organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-2,4-Di­bromo-6-(hydrazinylidenemeth­yl)phenol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Govt. Model Science College, Jiwaji University, Gwalior 474 011, India, bSchool of Studies in Chemistry, Jiwaji University, Gwalior 47011, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: skggwr@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 24 September 2017; accepted 26 September 2017; online 6 October 2017)

The title compound, C7H6Br2N2O, was obtained from a condensation reaction of 3,5-di­bromo-2-hy­droxy­benzaldehyde and hydrazine hydrate. The mol­ecule is approximately planar, the largest deviation from the mean plane through all of the non-H atoms being 0.053 (1) Å. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯N hydrogen bond, generating an S(6) ring motif. In the crystal, inter­molecular N—H⋯Br and N—H⋯O hydrogen bonds link the mol­ecules, forming chains parallel to the b axis. Mol­ecules are further linked by ππ stacking inter­actions, with centroid–centroid distances of 3.925 (3)–3.926 (3) Å, forming a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Hydrazine-based Schiff bases are of great inter­est due to their ability to behave as non-innocent ligands (Arion et al., 1997[Arion, V., Wieghardt, K., Weyhermueller, T., Bill, E., Leovac, V. & Rufinska, A. (1997). Inorg. Chem. 36, 661-669.]; Knof et al., 1993[Knof, U., Weyhermuller, T., Wolter, T., Wieghardt, K., Bill, E., Butzlaff, C. & Trautwein, A. X. (1993). Angew. Chem. Int. Ed. Engl. 32, 1635-1638.]; Mukhopadhyay & Pal, 2009[Mukhopadhyay, A. & Pal, S. (2009). Eur. J. Inorg. Chem. pp. 4141-4148.]). These compounds also play an important role in the development of photomolecular devices, as probes for biological macromolecules and in organic synthesis (Boyer et al., 2010[Boyer, J. L., Rochford, J., Tsai, M.-K., Muckerman, J. T. & Fujita, E. (2010). Coord. Chem. Rev. 254, 309-330.]; Samojlowicz et al., 2009[Samojlowicz, C., Bieniek, M. & Grela, K. (2009). Chem. Rev. 109, 3708-3742.]; Nagaraju et al., 2012[Nagaraju, K., Raveendran, R., Pal, S. & Pal, S. (2012). Polyhedron, 33, 52-59.]). The crystal structures of related compounds, such as 2-(hydrazonometh­yl)phenol (Shang et al., 2009[Shang, Y.-F., Wang, Q.-M., Zhu, M.-L. & Zhang, Y.-H. (2009). Acta Cryst. E65, o3023.]), 2-eth­oxy-4-{[(2-nitro­phen­yl)hydrazono]meth­yl}phenol (Yin et al., 2009[Yin, Z.-G., Qian, H.-Y., Zhang, C.-X. & Zhu, X.-W. (2009). Acta Cryst. E65, o2575.]) and 2-eth­oxy-4-[2-(3-nitro­phen­yl)hydrazonometh­yl]phenol (Chen et al., 2009[Chen, J.-Q., Jiang, L., Li, S.-M. & Chen, Y.-Z. (2009). Acta Cryst. E65, o2536.]), have been reported. As part of our studies of the coordination chemistry of Schiff bases (Gupta et al., 2015[Gupta, S. K., Anjna, C., Sen, N., Butcher, R. J., Jasinski, J. P. & Golen, J. A. (2015). Polyhedron, 89, 219-231.]), we have synthesized the title compound and determined its crystal structure.

The mol­ecular structure of the title complex is shown in Fig. 1[link]. The whole mol­ecule is almost planar, with the largest deviation from the mean plane through all of the non-H atoms in the mol­ecule being 0.053 (1) Å for atom Br2A. The mol­ecular conformation is stabilized by an intra­molecular O1A—H1A⋯N1A hydrogen bond (Table 1[link]), generating an S(6) ring motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). This also contributes to the planarity of the mol­ecule.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯N1A 0.82 1.85 2.579 (7) 147
N2A—H2AB⋯Br1Ai 0.86 2.94 3.774 (6) 163
N2A—H2AB⋯O1Ai 0.86 2.47 3.088 (8) 129
Symmetry code: (i) -x, -y+1, -z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 50% probability displacement ellipsoids. The intra­molecular O—H⋯N hydrogen bond forming an S(6) ring motif is shown as a dashed line.

