metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

catena-Poly[[tri­methyl­tin(IV)]-μ-methyl­phenyl­phosphinato-κ2O:O′]

CROSSMARK_Color_square_no_text.svg

aDepartment of Pharmacy, Shandong Medical College, Jinan 250000, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: zhangrf856@163.com

Edited by J. Simpson, University of Otago, New Zealand (Received 24 September 2017; accepted 6 October 2017; online 13 October 2017)

A new tri­methyl­tin(IV) coordination polymer, [Sn(CH3)3(C7H8O2P)], has been prepared by treatment of methyl­phenyl­phosphinic acid and tri­methyl­tin chloride with sodium ethoxide in methanol. In the solid state, the title compound adopts an infinite one-dimensional polymeric chain structure with each SnIV atom adopting a distorted trigonal–bipyramidal geometry.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In recent years, organotin complexes have been attracting more and more attention due to their significant number of industrial applications and their biological activity (Dubey & Roy, 2003[Dubey, S. K. & Roy, U. (2003). Appl. Organomet. Chem. 17, 3-8.]; Gielen, 2002[Gielen, M. (2002). Appl. Organomet. Chem. 16, 481-494.]). As a part of our ongoing investigations in this field (Ma et al., 2008[Ma, C. L., Yang, M. Q., Zhang, R. F. & Du, L. Y. (2008). Inorg. Chim. Acta, 361, 2979-2984.]), we have synthesized the title compound and present its crystal structure here. As can been seen from Fig. 1[link], the asymmetric unit of the title compound consists of one [(CH3)3Sn] group and a deprotonated methyl­phenyl­phosphinic acid. Each SnIV atom adopts a distorted trigonal–bipyramidal geometry where the two oxygen atoms from the bridging methyl­phenyl­phosphinate ligands occupy the axial positions [O1—Sn1—O2([{3\over 2}] − x, [{3\over 2}] + y, [{1\over 2}] − z) = 178.6 (3)°]. The three C atoms of the [Me3Sn]+ group are equatorial with the three trigonal C—Sn1—C angles summing to 359.9°. Hence atoms Sn1, C8, C9 and C10 are almost coplanar with an r.m.s. deviation of 0.0128 Å from the best fit plane through these atoms. Two P(=O)O– units of the deprotonated methyl­phenyl­phosphinic acid ligand link adjacent [Me3Sn]+ atoms into a one-dimensional zigzag chain structure along the b-axis direction (Fig. 2[link]).

[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2]
Figure 2
View of the one-dimensional zigzag chain structure running parallel to the b axis in the title compound. H atoms have been omitted for clarity.

Synthesis and crystallization

The reaction was carried out under a nitro­gen atmosphere using standard Schlenk techniques. The compound was synthesized by dissolving methyl­phenyl­phosphinic acid (0.156 g, 1.0 mmol), sodium ethoxide (0.068 g, 1.0 mmol) in methanol (30 ml) and stirring for 30 min. Tri­methyl­tin chloride (0.199 g, 1.0 mmol) was then added and stirred for further 12 h at 318 K. The reaction mixture was filtered and the solvent was gradually evaporated under vacuum until a white solid product was obtained. The resulting product was recrystallized from diethyl ether to give transparent colourless crystals of the title compound (yield 88%, m.p. 428–430 K). Analysis calculated for C10H17O2PSn: C 37.66, H 5.37%; found: C 37.43, H 5.48%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Sn(CH3)3(C7H8O2P)]
Mr 318.89
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 10.8051 (11), 10.3376 (13), 12.4466 (15)
β (°) 103.485 (1)
V3) 1351.9 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.99
Crystal size (mm) 0.48 × 0.45 × 0.33
 
