidazol-2-yl­­idene-κC2)(tri­phenylphosphane-κP)iridium(I) tetra­fluorido­borate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Millersville University, Millersville, PA 17551, USA, and bDepartment of Chemistry and Biochemistry, The University of Arizona, Tuscon, AZ 85716, USA
*Correspondence e-mail: edward.rajaseelan@millersville.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 27 September 2017; accepted 30 September 2017; online 6 October 2017)

In the title compound, [Ir(C8H12)(C8H14N2)(C18H15P)]BF4, the cationic complex has the anti­cipated square-planar geometry. The asymmetric unit comprises the iridium complex and one tetra­fluorido­borate anion. The space group is non-centrosymmetric, with the Flack parameter of 0.007 (3) well determined, and confirms the hand for the complex cation. This compound shows promising catalytic activity in transfer hydrogenation reactions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

N-heterocyclic carbene complexes are of inter­est because of their catalytic properties in transfer hydrogenation reactions. Transfer hydrogenation of ketones and imines is an encouraging example of an efficient and benign chemical transformation that exemplifies some of the key aspects of green chemistry (Ruff et al., 2016[Ruff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327-335.]; Zuo et al., 2014[Zuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791-5801.]). The N-heterocyclic carbene (NHC) ligands can be tuned sterically and electronically by having different alkyl groups on the nitro­gen atoms (Gusev, 2009[Gusev, D. G. (2009). Organometallics, 28, 6458-6461.]). Many related NHC rhodium and iridium complexes have been synthesized and structurally characterized (Köcher & Herrmann 1997[Köcher, C. & Herrmann, W. A. (1997). J. Organomet. Chem. 532, 261-265.]; Wang & Lin 1998[Wang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972-975.]; Chianese et al., 2004[Chianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461-2468.]; Herrmann et al. 2006[Herrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437-2448.]; Nichol et al., 2009[Nichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320-4328.], 2010[Nichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.], 2011[Nichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860-m1861.], 2012[Nichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158-m159.]; Lu et al., 2011[Lu, W. Y., Cavell, K. J., Wixey, J. S. & Kariuki, B. (2011). Organometallics, 30, 5649-5655.]; Huttenstine et al., 2011[Huttenstine, A. L., Rajaseelan, E., Oliver, A. G. & Rood, J. A. (2011). Acta Cryst. E67, m1274-m1275.], Idrees et al., 2017[Idrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017). IUCrData, 2, x171081.]). Their catalytic activity in transfer hydrogenation reactions has also been studied and reported (Hillier et al., 2001[Hillier, A. C., Lee, H. M., Stevens, E. D. & Nolan, S. P. (2001). Organometallics, 20, 4246-4252.]; Albrecht et al., 2002[Albrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596-3604.]; Gnanamgari et al., 2007[Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226-1230.]).

The title complex comprises an IrI cation, a cyclo­octa­diene ligand, an N-heterocyclic carbene ligand, a phosphane ligand, and a tetra­fluorido­borate counter-anion, Fig. 1[link]. The coordination sphere of the IrI cation is completed through bonds to the phosphane, cyclo­octa­diene and the carbene, resulting in a distorted square-planar geometry. Charge balance is achieved with a non-coordinating tetra­fluorido­borate anion. The carbene atom, C1, deviates from the expected sp2 hybridization in that the N1—C1—N2 bond angle is 105.1 (5)°. Other selected bond lengths and angles in the structure are: Ir1—P1 2.3232 (11), Ir1—C1 2.049 (7) Å, and C1—Ir1—P1 89.72 (16)°.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level.

In the crystal structure, the cations and anions are arranged in chains along the a-axis direction through C–H⋯F hydrogen bonds, Fig. 2[link] and Table 1[link]. The individual chains are arranged into layers in the ac plane.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯F1 0.99 2.43 3.153 (5) 130
C28—H28⋯F3 0.95 2.58 3.265 (4) 130
C28—H28⋯F1 0.95 2.52 3.474 (6) 178
C11—H11B⋯F4 0.99 2.60 3.357 (5) 134
C19—H19⋯F3i 0.95 2.60 3.390 (5) 141
C16—H16⋯F2i 1.00 2.66 3.134 (4) 109
C16—H16⋯F2i 1.00 2.66 3.134 (4) 109
C2—H2⋯F4ii 0.95 2.56 3.116 (5) 117
Symmetry codes: (i) x, y+1, z; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 2]
Figure 2
The unit cell viewed along the crystallographic b axis.

