metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Two-dimensional structure of poly[[[μ2-1,4-bis­­(pyridin-4-yl)butane]­bis­­(μ4-penta­nedioato)dicopper(II)] aceto­nitrile disolvate]

CROSSMARK_Color_square_no_text.svg

aIngenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea, and bDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
*Correspondence e-mail: ymeekim@ewha.ac.kr

Edited by A. J. Lough, University of Toronto, Canada (Received 25 September 2017; accepted 7 October 2017; online 13 October 2017)

In the title compound, {[Cu2(μ4-C5H6O4)2(μ2-C14H16N2)]·2CH3CN}n, the Cu2 dinuclear units are connected by glutartate ligands, forming one-dimensional double chains. These chains, are in turn bridged by 1,4-bis­(pyridin-4-yl)butane ligands to form a two-dimensional layer structure parallel to (112). The carboxyl­ate groups of the glutarate ligand bridge two copper(II) ions, forming a paddle-wheel-type Cu2(CO2)4 dinuclear secondary building unit. A crystallographic inversion centre is located midway between two CuII ions, with a Cu⋯Cu distance of 2.639 (3) Å. The coordination geometry of the unique CuII ion is slightly disorted square pyramidal, formed by four equatorial carboxyl­ate O atoms and an axial pyridyl N atom.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Metal–organic frameworks (MOFs) have been constructed using metal ions and polytopic bridging ligands, and MOFs usually provide high surfaces and large pore volumes, and are thereby suitable for various advanced applications, such as selective gas sorption, heterogeneous catalysis, separation, sensors, drug delivery and biological imaging. Flexible di­carboxyl­ates, as well as rigid aromatic di­carboxyl­ates, have been used for the synthesis of MOFs, and flexible di­carboxyl­ates, e.g. α,ω-alkanedi­carboxyl­ates, have been shown to be particularly suitable as ligands in MOFs of various topologies. Recently, various MOFs containing these α,ω-alkane(or alkene)di­carboxyl­ate ligands have been reported (Hyun et al., 2013[Hyun, M. Y., Hwang, I. H., Lee, M. M., Kim, H., Kim, K. B., Kim, C., Kim, H.-Y., Kim, Y. & Kim, S.-J. (2013). Polyhedron, 53, 166-171.]; Hwang et al., 2012[Hwang, I. H., Bae, J. M., Kim, W.-S., Jo, Y. D., Kim, C., Kim, Y., Kim, S.-J. & Huh, S. (2012). Dalton Trans. 41, 12759-12763.], 2013[Hwang, I. H., Kim, H.-Y., Lee, M. M., Na, Y. J., Kim, J. H., Kim, H.-C., Kim, C., Huh, S., Kim, Y. & Kim, S.-J. (2013). Cryst. Growth Des. 13, 4815-4823.]; Lee et al., 2014[Lee, M. M., Kim, H.-Y., Hwang, I. H., Bae, J. M., Kim, C., Yo, C.-H., Kim, Y. & Kim, S.-J. (2014). Bull. Korean Chem. Soc. 35, 1777-1783.]; Kim et al., 2017[Kim, H.-C., Huh, S., Kim, J. Y., Moon, H. R., Lee, D. N. & Kim, Y. (2017). CrystEngComm, 19, 99-109.]), athough they are less frequently employed in MOFs than aromatic di­carboxyl­ates. We report herein the crystal structure of poly[[[μ2-1,4-bis­(pyridin-4-yl)butane]­bis­(μ4-penta­ne­dioato)dicopper(II)] aceto­nitrile disolvate].

A fragment of the two-dimensional title compound is shown in Fig. 1[link]. The Cu2 dinuclear units are connected by glutartate ligands, forming one-dimensional double chains, and these chains are bridged by 1,4-bis­(pyridin-4-yl)butane ligands to form a two-dimensional layer structure parallel to (112) (Fig. 2[link]). The carboxyl­ate groups of the glutarate ligands bridge two CuII ions, forming a paddle-wheel-type Cu2(CO2)4 dinuclear secondary building unit. A crystallographic inversion centre is located midway between two CuII ions, with a Cu⋯Cu distance of 2.639 (3) Å. The coordination geometry of the unique CuII ion is slightly distorted square-pyramidal, constructed by four equatorial carboxyl­ate O atoms and an axial pyridyl N atom.

[Figure 1]
Figure 1
A fragment of the title compound, showing displacement ellipsoids at the 30% probability level. [Symmetry codes: (i) 1 − x, 1 − y, 2 − z; (ii) 1 − x, −y, 2 − z; (iii) 3 − x, 1 − y, 1 − z.]
[Figure 2]
Figure 2
Two-dimensional structure of the title compound. The aceto­nitrile solvent mol­ecules have been omitted for clarity.