Data collection
Diffractometer Bruker APEXIII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.449, 0.560
No. of measured, independent and observed [I > 2σ(I)] reflections 5890, 2371, 1581
Rint 0.120
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.085, 0.266, 1.05
No. of reflections 2371
No. of parameters 131
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.75, −2.29
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[[trimethyltin(IV)]-µ-methylphenylphosphinato-κ2O:O'] top
Crystal data top
[Sn(CH3)3(C7H8O2P)]F(000) = 632
Mr = 318.89Dx = 1.567 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.8051 (11) ÅCell parameters from 2834 reflections
b = 10.3376 (13) Åθ = 2.3–27.2°
c = 12.4466 (15) ŵ = 1.99 mm1
β = 103.485 (1)°T = 298 K
V = 1351.9 (3) Å3Block, colorless
Z = 40.48 × 0.45 × 0.33 mm
Data collection top
Bruker APEXIII CCD area detector
diffractometer
1581 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.120
phi and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1212
Tmin = 0.449, Tmax = 0.560k = 129
5890 measured reflectionsl = 1314
2371 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.085H-atom parameters constrained
wR(F2) = 0.266 w = 1/[σ2(Fo2) + (0.1668P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2371 reflectionsΔρmax = 2.75 e Å3
131 parametersΔρmin = 2.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.79793 (7)0.62599 (8)0.22275 (6)0.0396 (4)
P10.8534 (4)0.3397 (3)0.1053 (3)0.0471 (9)
O10.8773 (10)0.4803 (8)0.1248 (8)0.067 (3)
O20.7787 (10)0.2766 (9)0.1787 (8)0.066 (3)
C11.0072 (12)0.2600 (11)0.1224 (10)0.044 (3)
C21.1181 (14)0.3355 (15)0.1300 (13)0.064 (4)
H21.11340.42530.12770.077*
C31.2345 (15)0.273 (2)0.1408 (14)0.085 (5)
H31.30830.32130.14580.102*
C41.2404 (18)0.1382 (18)0.1441 (15)0.081 (5)
H41.31800.09640.15030.097*
C51.1335 (18)0.0686 (18)0.1384 (13)0.078 (5)
H51.13880.02110.14320.094*
C61.0176 (16)0.1269 (13)0.1256 (13)0.061 (4)
H60.94500.07650.11900.073*
C70.7727 (16)0.3131 (19)0.0378 (12)0.080 (5)
H7A0.75180.22310.04900.119*
H7B0.82750.33840.08470.119*
H7C0.69610.36370.05540.119*
C80.9178 (13)0.7666 (12)0.1790 (12)0.055 (3)
H8A0.92940.83630.23140.082*
H8B0.87990.79940.10660.082*
H8C0.99880.72850.17890.082*
C90.6111 (15)0.6020 (15)0.1233 (12)0.067 (4)
H9A0.56940.53280.15230.100*
H9B0.61550.58180.04900.100*
H9C0.56390.68060.12360.100*
C100.8716 (15)0.5208 (15)0.3710 (11)0.070 (4)
H10A0.80540.50790.40960.104*
H10B0.94010.56870.41690.104*
H10C0.90260.43840.35320.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0286 (6)0.0407 (6)0.0522 (6)0.0003 (3)0.0145 (4)0.0010 (3)
P10.051 (2)0.0397 (18)0.060 (2)0.0044 (15)0.0310 (17)0.0035 (15)
O10.080 (7)0.042 (5)0.096 (7)0.015 (5)0.058 (6)0.009 (5)
O20.078 (7)0.043 (5)0.094 (7)0.001 (5)0.057 (6)0.012 (5)