Synthesis and crystallization

Unless otherwise stated, all chemicals were purchased from Sigma–Aldrich and used without further purification, in the dark, and under a nitro­gen atmosphere. 1-Ethyl imidazole (4.99 g, 51.91 mmol) and 2-bromo­propane (7.39 g, 60 mmol) were refluxed in toluene (10 ml) for 24 h. After cooling in an ice bath for 30 min, the top toluene layer was deca­nted and the bottom light-brown layer was washed with ether. N2 was purged throughout the product and the imidazolium salt 1 (Fig. 3[link]) was recrystallized in CH2Cl2/ pentane (96%). Transmetallation in CH2Cl2 (10 ml) with 1 (0.1305 g, 0.5958 mmol), Ag2O (0.0691 g, 0.2979 mmol), and [Ir(cod)Cl]2 (0.200 g, 0.2979 mmol), gave a dark-red solid (2) (92%). In a round-bottom flask, 2 (0.2277 g, 0.4805 mmol), tri­phenyl­phosphine (0.1258 g, 0.4801 mmol), and AgBF4 (0.0942 g, 0.4801 mmol) were dissolved in CH2Cl2 (15 ml) and stirred for 2 h to obtain a bright orange–red complex (3) (94%) (Fig. 3[link]). X-ray quality crystals of 3 were grown from CH2Cl2/ pentane by slow diffusion.

[Figure 3]
Figure 3
A scheme showing the various steps in the synthesis of the title compound

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C34H41IrN2P+·BF4
Mr 787.67
Crystal system, space group Monoclinic, Cc
Temperature (K) 150
a, b, c (Å) 17.4915 (13), 10.2653 (8), 18.644 (2)
β (°) 109.6047 (16)
V3) 3153.5 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.34
Crystal size (mm) 0.3 × 0.2 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.576, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 25634, 6517, 6410
Rint 0.026
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.033, 1.01
No. of reflections 6517
No. of parameters 391
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.81, −0.57
Absolute structure Flack x determined using 2467 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al, 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.007 (3)
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), Olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: Olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

[(1,2,5,6-η)-Cycloocta-1,5-diene](1-ethyl-3-isopropyl-1,3-imidazol-2-ylidene-κC2)(triphenylphosphane-κP)iridium(I) tetrafluoridoborate top
Crystal data top
C34H41IrN2P+·BF4F(000) = 1568
Mr = 787.67Dx = 1.659 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 17.4915 (13) ÅCell parameters from 9729 reflections
b = 10.2653 (8) Åθ = 2.3–28.3°
c = 18.644 (2) ŵ = 4.34 mm1
β = 109.6047 (16)°T = 150 K
V = 3153.5 (5) Å3Plate, clear orange