Synthesis and crystallization

Glutaric acid (0.1 mmol, 13.3 mg) and Cu(NO3)2·H2O (0.1 mmol, 23.7 mg) were dissolved in 4 ml H2O and carefully layered by a 4 ml aceto­nitrile solution of 1,4-bis­(pyridin-4-yl)bu­tane (0.2 mmol, 42.5 mg). Suitable crystals of the title compound were obtained within a few weeks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Cu2(C5H6O4)2(C14H16N2)]·2C2H3N
Mr 681.67
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 170
a, b, c (Å) 7.7525 (11), 7.9962 (11), 12.8132 (18)
α, β, γ (°) 87.867 (2), 81.875 (2), 82.674 (2)
V3) 779.76 (19)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.42
Crystal size (mm) 0.21 × 0.10 × 0.07
 
Data collection
Diffractometer Bruker APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.804, 0.910
No. of measured, independent and observed [I > 2σ(I)] reflections 4341, 2979, 1863
Rint 0.062
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.108, 0.89
No. of reflections 2979
No. of parameters 191
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.95, −0.38
Computer programs: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Berndt, 1998[Brandenburg, K. & Berndt, M. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Berndt, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Poly[[[µ2-1,4-bis(pyridin-4-yl)butane]bis(µ4-pentanedioato)dicopper(II)] acetonitrile disolvate] top
Crystal data top
[Cu2(C5H6O4)2(C14H16N2)].2C2H3NZ = 1
Mr = 681.67F(000) = 352
Triclinic, P1Dx = 1.452 Mg m3
a = 7.7525 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.9962 (11) ÅCell parameters from 2966 reflections
c = 12.8132 (18) Åθ = 2.2–26.2°
α = 87.867 (2)°µ = 1.42 mm1
β = 81.875 (2)°T = 170 K
γ = 82.674 (2)°Block, blue
V = 779.76 (19) Å30.21 × 0.10 × 0.07 mm
Data collection top
Bruker APEX CCD
diffractometer
1863 reflections with I > 2σ(I)
φ and ω scansRint = 0.062
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
θmax = 26.0°, θmin = 2.6°
Tmin = 0.804, Tmax = 0.910h = 99
4341 measured reflectionsk = 99
2979 independent reflectionsl = 1511
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0347P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max = 0.002
2979 reflectionsΔρmax = 0.95 e Å3
191 parametersΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.62490 (7)0.51464 (6)0.92000 (4)0.0290 (2)
O110.5339 (4)0.3241 (4)0.8619 (2)0.0412 (8)
O120.6750 (4)0.7057 (4)1.0021 (2)0.0404 (8)
O210.7596 (4)0.3508 (4)1.0043 (2)0.0404 (8)
O220.4478 (4)0.6742 (4)0.8592 (2)0.0381 (8)
N310.8414 (5)0.5371 (4)0.7959 (3)0.0331 (9)
C110.4123 (6)0.2480 (5)0.9120 (4)0.0306 (10)
C120.3767 (6)0.0878 (5)0.8647 (4)0.0380 (11)
H12A0.47350.00190.87520.046*
H12B0.37880.10670.78770.046*
C130.2032 (5)0.0246 (5)0.9092 (4)0.0347 (11)
H13A0.19650.01250.98680.042*
H13B0.10510.10950.89370.042*
C210.7012 (6)0.2860 (5)1.0915 (4)0.0307 (10)
C220.8184 (6)0.1436 (5)1.1359 (3)0.0343 (11)
H22A0.78900.13891.21360.041*
H22B0.94240.16501.11890.041*
C311.0050 (6)0.4805 (5)0.8086 (3)0.0336 (11)
H311.02500.42520.87350.040*
C321.1470 (6)0.4962 (6)0.7344 (4)0.0377 (11)
H321.26130.45010.74750.045*
C331.1231 (6)0.5799 (6)0.6399 (4)0.0396 (12)
C340.9544 (6)0.6400 (7)0.6260 (4)0.0554 (15)
H340.93130.69810.56250.067*
C350.8182 (6)0.6158 (6)0.7042 (4)0.0468 (13)
H350.70200.65710.69230.056*
C361.2771 (7)0.6114 (7)0.5565 (4)0.0684 (17)
H36A1.23270.62800.48760.082*
H36B1.31800.71860.57290.082*
C371.4299 (7)0.4809 (7)0.5443 (4)0.0622 (16)
H37A1.39020.37170.53110.075*
H37B1.48120.46900.61110.075*
N1S1.1372 (9)0.0804 (8)0.6005 (5)0.105 (2)
C1S1.0053 (11)0.0854 (8)0.6449 (6)0.077 (2)
C2S0.8316 (9)0.0914 (9)0.7021 (6)0.106 (2)
H2S10.75280.05350.65690.160*
H2S20.78910.20730.72380.160*
H2S30.83420.01740.76470.160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0282 (3)0.0198 (3)0.0365 (3)0.0045 (2)0.0048 (2)0.0014 (2)
O110.045 (2)0.0324 (18)0.044 (2)0.0143 (16)0.0101 (16)0.0085 (15)
O120.043 (2)0.0332 (19)0.045 (2)0.0158 (16)0.0044 (16)0.0070 (15)
O210.0339 (19)0.0395 (19)0.043 (2)0.0011 (15)0.0032 (15)0.0080 (15)
