metal-organic compounds
catena-Poly[[trimethyltin(IV)]-μ-methylphenylphosphinato-κ2O:O′]
aDepartment of Pharmacy, Shandong Medical College, Jinan 250000, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: zhangrf856@163.com
A new trimethyltin(IV) coordination polymer, [Sn(CH3)3(C7H8O2P)], has been prepared by treatment of methylphenylphosphinic acid and trimethyltin chloride with sodium ethoxide in methanol. In the solid state, the title compound adopts an infinite one-dimensional polymeric chain structure with each SnIV atom adopting a distorted trigonal–bipyramidal geometry.
Keywords: crystal structure; organotin; methylphenylphosphinic acid; trimethyltin(IV); coordination compound; polymeric chain.
CCDC reference: 1578530
Structure description
In recent years, organotin complexes have been attracting more and more attention due to their significant number of industrial applications and their biological activity (Dubey & Roy, 2003; Gielen, 2002). As a part of our ongoing investigations in this field (Ma et al., 2008), we have synthesized the title compound and present its here. As can been seen from Fig. 1, the of the title compound consists of one [(CH3)3Sn] group and a deprotonated methylphenylphosphinic acid. Each SnIV atom adopts a distorted trigonal–bipyramidal geometry where the two oxygen atoms from the bridging methylphenylphosphinate ligands occupy the axial positions [O1—Sn1—O2( − x, + y, − z) = 178.6 (3)°]. The three C atoms of the [Me3Sn]+ group are equatorial with the three trigonal C—Sn1—C angles summing to 359.9°. Hence atoms Sn1, C8, C9 and C10 are almost coplanar with an r.m.s. deviation of 0.0128 Å from the best fit plane through these atoms. Two P(=O)O– units of the deprotonated methylphenylphosphinic acid ligand link adjacent [Me3Sn]+ atoms into a one-dimensional zigzag chain structure along the b-axis direction (Fig. 2).
Synthesis and crystallization
The reaction was carried out under a nitrogen atmosphere using standard Schlenk techniques. The compound was synthesized by dissolving methylphenylphosphinic acid (0.156 g, 1.0 mmol), sodium ethoxide (0.068 g, 1.0 mmol) in methanol (30 ml) and stirring for 30 min. Trimethyltin chloride (0.199 g, 1.0 mmol) was then added and stirred for further 12 h at 318 K. The reaction mixture was filtered and the solvent was gradually evaporated under vacuum until a white solid product was obtained. The resulting product was recrystallized from diethyl ether to give transparent colourless crystals of the title compound (yield 88%, m.p. 428–430 K). Analysis calculated for C10H17O2PSn: C 37.66, H 5.37%; found: C 37.43, H 5.48%.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 1578530
https://doi.org/10.1107/S2414314617014420/sj4133sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617014420/sj4133Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Sn(CH3)3(C7H8O2P)] | F(000) = 632 |
Mr = 318.89 | Dx = 1.567 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.8051 (11) Å | Cell parameters from 2834 reflections |