Z = 40.3 × 0.2 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
6410 reflections with I > 2σ(I)
φ and ω scansRint = 0.026
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 28.3°, θmin = 2.3°
Tmin = 0.576, Tmax = 0.746h = 2313
25634 measured reflectionsk = 1313
6517 independent reflectionsl = 2424
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.015 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.033(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.81 e Å3
6517 reflectionsΔρmin = 0.57 e Å3
391 parametersAbsolute structure: Flack x determined using 2467 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al, 2013)
2 restraintsAbsolute structure parameter: 0.007 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.38107 (2)0.82129 (2)0.58767 (2)0.01181 (3)
C10.2700 (4)0.8408 (4)0.6009 (3)0.0148 (11)
C130.4968 (4)0.8485 (6)0.5689 (4)0.0219 (11)
H130.49290.84450.51420.026*
C140.5403 (3)0.9684 (4)0.6107 (2)0.0275 (10)
H14A0.51991.04620.57860.033*
H14B0.59900.96030.61900.033*
N10.2213 (2)0.9453 (3)0.59388 (18)0.0161 (7)
N20.22893 (16)0.7402 (3)0.61841 (16)0.0164 (5)
C40.2575 (2)0.6041 (3)0.6270 (2)0.0220 (7)
H4A0.30890.59890.61570.026*
H4B0.21690.54910.58940.026*
C30.1544 (2)0.7809 (3)0.6207 (2)0.0204 (7)
H30.11460.72860.63120.024*
C120.49705 (19)0.7269 (3)0.60237 (19)0.0193 (7)
H120.49310.65210.56690.023*
C60.2415 (2)1.0805 (3)0.57994 (19)0.0189 (7)
H60.29451.07960.57060.023*
P10.31715 (7)0.77862 (11)0.45900 (6)0.0133 (2)
C90.4315 (3)0.8179 (3)0.7132 (3)0.0198 (11)
H90.38960.81690.73880.024*
C100.4914 (3)0.7073 (4)0.7358 (2)0.0232 (8)
H10A0.46150.62470.73350.028*
H10B0.52710.72030.78920.028*
C290.2240 (3)0.6807 (3)0.4333 (2)0.0163 (7)
C230.3788 (2)0.7051 (3)0.40747 (19)0.0171 (6)
C220.2172 (2)0.9413 (3)0.34318 (18)0.0194 (7)
H220.18470.86640.32450.023*
C340.1553 (2)0.7331 (3)0.44541 (18)0.0184 (7)
H340.15630.82100.46170.022*
C180.3319 (2)1.0435 (3)0.43574 (19)0.0200 (7)
H180.37791.03830.48090.024*
C190.3123 (3)1.1609 (3)0.3976 (2)0.0270 (8)
H190.34491.23570.41610.032*
C280.4147 (2)0.5825 (3)0.43037 (19)0.0215 (7)
H280.40410.53630.47020.026*
C170.28505 (19)0.9328 (3)0.40866 (18)0.0166 (6)
C210.1968 (2)1.0597 (3)0.3051 (2)0.0262 (8)
H210.15021.06560.26060.031*
C160.4456 (2)0.9395 (3)0.68829 (18)0.0193 (7)
H160.41131.00970.69900.023*
C300.2198 (2)0.5519 (3)0.40753 (19)0.0237 (7)
H300.26510.51440.39800.028*
C20.1494 (2)0.9095 (3)0.6053 (2)0.0200 (7)
H20.10520.96530.60270.024*
C330.0858 (2)0.6591 (3)0.4341 (2)0.0247 (8)
H330.04010.69590.44320.030*
C320.0835 (2)0.5312 (4)0.4095 (2)0.0275 (8)