O220.0339 (19)0.0339 (18)0.0423 (19)0.0012 (15)0.0019 (15)0.0093 (15)
N310.031 (2)0.031 (2)0.036 (2)0.0069 (18)0.0005 (18)0.0012 (17)
C110.032 (3)0.023 (2)0.037 (3)0.001 (2)0.007 (2)0.000 (2)
C120.044 (3)0.027 (3)0.044 (3)0.010 (2)0.004 (2)0.004 (2)
C130.031 (3)0.020 (2)0.053 (3)0.001 (2)0.008 (2)0.005 (2)
C210.031 (3)0.019 (2)0.044 (3)0.008 (2)0.006 (2)0.003 (2)
C220.028 (3)0.023 (2)0.053 (3)0.006 (2)0.009 (2)0.003 (2)
C310.031 (3)0.031 (3)0.037 (3)0.004 (2)0.001 (2)0.004 (2)
C320.027 (3)0.039 (3)0.046 (3)0.001 (2)0.002 (2)0.001 (2)
C330.036 (3)0.036 (3)0.043 (3)0.006 (2)0.011 (2)0.001 (2)
C340.043 (3)0.071 (4)0.046 (3)0.001 (3)0.002 (3)0.020 (3)
C350.025 (3)0.062 (4)0.050 (3)0.002 (2)0.002 (2)0.014 (3)
C360.051 (4)0.074 (4)0.071 (4)0.010 (3)0.019 (3)0.015 (3)
C370.044 (3)0.076 (4)0.058 (4)0.008 (3)0.020 (3)0.001 (3)
N1S0.108 (5)0.103 (5)0.098 (5)0.003 (5)0.001 (4)0.017 (4)
C1S0.090 (6)0.062 (4)0.072 (5)0.008 (4)0.004 (4)0.004 (4)
C2S0.102 (6)0.084 (5)0.125 (6)0.007 (5)0.002 (5)0.003 (4)
Geometric parameters (Å, º) top
Cu1—O211.959 (3)C22—H22A0.9900
Cu1—O111.970 (3)C22—H22B0.9900
Cu1—O221.976 (3)C31—C321.364 (6)
Cu1—O121.994 (3)C31—H310.9500
Cu1—N312.163 (3)C32—C331.386 (6)
Cu1—Cu1i2.6392 (11)C32—H320.9500
O11—C111.271 (5)C33—C341.368 (6)
O12—C11i1.251 (5)C33—C361.526 (6)
O21—C211.263 (5)C34—C351.376 (6)
O22—C21i1.245 (5)C34—H340.9500
N31—C311.321 (5)C35—H350.9500
N31—C351.337 (5)C36—C371.470 (7)
C11—O12i1.251 (5)C36—H36A0.9900
C11—C121.510 (5)C36—H36B0.9900
C12—C131.525 (6)C37—C37iii1.508 (9)
C12—H12A0.9900C37—H37A0.9900
C12—H12B0.9900C37—H37B0.9900
C13—C22ii1.521 (5)N1S—C1S1.094 (8)
C13—H13A0.9900C1S—C2S1.435 (9)
C13—H13B0.9900C2S—H2S10.9800
C21—O22i1.245 (5)C2S—H2S20.9800
C21—C221.510 (5)C2S—H2S30.9800
C22—C13ii1.521 (5)
O21—Cu1—O1188.10 (13)C21—C22—C13ii111.1 (3)
O21—Cu1—O22167.84 (12)C21—C22—H22A109.4
O11—Cu1—O2290.17 (12)C13ii—C22—H22A109.4
O21—Cu1—O1291.43 (12)C21—C22—H22B109.4
O11—Cu1—O12168.18 (12)C13ii—C22—H22B109.4
O22—Cu1—O1287.80 (12)H22A—C22—H22B108.0
O21—Cu1—N3194.73 (13)N31—C31—C32124.2 (4)
O11—Cu1—N3197.41 (12)N31—C31—H31117.9
O22—Cu1—N3197.42 (13)C32—C31—H31117.9
O12—Cu1—N3194.39 (13)C31—C32—C33119.4 (4)
O21—Cu1—Cu1i82.35 (9)C31—C32—H32120.3
O11—Cu1—Cu1i84.67 (9)C33—C32—H32120.3
O22—Cu1—Cu1i85.51 (9)C34—C33—C32117.0 (4)
O12—Cu1—Cu1i83.57 (9)C34—C33—C36120.9 (4)
N31—Cu1—Cu1i176.38 (10)C32—C33—C36122.1 (5)
C11—O11—Cu1123.1 (3)C33—C34—C35119.8 (4)
C11i—O12—Cu1123.7 (3)C33—C34—H34120.1
C21—O21—Cu1125.6 (3)C35—C34—H34120.1
C21i—O22—Cu1121.4 (3)N31—C35—C34123.2 (4)
C31—N31—C35116.3 (4)N31—C35—H35118.4
C31—N31—Cu1121.7 (3)C34—C35—H35118.4
C35—N31—Cu1121.9 (3)C37—C36—C33117.4 (4)
O12i—C11—O11124.6 (4)C37—C36—H36A108.0
O12i—C11—C12118.6 (4)C33—C36—H36A108.0
O11—C11—C12116.8 (4)C37—C36—H36B108.0
C11—C12—C13115.4 (4)C33—C36—H36B108.0
C11—C12—H12A108.4H36A—C36—H36B107.2
C13—C12—H12A108.4C36—C37—C37iii113.3 (6)
C11—C12—H12B108.4C36—C37—H37A108.9
C13—C12—H12B108.4C37iii—C37—H37A108.9
H12A—C12—H12B107.5C36—C37—H37B108.9
C22ii—C13—C12112.7 (4)C37iii—C37—H37B108.9
C22ii—C13—H13A109.0H37A—C37—H37B107.7
C12—C13—H13A109.0N1S—C1S—C2S179.4 (10)
C22ii—C13—H13B109.0C1S—C2S—H2S1109.5
C12—C13—H13B109.0C1S—C2S—H2S2109.5
H13A—C13—H13B107.8H2S1—C2S—H2S2109.5
O22i—C21—O21124.9 (4)C1S—C2S—H2S3109.5
O22i—C21—C22117.9 (4)H2S1—C2S—H2S3109.5
O21—C21—C22117.1 (4)H2S2—C2S—H2S3109.5
Cu1—O11—C11—O12i7.5 (6)N31—C31—C32—C331.7 (7)
Cu1—O11—C11—C12170.5 (3)C31—C32—C33—C341.2 (7)
O12i—C11—C12—C1317.0 (6)C31—C32—C33—C36176.2 (4)
O11—C11—C12—C13164.8 (4)C32—C33—C34—C350.0 (7)
C11—C12—C13—C22ii175.8 (3)C36—C33—C34—C35177.4 (5)
Cu1—O21—C21—O22i5.5 (6)C31—N31—C35—C340.6 (7)
Cu1—O21—C21—C22171.3 (2)Cu1—N31—C35—C34176.5 (4)
O22i—C21—C22—C13ii91.8 (5)C33—C34—C35—N310.9 (8)
O21—C21—C22—C13ii85.2 (5)C34—C33—C36—C37147.8 (5)
C35—N31—C31—C320.7 (6)C32—C33—C36—C3734.8 (8)
Cu1—N31—C31—C32177.8 (3)C33—C36—C37—C37iii176.6 (5)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2; (iii) x+3, y+1, z+1.
 