b = 10.3376 (13) Å | θ = 2.3–27.2° |
c = 12.4466 (15) Å | µ = 1.99 mm−1 |
β = 103.485 (1)° | T = 298 K |
V = 1351.9 (3) Å3 | Block, colorless |
Z = 4 | 0.48 × 0.45 × 0.33 mm |
Bruker APEXIII CCD area detector diffractometer | 1581 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.120 |
phi and ω scans | θmax = 25.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | h = −12→12 |
Tmin = 0.449, Tmax = 0.560 | k = −12→9 |
5890 measured reflections | l = −13→14 |
2371 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.085 | H-atom parameters constrained |
wR(F2) = 0.266 | w = 1/[σ2(Fo2) + (0.1668P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2371 reflections | Δρmax = 2.75 e Å−3 |
131 parameters | Δρmin = −2.29 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.79793 (7) | 0.62599 (8) | 0.22275 (6) | 0.0396 (4) | |
P1 | 0.8534 (4) | 0.3397 (3) | 0.1053 (3) | 0.0471 (9) | |
O1 | 0.8773 (10) | 0.4803 (8) | 0.1248 (8) | 0.067 (3) | |
O2 | 0.7787 (10) | 0.2766 (9) | 0.1787 (8) | 0.066 (3) | |
C1 | 1.0072 (12) | 0.2600 (11) | 0.1224 (10) | 0.044 (3) | |
C2 | 1.1181 (14) | 0.3355 (15) | 0.1300 (13) | 0.064 (4) | |
H2 | 1.1134 | 0.4253 | 0.1277 | 0.077* | |
C3 | 1.2345 (15) | 0.273 (2) | 0.1408 (14) | 0.085 (5) | |
H3 | 1.3083 | 0.3213 | 0.1458 | 0.102* | |
C4 | 1.2404 (18) | 0.1382 (18) | 0.1441 (15) | 0.081 (5) | |
H4 | 1.3180 | 0.0964 | 0.1503 | 0.097* | |
C5 | 1.1335 (18) | 0.0686 (18) | 0.1384 (13) | 0.078 (5) | |
H5 | 1.1388 | −0.0211 | 0.1432 | 0.094* | |
C6 | 1.0176 (16) | 0.1269 (13) | 0.1256 (13) | 0.061 (4) | |
H6 | 0.9450 | 0.0765 | 0.1190 | 0.073* | |
C7 | 0.7727 (16) | 0.3131 (19) | −0.0378 (12) | 0.080 (5) | |
H7A | 0.7518 | 0.2231 | −0.0490 | 0.119* | |
H7B | 0.8275 | 0.3384 | −0.0847 | 0.119* | |
H7C | 0.6961 | 0.3637 | −0.0554 | 0.119* | |
C8 | 0.9178 (13) | 0.7666 (12) | 0.1790 (12) | 0.055 (3) | |
H8A | 0.9294 | 0.8363 | 0.2314 | 0.082* | |
H8B | 0.8799 | 0.7994 | 0.1066 | 0.082* | |
H8C | 0.9988 | 0.7285 | 0.1789 | 0.082* | |
C9 | 0.6111 (15) | 0.6020 (15) | 0.1233 (12) | 0.067 (4) | |
H9A | 0.5694 | 0.5328 | 0.1523 | 0.100* | |
H9B | 0.6155 | 0.5818 | 0.0490 | 0.100* | |
H9C | 0.5639 | 0.6806 | 0.1236 | 0.100* | |
C10 | 0.8716 (15) | 0.5208 (15) | 0.3710 (11) | 0.070 (4) | |
H10A | 0.8054 | 0.5079 | 0.4096 | 0.104* | |
H10B | 0.9401 | 0.5687 | 0.4169 | 0.104* | |
H10C | 0.9026 | 0.4384 | 0.3532 | 0.104* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.0286 (6) | 0.0407 (6) | 0.0522 (6) | 0.0003 (3) | 0.0145 (4) | 0.0010 (3) |
P1 | 0.051 (2) | 0.0397 (18) | 0.060 (2) | 0.0044 (15) | 0.0310 (17) | 0.0035 (15) |
O1 | 0.080 (7) | 0.042 (5) | 0.096 (7) | 0.015 (5) | 0.058 (6) | 0.009 (5) |
O2 | 0.078 (7) | 0.043 (5) | 0.094 (7) | 0.001 (5) | 0.057 (6) | 0.012 (5) |
C1 | 0.043 (7) | 0.040 (7) | 0.056 (7) | 0.000 (6) | 0.029 (6) | 0.008 (6) |
C2 | 0.049 (9) | 0.059 (9) | 0.088 (11) | 0.001 (7) | 0.024 (8) | −0.010 (8) |
C3 | 0.038 (9) | 0.113 (15) | 0.103 (13) | −0.003 (9) | 0.016 (9) | 0.001 (11) |
C4 | 0.054 (11) | 0.109 (16) | 0.080 (11) | 0.028 (10) | 0.020 (9) | 0.007 (9) |