Inter­molecular N2A—H2AB⋯Br1A and N2A—H2AB⋯O1A hydrogen bonds link the mol­ecules, forming a chain parallel to the b axis (Fig. 2[link] and Table 1[link]). Mol­ecules in the crystal structure are also linked by inter­molecular ππ stacking inter­actions [Cg1⋯Cg1(x, y − 1, z) = 3.926 (3) Å and Cg1⋯Cg1(x, y + 1, z) = 3.925 (3) Å; Cg1 is the centroid of the C1A–C6A ring] (Fig. 3[link]). These contacts combine with the classical hydrogen bonds to generate a three-dimensional network.

[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the b axis. Dashed lines indicate inter­molecular N—H⋯Br and N—H⋯O hydrogen bonds.
[Figure 3]
Figure 3
ππ contacts for the title compound (symmetry codes: 1545.01 = x, y − 1, z; 1565.01 = x, y + 1, z).

Synthesis and crystallization

A hot ethano­lic solution of hydrazine hydrate (0.25 g, 0.005 mol) was added dropwise to a hot stirred solution of 3,5-di­bromo-2-hy­droxy­benzaldehyde (1.22 g, 0.005 mol) in ethanol (Fig. 4[link]). The resulting solution was heated under reflux for 3 h. The solution was allowed to cool to ambient temperature. Slow evaporation of the solvent resulted in yellow plate-like crystals of the title compound suitable for X-ray analysis after 8 d (yield: 1.05 g, 80%; m.p. 436–438 K). Analysis calculated for C7H6Br2N2O: C 28.60, H 2.05, N 9.53%; found: C 28.36, H 2.02, N 9.63%.

[Figure 4]
Figure 4
A reaction scheme showing the synthesis of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C7H6Br2N2O
Mr 293.96
Crystal system, space group Monoclinic, I2/a
Temperature (K) 295
a, b, c (Å) 18.020 (2), 3.9253 (4), 24.933 (2)
β (°) 94.259 (8)
V3) 1758.7 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 9.17
Crystal size (mm) 0.5 × 0.2 × 0.1
 