Funding information

This work was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF-2017R1D1A1A02017607) and by Kwangwoon University in the year 2017.

References

First citationBrandenburg, K. & Berndt, M. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHwang, I. H., Bae, J. M., Kim, W.-S., Jo, Y. D., Kim, C., Kim, Y., Kim, S.-J. & Huh, S. (2012). Dalton Trans. 41, 12759–12763.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHwang, I. H., Kim, H.-Y., Lee, M. M., Na, Y. J., Kim, J. H., Kim, H.-C., Kim, C., Huh, S., Kim, Y. & Kim, S.-J. (2013). Cryst. Growth Des. 13, 4815–4823.  Web of Science CSD CrossRef CAS Google Scholar
First citationHyun, M. Y., Hwang, I. H., Lee, M. M., Kim, H., Kim, K. B., Kim, C., Kim, H.-Y., Kim, Y. & Kim, S.-J. (2013). Polyhedron, 53, 166–171.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, H.-C., Huh, S., Kim, J. Y., Moon, H. R., Lee, D. N. & Kim, Y. (2017). CrystEngComm, 19, 99–109.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, M. M., Kim, H.-Y., Hwang, I. H., Bae, J. M., Kim, C., Yo, C.-H., Kim, Y. & Kim, S.-J. (2014). Bull. Korean Chem. Soc. 35, 1777–1783.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]