H320.03630.47990.40210.033*
C240.3962 (2)0.7705 (3)0.3494 (2)0.0215 (7)
H240.37270.85360.33350.026*
C110.5439 (2)0.6955 (3)0.6852 (2)0.0249 (8)
H11A0.59070.75550.70400.030*
H11B0.56540.60560.68860.030*
C200.2444 (3)1.1690 (3)0.3321 (2)0.0282 (9)
H200.23071.24960.30570.034*
C260.4826 (2)0.5959 (4)0.3378 (2)0.0290 (8)
H260.51830.55930.31450.035*
C50.2714 (2)0.5513 (3)0.7060 (2)0.0276 (8)
H5A0.29240.46220.70940.041*
H5B0.22010.55120.71630.041*
H5C0.31090.60640.74350.041*
C270.4655 (2)0.5290 (4)0.3950 (2)0.0265 (8)
H270.48900.44570.41030.032*
C80.2512 (3)1.1643 (3)0.6500 (3)0.0315 (9)
H8A0.19881.17190.65800.047*
H8B0.27041.25120.64240.047*
H8C0.29071.12370.69480.047*
C310.1498 (2)0.4784 (3)0.3958 (2)0.0295 (8)
H310.14760.39120.37830.035*
C150.5280 (2)0.9876 (4)0.6880 (2)0.0247 (8)
H15A0.57130.94040.72770.030*
H15B0.53341.08140.70120.030*
C250.4471 (2)0.7169 (4)0.3144 (2)0.0296 (8)
H250.45790.76250.27450.036*
C70.1775 (2)1.1369 (4)0.5098 (2)0.0303 (8)
H7A0.17161.08050.46590.045*
H7B0.19411.22420.49970.045*
H7C0.12551.14240.51880.045*
F30.46323 (17)0.3183 (2)0.53320 (17)0.0442 (7)
F40.4980 (2)0.3779 (4)0.6562 (2)0.0893 (14)
B10.4349 (3)0.3333 (4)0.5942 (3)0.0272 (9)
F10.3696 (3)0.4149 (3)0.5731 (3)0.0969 (17)
F20.41140 (18)0.2160 (3)0.61307 (19)0.0560 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01033 (5)0.01332 (5)0.01119 (5)0.00084 (8)0.00286 (3)0.00066 (7)
C10.016 (3)0.0157 (18)0.010 (2)0.0001 (16)0.0005 (18)0.0021 (15)
C130.009 (2)0.036 (2)0.022 (3)0.000 (2)0.0065 (19)0.004 (2)
C140.0154 (18)0.033 (2)0.032 (2)0.0116 (16)0.0040 (18)0.0027 (18)
N10.0129 (14)0.0152 (13)0.0190 (16)0.0006 (11)0.0036 (13)0.0018 (12)
N20.0157 (13)0.0160 (13)0.0184 (14)0.0017 (11)0.0070 (11)0.0029 (10)
C40.0278 (18)0.0119 (14)0.0289 (18)0.0015 (13)0.0131 (15)0.0013 (13)
C30.0181 (16)0.0232 (16)0.0236 (17)0.0061 (14)0.0120 (14)0.0045 (14)
C120.0126 (15)0.0258 (16)0.0183 (16)0.0042 (13)0.0036 (13)0.0049 (14)
C60.0192 (16)0.0154 (15)0.0235 (17)0.0005 (12)0.0088 (14)0.0011 (12)
P10.0140 (5)0.0135 (5)0.0117 (4)0.0006 (4)0.0033 (4)0.0000 (4)
C90.019 (2)0.027 (3)0.0121 (18)0.0011 (16)0.0029 (16)0.0018 (15)
C100.024 (2)0.0253 (17)0.0158 (17)0.0038 (17)0.0011 (16)0.0042 (14)
C290.0156 (18)0.0178 (16)0.0142 (16)0.0023 (12)0.0034 (14)0.0018 (12)
C230.0153 (16)0.0201 (15)0.0148 (15)0.0015 (12)0.0035 (13)0.0043 (12)
C220.0212 (16)0.0210 (16)0.0139 (15)0.0003 (13)0.0031 (13)0.0007 (12)
C340.0162 (16)0.0190 (15)0.0177 (16)0.0016 (13)0.0028 (13)0.0009 (12)
C180.0201 (16)0.0208 (15)0.0171 (15)0.0021 (13)0.0036 (13)0.0011 (13)