C10.043 (7)0.040 (7)0.056 (7)0.000 (6)0.029 (6)0.008 (6)
C20.049 (9)0.059 (9)0.088 (11)0.001 (7)0.024 (8)0.010 (8)
C30.038 (9)0.113 (15)0.103 (13)0.003 (9)0.016 (9)0.001 (11)
C40.054 (11)0.109 (16)0.080 (11)0.028 (10)0.020 (9)0.007 (9)
C50.088 (14)0.062 (10)0.095 (12)0.025 (10)0.040 (10)0.003 (9)
C60.058 (10)0.057 (9)0.076 (10)0.015 (7)0.030 (8)0.002 (7)
C70.066 (11)0.113 (13)0.060 (9)0.001 (10)0.017 (8)0.021 (9)
C80.037 (8)0.044 (7)0.095 (10)0.002 (6)0.040 (7)0.006 (7)
C90.050 (9)0.090 (12)0.064 (9)0.004 (8)0.019 (7)0.006 (8)
C100.068 (11)0.073 (10)0.064 (9)0.010 (8)0.008 (8)0.008 (7)
Geometric parameters (Å, º) top
Sn1—C82.101 (13)C4—H40.9300
Sn1—C92.122 (15)C5—C61.36 (2)
Sn1—C102.129 (13)C5—H50.9300
Sn1—O12.231 (9)C6—H60.9300
Sn1—O2i2.255 (8)C7—H7A0.9600
P1—O11.486 (9)C7—H7B0.9600
P1—O21.502 (9)C7—H7C0.9600
P1—C71.812 (15)C8—H8A0.9600
P1—C11.822 (13)C8—H8B0.9600
O2—Sn1ii2.255 (8)C8—H8C0.9600
C1—C61.380 (16)C9—H9A0.9600
C1—C21.415 (18)C9—H9B0.9600
C2—C31.39 (2)C9—H9C0.9600
C2—H20.9300C10—H10A0.9600
C3—C41.40 (2)C10—H10B0.9600
C3—H30.9300C10—H10C0.9600
C4—C51.35 (2)
C8—Sn1—C9119.3 (6)C4—C5—C6121.4 (17)
C8—Sn1—C10116.7 (6)C4—C5—H5119.3
C9—Sn1—C10123.9 (6)C6—C5—H5119.3
C8—Sn1—O189.3 (4)C5—C6—C1120.7 (16)
C9—Sn1—O192.1 (5)C5—C6—H6119.7
C10—Sn1—O190.9 (5)C1—C6—H6119.7
C8—Sn1—O2i89.4 (4)P1—C7—H7A109.5
C9—Sn1—O2i88.7 (5)P1—C7—H7B109.5
C10—Sn1—O2i89.5 (5)H7A—C7—H7B109.5
O1—Sn1—O2i178.6 (3)P1—C7—H7C109.5
O1—P1—O2115.0 (5)H7A—C7—H7C109.5
O1—P1—C7109.5 (8)H7B—C7—H7C109.5
O2—P1—C7109.2 (7)Sn1—C8—H8A109.5
O1—P1—C1107.7 (6)Sn1—C8—H8B109.5
O2—P1—C1109.7 (5)H8A—C8—H8B109.5
C7—P1—C1105.3 (7)Sn1—C8—H8C109.5
P1—O1—Sn1132.5 (6)H8A—C8—H8C109.5
P1—O2—Sn1ii161.4 (6)H8B—C8—H8C109.5
C6—C1—C2119.1 (13)Sn1—C9—H9A109.5
C6—C1—P1121.3 (11)Sn1—C9—H9B109.5
C2—C1—P1119.6 (10)H9A—C9—H9B109.5
C3—C2—C1118.9 (15)Sn1—C9—H9C109.5
C3—C2—H2120.6H9A—C9—H9C109.5
C1—C2—H2120.6H9B—C9—H9C109.5
C2—C3—C4120.0 (16)Sn1—C10—H10A109.5
C2—C3—H3120.0Sn1—C10—H10B109.5
C4—C3—H3120.0H10A—C10—H10B109.5
C5—C4—C3119.9 (17)Sn1—C10—H10C109.5
C5—C4—H4120.1H10A—C10—H10C109.5
C3—C4—H4120.1H10B—C10—H10C109.5
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2.
 

Funding information

We thank the National Natural Science Foundation of China (21371087) for financial support.

References

First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDubey, S. K. & Roy, U. (2003). Appl. Organomet. Chem. 17, 3–8.  Web of Science CrossRef CAS Google Scholar
First citationGielen, M. (2002). Appl. Organomet. Chem. 16, 481–494.  Web of Science CrossRef CAS Google Scholar
First citationMa, C. L., Yang, M. Q., Zhang, R. F. & Du, L. Y. (2008). Inorg. Chim. Acta, 361, 2979–2984.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]