metal-organic compounds
Two-dimensional structure of poly[[[μ2-1,4-bis(pyridin-4-yl)butane]bis(μ4-pentanedioato)dicopper(II)] acetonitrile disolvate]
aIngenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Republic of Korea, and bDepartment of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
*Correspondence e-mail: ymeekim@ewha.ac.kr
In the title compound, {[Cu2(μ4-C5H6O4)2(μ2-C14H16N2)]·2CH3CN}n, the Cu2 dinuclear units are connected by glutartate ligands, forming one-dimensional double chains. These chains, are in turn bridged by 1,4-bis(pyridin-4-yl)butane ligands to form a two-dimensional layer structure parallel to (112). The carboxylate groups of the glutarate ligand bridge two copper(II) ions, forming a paddle-wheel-type Cu2(CO2)4 dinuclear secondary building unit. A crystallographic inversion centre is located midway between two CuII ions, with a Cu⋯Cu distance of 2.639 (3) Å. The coordination geometry of the unique CuII ion is slightly disorted square pyramidal, formed by four equatorial carboxylate O atoms and an axial pyridyl N atom.
Keywords: crystal structure; Cu–MOF; glutarate; 1,4-bis(pyridin-4-yl)butane.
CCDC reference: 1578612
Structure description
Metal–organic frameworks (MOFs) have been constructed using metal ions and polytopic bridging ligands, and MOFs usually provide high surfaces and large pore volumes, and are thereby suitable for various advanced applications, such as selective gas sorption, e.g. α,ω-alkanedicarboxylates, have been shown to be particularly suitable as ligands in MOFs of various topologies. Recently, various MOFs containing these α,ω-alkane(or alkene)dicarboxylate ligands have been reported (Hyun et al., 2013; Hwang et al., 2012, 2013; Lee et al., 2014; Kim et al., 2017), athough they are less frequently employed in MOFs than aromatic dicarboxylates. We report herein the of poly[[[μ2-1,4-bis(pyridin-4-yl)butane]bis(μ4-pentanedioato)dicopper(II)] acetonitrile disolvate].
separation, sensors, drug delivery and biological imaging. Flexible dicarboxylates, as well as rigid aromatic dicarboxylates, have been used for the synthesis of MOFs, and flexible dicarboxylates,A fragment of the two-dimensional title compound is shown in Fig. 1. The Cu2 dinuclear units are connected by glutartate ligands, forming one-dimensional double chains, and these chains are bridged by 1,4-bis(pyridin-4-yl)butane ligands to form a two-dimensional layer structure parallel to (112) (Fig. 2). The carboxylate groups of the glutarate ligands bridge two CuII ions, forming a paddle-wheel-type Cu2(CO2)4 dinuclear secondary building unit. A crystallographic inversion centre is located midway between two CuII ions, with a Cu⋯Cu distance of 2.639 (3) Å. The coordination geometry of the unique CuII ion is slightly distorted square-pyramidal, constructed by four equatorial carboxylate O atoms and an axial pyridyl N atom.
Synthesis and crystallization
Glutaric acid (0.1 mmol, 13.3 mg) and Cu(NO3)2·H2O (0.1 mmol, 23.7 mg) were dissolved in 4 ml H2O and carefully layered by a 4 ml acetonitrile solution of 1,4-bis(pyridin-4-yl)butane (0.2 mmol, 42.5 mg). Suitable crystals of the title compound were obtained within a few weeks.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 1578612
https://doi.org/10.1107/S2414314617014481/lh4026sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617014481/lh4026Isup2.hkl
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Berndt, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu2(C5H6O4)2(C14H16N2)].2C2H3N | Z = 1 |
Mr = 681.67 | F(000) = 352 |
Triclinic, P1 | Dx = 1.452 Mg m−3 |