C190.031 (2)0.0208 (17)0.030 (2)0.0049 (14)0.0110 (17)0.0008 (14)
C280.0204 (17)0.0221 (16)0.0202 (17)0.0004 (13)0.0043 (14)0.0037 (13)
C170.0186 (15)0.0178 (15)0.0145 (15)0.0017 (12)0.0070 (13)0.0021 (12)
C210.0293 (19)0.0294 (18)0.0173 (16)0.0044 (15)0.0041 (14)0.0074 (14)
C160.0179 (15)0.0213 (16)0.0162 (15)0.0030 (13)0.0022 (13)0.0064 (12)
C300.0227 (17)0.0225 (16)0.0245 (17)0.0029 (14)0.0061 (15)0.0048 (14)
C20.0133 (14)0.0246 (16)0.0239 (17)0.0006 (13)0.0087 (13)0.0053 (13)
C330.0170 (17)0.0339 (19)0.0218 (18)0.0033 (14)0.0045 (15)0.0009 (14)
C320.0233 (18)0.0285 (18)0.0285 (19)0.0127 (15)0.0059 (15)0.0004 (15)
C240.0227 (17)0.0229 (17)0.0194 (17)0.0026 (14)0.0077 (14)0.0016 (13)
C110.0190 (18)0.0278 (18)0.0234 (19)0.0072 (14)0.0013 (15)0.0001 (14)
C200.036 (2)0.0231 (18)0.025 (2)0.0043 (15)0.0107 (18)0.0105 (14)
C260.0237 (18)0.036 (2)0.031 (2)0.0038 (16)0.0133 (16)0.0181 (16)
C50.033 (2)0.0200 (16)0.0297 (19)0.0013 (15)0.0107 (16)0.0023 (14)
C270.0246 (18)0.0244 (17)0.0292 (19)0.0036 (15)0.0073 (15)0.0075 (15)
C80.036 (2)0.0240 (18)0.039 (2)0.0057 (15)0.018 (2)0.0114 (15)
C310.0302 (19)0.0208 (17)0.034 (2)0.0077 (15)0.0057 (16)0.0062 (15)
C150.0182 (16)0.0266 (18)0.0251 (18)0.0053 (14)0.0017 (14)0.0041 (14)
C250.032 (2)0.036 (2)0.0244 (19)0.0092 (17)0.0146 (17)0.0064 (16)
C70.029 (2)0.0283 (18)0.034 (2)0.0080 (16)0.0104 (17)0.0092 (16)
F30.0328 (15)0.0667 (19)0.0371 (15)0.0054 (11)0.0172 (12)0.0015 (11)
F40.077 (2)0.137 (3)0.074 (2)0.074 (2)0.053 (2)0.067 (2)
B10.028 (2)0.0185 (19)0.040 (3)0.0021 (16)0.017 (2)0.0008 (16)
F10.110 (3)0.083 (2)0.134 (4)0.073 (3)0.087 (3)0.062 (3)
F20.059 (2)0.0327 (13)0.079 (2)0.0114 (13)0.0269 (17)0.0123 (14)
Geometric parameters (Å, º) top
Ir1—C12.049 (7)C34—H340.9500
Ir1—C122.181 (3)C18—C191.382 (5)
Ir1—C132.185 (7)C18—C171.394 (4)
Ir1—C162.201 (3)C18—H180.9500
Ir1—C92.207 (5)C19—C201.391 (6)
Ir1—P12.3232 (11)C19—H190.9500
C1—N11.349 (6)C28—C271.385 (5)
C1—N21.359 (6)C28—H280.9500
C13—C121.395 (7)C21—C201.388 (5)
C13—C141.517 (7)C21—H210.9500
C13—H131.0000C16—C151.526 (5)
C14—C151.540 (6)C16—H161.0000
C14—H14A0.9900C30—C311.392 (5)
C14—H14B0.9900C30—H300.9500
N1—C21.393 (5)C2—H20.9500
N1—C61.477 (4)C33—C321.387 (5)
N2—C31.384 (4)C33—H330.9500
N2—C41.474 (4)C32—C311.378 (5)
C4—C51.511 (5)C32—H320.9500
C4—H4A0.9900C24—C251.382 (5)
C4—H4B0.9900C24—H240.9500
C3—C21.348 (5)C11—H11A0.9900
C3—H30.9500C11—H11B0.9900
C12—C111.520 (5)C20—H200.9500
C12—H121.0000C26—C271.383 (5)
C6—C71.521 (5)C26—C251.391 (6)
C6—C81.526 (5)C26—H260.9500
C6—H61.0000C5—H5A0.9800