C5 | 0.088 (14) | 0.062 (10) | 0.095 (12) | 0.025 (10) | 0.040 (10) | −0.003 (9) |
C6 | 0.058 (10) | 0.057 (9) | 0.076 (10) | 0.015 (7) | 0.030 (8) | 0.002 (7) |
C7 | 0.066 (11) | 0.113 (13) | 0.060 (9) | −0.001 (10) | 0.017 (8) | −0.021 (9) |
C8 | 0.037 (8) | 0.044 (7) | 0.095 (10) | 0.002 (6) | 0.040 (7) | −0.006 (7) |
C9 | 0.050 (9) | 0.090 (12) | 0.064 (9) | 0.004 (8) | 0.019 (7) | 0.006 (8) |
C10 | 0.068 (11) | 0.073 (10) | 0.064 (9) | 0.010 (8) | 0.008 (8) | 0.008 (7) |
Sn1—C8 | 2.101 (13) | C4—H4 | 0.9300 |
Sn1—C9 | 2.122 (15) | C5—C6 | 1.36 (2) |
Sn1—C10 | 2.129 (13) | C5—H5 | 0.9300 |
Sn1—O1 | 2.231 (9) | C6—H6 | 0.9300 |
Sn1—O2i | 2.255 (8) | C7—H7A | 0.9600 |
P1—O1 | 1.486 (9) | C7—H7B | 0.9600 |
P1—O2 | 1.502 (9) | C7—H7C | 0.9600 |
P1—C7 | 1.812 (15) | C8—H8A | 0.9600 |
P1—C1 | 1.822 (13) | C8—H8B | 0.9600 |
O2—Sn1ii | 2.255 (8) | C8—H8C | 0.9600 |
C1—C6 | 1.380 (16) | C9—H9A | 0.9600 |
C1—C2 | 1.415 (18) | C9—H9B | 0.9600 |
C2—C3 | 1.39 (2) | C9—H9C | 0.9600 |
C2—H2 | 0.9300 | C10—H10A | 0.9600 |
C3—C4 | 1.40 (2) | C10—H10B | 0.9600 |
C3—H3 | 0.9300 | C10—H10C | 0.9600 |
C4—C5 | 1.35 (2) | ||
C8—Sn1—C9 | 119.3 (6) | C4—C5—C6 | 121.4 (17) |
C8—Sn1—C10 | 116.7 (6) | C4—C5—H5 | 119.3 |
C9—Sn1—C10 | 123.9 (6) | C6—C5—H5 | 119.3 |
C8—Sn1—O1 | 89.3 (4) | C5—C6—C1 | 120.7 (16) |
C9—Sn1—O1 | 92.1 (5) | C5—C6—H6 | 119.7 |
C10—Sn1—O1 | 90.9 (5) | C1—C6—H6 | 119.7 |
C8—Sn1—O2i | 89.4 (4) | P1—C7—H7A | 109.5 |
C9—Sn1—O2i | 88.7 (5) | P1—C7—H7B | 109.5 |
C10—Sn1—O2i | 89.5 (5) | H7A—C7—H7B | 109.5 |
O1—Sn1—O2i | 178.6 (3) | P1—C7—H7C | 109.5 |
O1—P1—O2 | 115.0 (5) | H7A—C7—H7C | 109.5 |
O1—P1—C7 | 109.5 (8) | H7B—C7—H7C | 109.5 |
O2—P1—C7 | 109.2 (7) | Sn1—C8—H8A | 109.5 |
O1—P1—C1 | 107.7 (6) | Sn1—C8—H8B | 109.5 |
O2—P1—C1 | 109.7 (5) | H8A—C8—H8B | 109.5 |
C7—P1—C1 | 105.3 (7) | Sn1—C8—H8C | 109.5 |
P1—O1—Sn1 | 132.5 (6) | H8A—C8—H8C | 109.5 |
P1—O2—Sn1ii | 161.4 (6) | H8B—C8—H8C | 109.5 |
C6—C1—C2 | 119.1 (13) | Sn1—C9—H9A | 109.5 |
C6—C1—P1 | 121.3 (11) | Sn1—C9—H9B | 109.5 |
C2—C1—P1 | 119.6 (10) | H9A—C9—H9B | 109.5 |
C3—C2—C1 | 118.9 (15) | Sn1—C9—H9C | 109.5 |
C3—C2—H2 | 120.6 | H9A—C9—H9C | 109.5 |
C1—C2—H2 | 120.6 | H9B—C9—H9C | 109.5 |
C2—C3—C4 | 120.0 (16) | Sn1—C10—H10A | 109.5 |
C2—C3—H3 | 120.0 | Sn1—C10—H10B | 109.5 |
C4—C3—H3 | 120.0 | H10A—C10—H10B | 109.5 |
C5—C4—C3 | 119.9 (17) | Sn1—C10—H10C | 109.5 |
C5—C4—H4 | 120.1 | H10A—C10—H10C | 109.5 |
C3—C4—H4 | 120.1 | H10B—C10—H10C | 109.5 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2. |
Funding information
We thank the National Natural Science Foundation of China (21371087) for financial support.
References
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dubey, S. K. & Roy, U. (2003). Appl. Organomet. Chem. 17, 3–8. Web of Science CrossRef CAS Google Scholar
Gielen, M. (2002). Appl. Organomet. Chem. 16, 481–494. Web of Science CrossRef CAS Google Scholar
Ma, C. L., Yang, M. Q., Zhang, R. F. & Du, L. Y. (2008). Inorg. Chim. Acta, 361, 2979–2984. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.