Data collection
Diffractometer Rigaku XtaLAB Mini II CCD
Absorption correction Multi-scan (CrysAlis PRO; Rigaku, 2017[Rigaku (2017). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, USA.])
Tmin, Tmax 0.230, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10326, 1613, 1282
Rint 0.070
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.104, 1.14
No. of reflections 1613
No. of parameters 113
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.56, −0.57
Computer programs: CrysAlis PRO (Rigaku, 2017[Rigaku (2017). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2017 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku, 2017); cell refinement: CrysAlis PRO (Rigaku, 2017); data reduction: CrysAlis PRO (Rigaku, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(E)-2,4-Dibromo-6-(hydrazinylidenemethyl)phenol top
Crystal data top
C7H6Br2N2OF(000) = 1120
Mr = 293.96Dx = 2.220 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 18.020 (2) ÅCell parameters from 5125 reflections
b = 3.9253 (4) Åθ = 2.2–30.0°
c = 24.933 (2) ŵ = 9.17 mm1
β = 94.259 (8)°T = 295 K
V = 1758.7 (3) Å3Plate, yellow
Z = 80.5 × 0.2 × 0.1 mm
Data collection top
Rigaku XtaLAB Mini II CCD
diffractometer
1282 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.070
ω scansθmax = 25.4°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku, 2017)
h = 2121
Tmin = 0.230, Tmax = 1.000k = 44
10326 measured reflectionsl = 3030
1613 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0459P)2 + 6.910P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
1613 reflectionsΔρmax = 0.56 e Å3
113 parametersΔρmin = 0.57 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1A0.23412 (4)0.47804 (16)0.09034 (2)0.0453 (2)
Br2A0.13772 (4)0.13520 (18)0.27766 (2)0.0517 (3)
O1A0.0732 (3)0.3890 (12)0.05254 (16)0.0461 (11)
H1A0.0290800.3660580.0426890.035 (18)*
N1A0.0627 (3)0.1941 (14)0.05791 (19)0.0446 (13)
N2A0.1345 (3)0.1576 (17)0.0353 (2)0.0541 (15)
H2AA0.1666660.0452540.0519680.19 (6)*
H2AB0.1470830.2471640.0044440.08 (3)*
C1A0.0862 (3)0.2597 (15)0.1025 (2)0.0365 (14)
C2A0.1570 (4)0.2827 (15)0.1280 (2)0.0385 (15)
C3A0.1729 (4)0.1632 (15)0.1793 (2)0.0410 (15)
H3AA0.2207590.1810280.1958260.049*
C4A0.1169 (4)0.0170 (14)0.2059 (2)0.0383 (14)
C5A0.0458 (4)0.0200 (14)0.1816 (2)0.0380 (14)
H5AA0.0090540.1259810.1998410.046*
C6A0.0296 (3)0.1025 (14)0.1294 (2)0.0356 (14)
C7A0.0458 (4)0.0585 (15)0.1036 (2)0.0396 (14)
H7AA0.0809920.0677100.1204850.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.0412 (4)0.0464 (4)0.0497 (4)0.0024 (3)0.0143 (3)0.0030 (3)
Br2A0.0606 (5)0.0497 (4)0.0448 (4)0.0013 (4)0.0041 (3)0.0120 (3)
O1A0.037 (3)0.063 (3)0.039 (2)0.006 (2)0.005 (2)0.005 (2)
N1A0.039 (4)0.056 (3)0.040 (3)0.002 (3)0.009 (2)0.005 (3)
N2A0.031 (3)0.087 (4)0.044 (3)0.003 (3)0.001 (3)0.001 (3)
C1A0.045 (4)0.035 (3)0.030 (3)0.003 (3)0.008 (3)0.002 (2)
C2A0.046 (4)0.030 (3)0.041 (3)0.002 (3)0.015 (3)0.002 (3)
C3A0.045 (4)0.035 (3)0.045 (3)0.002 (3)0.011 (3)0.003 (3)
C4A0.045 (4)0.032 (3)0.038 (3)0.002 (3)0.008 (3)0.001 (3)
C5A0.041 (4)0.032 (3)0.043 (3)0.003 (3)0.013 (3)0.001 (3)
C6A0.038 (4)0.031 (3)0.039 (3)0.002 (3)0.011 (3)0.005 (2)
C7A0.034 (4)0.042 (3)0.045 (3)0.005 (3)0.018 (3)0.004 (3)
Geometric parameters (Å, º) top
Br1A—C2A1.896 (6)C1A—C6A1.405 (8)
Br2A—C4A1.897 (6)C2A—C3A1.374 (8)
O1A—C1A1.350 (6)C3A—C4A1.373 (8)
O1A—H1A0.8200C3A—H3AA0.9300
N1A—C7A1.273 (8)C4A—C5A1.383 (9)
N1A—N2A1.380 (7)C5A—C6A1.398 (8)
N2A—H2AA0.8600C5A—H5AA0.9300
N2A—H2AB0.8600C6A—C7A1.470 (9)
C1A—C2A1.384 (8)C7A—H7AA0.9300
C1A—O1A—H1A109.5C4A—C3A—H3AA120.6
C7A—N1A—N2A118.5 (5)C3A—C4A—C5A121.5 (6)
N1A—N2A—H2AA120.0C3A—C4A—Br2A119.0 (5)
N1A—N2A—H2AB120.0C5A—C4A—Br2A119.5 (4)
H2AA—N2A—H2AB120.0C4A—C5A—C6A119.7 (5)
O1A—C1A—C2A119.3 (5)C4A—C5A—H5AA120.1
O1A—C1A—C6A121.5 (5)C6A—C5A—H5AA120.1
C2A—C1A—C6A119.2 (5)C5A—C6A—C1A119.0 (6)
C3A—C2A—C1A121.8 (5)C5A—C6A—C7A119.4 (5)
C3A—C2A—Br1A119.3 (5)C1A—C6A—C7A121.6 (5)
C1A—C2A—Br1A118.9 (4)N1A—C7A—C6A119.6 (5)
C2A—C3A—C4A118.8 (6)N1A—C7A—H7AA120.2
C2A—C3A—H3AA120.6C6A—C7A—H7AA120.2
O1A—C1A—C2A—C3A178.3 (5)C4A—C5A—C6A—C1A0.4 (8)
C6A—C1A—C2A—C3A1.6 (9)C4A—C5A—C6A—C7A179.3 (5)
O1A—C1A—C2A—Br1A2.7 (7)O1A—C1A—C6A—C5A178.6 (5)
C6A—C1A—C2A—Br1A177.4 (4)C2A—C1A—C6A—C5A1.3 (8)
C1A—C2A—C3A—C4A0.1 (9)O1A—C1A—C6A—C7A2.6 (9)
Br1A—C2A—C3A—C4A178.9 (4)C2A—C1A—C6A—C7A177.5 (5)
C2A—C3A—C4A—C5A1.7 (9)N2A—N1A—C7A—C6A178.1 (5)
C2A—C3A—C4A—Br2A178.0 (4)C5A—C6A—C7A—N1A174.2 (6)
C3A—C4A—C5A—C6A2.0 (9)C1A—C6A—C7A—N1A7.0 (9)
Br2A—C4A—C5A—C6A177.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N1A0.821.852.579 (7)147
N2A—H2AB···Br1Ai0.862.943.774 (6)163
N2A—H2AB···O1Ai0.862.473.088 (8)129
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank Rigaku Corporation of the X-ray Crystallography Facility at the 24th IUCr Congress and General Assembly, Hyderabad, India, for providing the single-crystal X-ray diffraction data, and the Jiwaji University, Gwalior, for a research grant.