P1—C171.829 (3)C5—H5B0.9800
P1—C231.830 (4)C5—H5C0.9800
P1—C291.837 (4)C27—H270.9500
C9—C161.383 (5)C8—H8A0.9800
C9—C101.507 (6)C8—H8B0.9800
C9—H91.0000C8—H8C0.9800
C10—C111.526 (6)C31—H310.9500
C10—H10A0.9900C15—H15A0.9900
C10—H10B0.9900C15—H15B0.9900
C29—C301.400 (4)C25—H250.9500
C29—C341.402 (5)C7—H7A0.9800
C23—C241.392 (5)C7—H7B0.9800
C23—C281.408 (4)C7—H7C0.9800
C22—C171.391 (4)F3—B11.393 (6)
C22—C211.392 (5)F4—B11.381 (6)
C22—H220.9500B1—F21.356 (5)
C34—C331.387 (5)B1—F11.363 (6)
C1—Ir1—C12155.25 (16)C19—C18—C17120.7 (3)
C1—Ir1—C13166.86 (13)C19—C18—H18119.7
C12—Ir1—C1337.26 (17)C17—C18—H18119.7
C1—Ir1—C1694.56 (17)C18—C19—C20119.7 (3)
C12—Ir1—C1687.05 (13)C18—C19—H19120.1
C13—Ir1—C1680.12 (19)C20—C19—H19120.1
C1—Ir1—C986.1 (2)C27—C28—C23120.2 (3)
C12—Ir1—C980.55 (17)C27—C28—H28119.9
C13—Ir1—C996.3 (2)C23—C28—H28119.9
C16—Ir1—C936.56 (13)C22—C17—C18119.5 (3)
C1—Ir1—P189.72 (16)C22—C17—P1122.0 (2)
C12—Ir1—P198.70 (9)C18—C17—P1118.5 (2)
C13—Ir1—P190.55 (17)C20—C21—C22120.1 (3)
C16—Ir1—P1156.29 (9)C20—C21—H21120.0
C9—Ir1—P1167.06 (11)C22—C21—H21120.0
N1—C1—N2105.1 (5)C9—C16—C15124.7 (4)
N1—C1—Ir1131.3 (4)C9—C16—Ir172.0 (2)
N2—C1—Ir1123.6 (3)C15—C16—Ir1113.0 (2)
C12—C13—C14124.8 (5)C9—C16—H16113.4
C12—C13—Ir171.2 (3)C15—C16—H16113.4
C14—C13—Ir1110.7 (4)Ir1—C16—H16113.4
C12—C13—H13114.1C31—C30—C29120.5 (3)
C14—C13—H13114.1C31—C30—H30119.8
Ir1—C13—H13114.1C29—C30—H30119.8
C13—C14—C15112.4 (4)C3—C2—N1107.1 (3)
C13—C14—H14A109.1C3—C2—H2126.5
C15—C14—H14A109.1N1—C2—H2126.5
C13—C14—H14B109.1C32—C33—C34119.7 (4)
C15—C14—H14B109.1C32—C33—H33120.2
H14A—C14—H14B107.9C34—C33—H33120.2
C1—N1—C2110.4 (3)C31—C32—C33120.0 (3)
C1—N1—C6125.7 (4)C31—C32—H32120.0
C2—N1—C6123.8 (3)C33—C32—H32120.0
C1—N2—C3110.9 (3)C25—C24—C23121.3 (3)
C1—N2—C4124.0 (3)C25—C24—H24119.4
C3—N2—C4124.9 (3)C23—C24—H24119.4
N2—C4—C5112.5 (3)C12—C11—C10112.3 (3)
N2—C4—H4A109.1C12—C11—H11A109.1
C5—C4—H4A109.1C10—C11—H11A109.1
N2—C4—H4B109.1C12—C11—H11B109.1
C5—C4—H4B109.1C10—C11—H11B109.1
H4A—C4—H4B107.8H11A—C11—H11B107.9
C2—C3—N2106.5 (3)C21—C20—C19120.1 (3)
C2—C3—H3126.8C21—C20—H20120.0
N2—C3—H3126.8C19—C20—H20120.0
C13—C12—C11124.3 (4)C27—C26—C25119.7 (3)
C13—C12—Ir171.5 (3)C27—C26—H26120.1
C11—C12—Ir1112.6 (2)C25—C26—H26120.1
C13—C12—H12113.7C4—C5—H5A109.5
C11—C12—H12113.7C4—C5—H5B109.5
Ir1—C12—H12113.7H5A—C5—H5B109.5
N1—C6—C7111.0 (3)C4—C5—H5C109.5
N1—C6—C8110.1 (3)H5A—C5—H5C109.5
C7—C6—C8111.1 (3)H5B—C5—H5C109.5
N1—C6—H6108.2C26—C27—C28120.6 (3)
C7—C6—H6108.2C26—C27—H27119.7
C8—C6—H6108.2C28—C27—H27119.7
C17—P1—C23102.75 (16)C6—C8—H8A109.5
C17—P1—C29104.30 (16)C6—C8—H8B109.5
C23—P1—C29105.38 (16)H8A—C8—H8B109.5
C17—P1—Ir1108.98 (11)C6—C8—H8C109.5
C23—P1—Ir1117.10 (12)H8A—C8—H8C109.5
C29—P1—Ir1116.74 (13)H8B—C8—H8C109.5
C16—C9—C10126.1 (5)C32—C31—C30120.6 (3)
C16—C9—Ir171.5 (2)C32—C31—H31119.7
C10—C9—Ir1107.6 (3)C30—C31—H31119.7
C16—C9—H9114.3C16—C15—C14113.0 (3)
C10—C9—H9114.3C16—C15—H15A109.0
Ir1—C9—H9114.3C14—C15—H15A109.0
C9—C10—C11113.2 (3)C16—C15—H15B109.0
C9—C10—H10A108.9C14—C15—H15B109.0
C11—C10—H10A108.9H15A—C15—H15B107.8
C9—C10—H10B108.9C24—C25—C26119.8 (4)
C11—C10—H10B108.9C24—C25—H25120.1
H10A—C10—H10B107.8C26—C25—H25120.1
C30—C29—C34118.0 (3)C6—C7—H7A109.5
C30—C29—P1123.1 (3)C6—C7—H7B109.5
C34—C29—P1118.8 (2)H7A—C7—H7B109.5
C24—C23—C28118.3 (3)C6—C7—H7C109.5
C24—C23—P1122.1 (3)H7A—C7—H7C109.5
C28—C23—P1119.4 (3)H7B—C7—H7C109.5
C17—C22—C21120.0 (3)F2—B1—F1108.8 (4)
C17—C22—H22120.0F2—B1—F4107.6 (4)
C21—C22—H22120.0F1—B1—F4113.2 (4)
C33—C34—C29121.3 (3)F2—B1—F3109.6 (3)
C33—C34—H34119.4F1—B1—F3109.0 (4)
C29—C34—H34119.4F4—B1—F3108.5 (4)
C12—C13—C14—C1544.5 (7)P1—C23—C28—C27176.1 (3)
Ir1—C13—C14—C1536.4 (5)C21—C22—C17—C180.3 (5)
N2—C1—N1—C21.4 (5)C21—C22—C17—P1177.5 (3)
Ir1—C1—N1—C2177.5 (4)C19—C18—C17—C220.9 (5)
N2—C1—N1—C6175.8 (3)C19—C18—C17—P1177.0 (3)
Ir1—C1—N1—C65.4 (7)C23—P1—C17—C2285.0 (3)
N1—C1—N2—C31.3 (5)C29—P1—C17—C2224.8 (3)
Ir1—C1—N2—C3177.6 (3)Ir1—P1—C17—C22150.1 (3)
N1—C1—N2—C4176.3 (3)C23—P1—C17—C1892.8 (3)
Ir1—C1—N2—C42.7 (6)C29—P1—C17—C18157.4 (3)
C1—N2—C4—C5118.7 (4)Ir1—P1—C17—C1832.0 (3)
C3—N2—C4—C567.0 (4)C17—C22—C21—C200.4 (5)
C1—N2—C3—C20.8 (4)C10—C9—C16—C157.2 (7)
C4—N2—C3—C2175.7 (3)Ir1—C9—C16—C15105.9 (3)
C14—C13—C12—C112.6 (8)C10—C9—C16—Ir198.6 (4)
Ir1—C13—C12—C11105.2 (4)C34—C29—C30—C311.2 (5)
C14—C13—C12—Ir1102.6 (6)P1—C29—C30—C31173.9 (3)
C1—N1—C6—C7125.0 (4)N2—C3—C2—N10.1 (4)
C2—N1—C6—C758.1 (4)C1—N1—C2—C30.9 (4)
C1—N1—C6—C8111.6 (4)C6—N1—C2—C3176.3 (3)
C2—N1—C6—C865.2 (4)C29—C34—C33—C320.8 (5)
C16—C9—C10—C1138.8 (6)C34—C33—C32—C310.5 (6)
Ir1—C9—C10—C1140.8 (4)C28—C23—C24—C250.4 (5)
C17—P1—C29—C30131.1 (3)P1—C23—C24—C25175.8 (3)
C23—P1—C29—C3023.3 (3)C13—C12—C11—C1095.9 (5)
Ir1—P1—C29—C30108.6 (3)Ir1—C12—C11—C1013.5 (4)
C17—P1—C29—C3453.9 (3)C9—C10—C11—C1236.7 (5)
C23—P1—C29—C34161.7 (3)C22—C21—C20—C190.6 (6)
Ir1—P1—C29—C3466.4 (3)C18—C19—C20—C210.0 (6)
C17—P1—C23—C244.7 (3)C25—C26—C27—C281.2 (5)
C29—P1—C23—C24113.6 (3)C23—C28—C27—C260.9 (5)
Ir1—P1—C23—C24114.7 (3)C33—C32—C31—C300.9 (6)
C17—P1—C23—C28179.9 (3)C29—C30—C31—C320.1 (6)
C29—P1—C23—C2871.0 (3)C9—C16—C15—C1495.5 (4)
Ir1—P1—C23—C2860.7 (3)Ir1—C16—C15—C1412.2 (4)