References

First citationArion, V., Wieghardt, K., Weyhermueller, T., Bill, E., Leovac, V. & Rufinska, A. (1997). Inorg. Chem. 36, 661–669.  CSD CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoyer, J. L., Rochford, J., Tsai, M.-K., Muckerman, J. T. & Fujita, E. (2010). Coord. Chem. Rev. 254, 309–330.  Web of Science CrossRef CAS Google Scholar
First citationChen, J.-Q., Jiang, L., Li, S.-M. & Chen, Y.-Z. (2009). Acta Cryst. E65, o2536.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGupta, S. K., Anjna, C., Sen, N., Butcher, R. J., Jasinski, J. P. & Golen, J. A. (2015). Polyhedron, 89, 219–231.  Web of Science CSD CrossRef CAS Google Scholar
First citationKnof, U., Weyhermuller, T., Wolter, T., Wieghardt, K., Bill, E., Butzlaff, C. & Trautwein, A. X. (1993). Angew. Chem. Int. Ed. Engl. 32, 1635–1638.  CSD CrossRef Web of Science Google Scholar
First citationMukhopadhyay, A. & Pal, S. (2009). Eur. J. Inorg. Chem. pp. 4141–4148.  Web of Science CSD CrossRef Google Scholar
First citationNagaraju, K., Raveendran, R., Pal, S. & Pal, S. (2012). Polyhedron, 33, 52–59.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2017). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, USA.  Google Scholar
First citationSamojlowicz, C., Bieniek, M. & Grela, K. (2009). Chem. Rev. 109, 3708–3742.  Web of Science PubMed CAS Google Scholar
First citationShang, Y.-F., Wang, Q.-M., Zhu, M.-L. & Zhang, Y.-H. (2009). Acta Cryst. E65, o3023.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citation[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.] Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYin, Z.-G., Qian, H.-Y., Zhang, C.-X. & Zhu, X.-W. (2009). Acta Cryst. E65, o2575.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]