C30—C29—C34—C331.6 (5)C13—C14—C15—C1632.1 (5)
P1—C29—C34—C33173.6 (3)C23—C24—C25—C260.7 (6)
C17—C18—C19—C200.8 (6)C27—C26—C25—C241.1 (6)
C24—C23—C28—C270.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···F10.992.433.153 (5)130
C28—H28···F30.952.583.265 (4)130
C28—H28···F10.952.523.474 (6)178
C11—H11B···F40.992.603.357 (5)134
C19—H19···F3i0.952.603.390 (5)141
C16—H16···F2i1.002.663.134 (4)109
C16—H16···F2i1.002.663.134 (4)109
C2—H2···F4ii0.952.563.116 (5)117
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z.
 

Acknowledgements

KI gratefully acknowledges the financial support donated to the MU Chemistry Student Research Grant by Ms Karen A. Murley and a Neimeyer–Hodgson Research Grant.

References

First citationAlbrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596–3604.  Web of Science CSD CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461–2468.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226–1230.  Web of Science CrossRef CAS Google Scholar
First citationGusev, D. G. (2009). Organometallics, 28, 6458–6461.  Web of Science CrossRef CAS Google Scholar
First citationHerrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437–2448.  Web of Science CSD CrossRef CAS Google Scholar
First citationHillier, A. C., Lee, H. M., Stevens, E. D. & Nolan, S. P. (2001). Organometallics, 20, 4246–4252.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuttenstine, A. L., Rajaseelan, E., Oliver, A. G. & Rood, J. A. (2011). Acta Cryst. E67, m1274–m1275.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIdrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017). IUCrData, 2, x171081.  Google Scholar
First citationKöcher, C. & Herrmann, W. A. (1997). J. Organomet. Chem. 532, 261–265.  Google Scholar
First citationLu, W. Y., Cavell, K. J., Wixey, J. S. & Kariuki, B. (2011). Organometallics, 30, 5649–5655.  Web of Science CSD CrossRef CAS Google Scholar
First citationNichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320–4328.  Web of Science CSD CrossRef Google Scholar
First citationNichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860–m1861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158–m159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRuff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327–335.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972–975.  Web of Science CSD CrossRef CAS Google Scholar
First citationZuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791–5801.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]