a = 7.7525 (11) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.9962 (11) Å | Cell parameters from 2966 reflections |
c = 12.8132 (18) Å | θ = 2.2–26.2° |
α = 87.867 (2)° | µ = 1.42 mm−1 |
β = 81.875 (2)° | T = 170 K |
γ = 82.674 (2)° | Block, blue |
V = 779.76 (19) Å3 | 0.21 × 0.10 × 0.07 mm |
Bruker APEX CCD diffractometer | 1863 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.062 |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | θmax = 26.0°, θmin = 2.6° |
Tmin = 0.804, Tmax = 0.910 | h = −9→9 |
4341 measured reflections | k = −9→9 |
2979 independent reflections | l = −15→11 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H-atom parameters constrained |
wR(F2) = 0.108 | w = 1/[σ2(Fo2) + (0.0347P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.89 | (Δ/σ)max = 0.002 |
2979 reflections | Δρmax = 0.95 e Å−3 |
191 parameters | Δρmin = −0.38 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.62490 (7) | 0.51464 (6) | 0.92000 (4) | 0.0290 (2) | |
O11 | 0.5339 (4) | 0.3241 (4) | 0.8619 (2) | 0.0412 (8) | |
O12 | 0.6750 (4) | 0.7057 (4) | 1.0021 (2) | 0.0404 (8) | |
O21 | 0.7596 (4) | 0.3508 (4) | 1.0043 (2) | 0.0404 (8) | |
O22 | 0.4478 (4) | 0.6742 (4) | 0.8592 (2) | 0.0381 (8) | |
N31 | 0.8414 (5) | 0.5371 (4) | 0.7959 (3) | 0.0331 (9) | |
C11 | 0.4123 (6) | 0.2480 (5) | 0.9120 (4) | 0.0306 (10) | |
C12 | 0.3767 (6) | 0.0878 (5) | 0.8647 (4) | 0.0380 (11) | |
H12A | 0.4735 | −0.0019 | 0.8752 | 0.046* | |
H12B | 0.3788 | 0.1067 | 0.7877 | 0.046* | |
C13 | 0.2032 (5) | 0.0246 (5) | 0.9092 (4) | 0.0347 (11) | |
H13A | 0.1965 | 0.0125 | 0.9868 | 0.042* | |
H13B | 0.1051 | 0.1095 | 0.8937 | 0.042* | |
C21 | 0.7012 (6) | 0.2860 (5) | 1.0915 (4) | 0.0307 (10) | |
C22 | 0.8184 (6) | 0.1436 (5) | 1.1359 (3) | 0.0343 (11) | |
H22A | 0.7890 | 0.1389 | 1.2136 | 0.041* | |
H22B | 0.9424 | 0.1650 | 1.1189 | 0.041* | |
C31 | 1.0050 (6) | 0.4805 (5) | 0.8086 (3) | 0.0336 (11) | |
H31 | 1.0250 | 0.4252 | 0.8735 | 0.040* | |
C32 | 1.1470 (6) | 0.4962 (6) | 0.7344 (4) | 0.0377 (11) | |
H32 | 1.2613 | 0.4501 | 0.7475 | 0.045* | |
C33 | 1.1231 (6) | 0.5799 (6) | 0.6399 (4) | 0.0396 (12) | |
C34 | 0.9544 (6) | 0.6400 (7) | 0.6260 (4) | 0.0554 (15) | |
H34 | 0.9313 | 0.6981 | 0.5625 | 0.067* | |
C35 | 0.8182 (6) | 0.6158 (6) | 0.7042 (4) | 0.0468 (13) | |
H35 | 0.7020 | 0.6571 | 0.6923 | 0.056* | |
C36 | 1.2771 (7) | 0.6114 (7) | 0.5565 (4) | 0.0684 (17) | |
H36A | 1.2327 | 0.6280 | 0.4876 | 0.082* | |
H36B | 1.3180 | 0.7186 | 0.5729 | 0.082* | |
C37 | 1.4299 (7) | 0.4809 (7) | 0.5443 (4) | 0.0622 (16) | |
H37A | 1.3902 | 0.3717 | 0.5311 | 0.075* | |
H37B | 1.4812 | 0.4690 | 0.6111 | 0.075* | |
N1S | 1.1372 (9) | 0.0804 (8) | 0.6005 (5) | 0.105 (2) | |
C1S | 1.0053 (11) | 0.0854 (8) | 0.6449 (6) | 0.077 (2) | |
C2S | 0.8316 (9) | 0.0914 (9) | 0.7021 (6) | 0.106 (2) | |
H2S1 | 0.7528 | 0.0535 | 0.6569 | 0.160* | |
H2S2 | 0.7891 | 0.2073 | 0.7238 | 0.160* | |
H2S3 | 0.8342 | 0.0174 | 0.7647 | 0.160* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0282 (3) | 0.0198 (3) | 0.0365 (3) | −0.0045 (2) | 0.0048 (2) | 0.0014 (2) |
O11 | 0.045 (2) | 0.0324 (18) | 0.044 (2) | −0.0143 (16) | 0.0101 (16) | −0.0085 (15) |
O12 | 0.043 (2) | 0.0332 (19) | 0.045 (2) | −0.0158 (16) | 0.0044 (16) | −0.0070 (15) |
O21 | 0.0339 (19) | 0.0395 (19) | 0.043 (2) | 0.0011 (15) | 0.0032 (15) | 0.0080 (15) |
O22 | 0.0339 (19) | 0.0339 (18) | 0.0423 (19) | 0.0012 (15) | 0.0019 (15) | 0.0093 (15) |
N31 | 0.031 (2) | 0.031 (2) | 0.036 (2) | −0.0069 (18) | −0.0005 (18) | 0.0012 (17) |
C11 | 0.032 (3) | 0.023 (2) | 0.037 (3) | 0.001 (2) | −0.007 (2) | 0.000 (2) |
C12 | 0.044 (3) | 0.027 (3) | 0.044 (3) | −0.010 (2) | −0.004 (2) | −0.004 (2) |
C13 | 0.031 (3) | 0.020 (2) | 0.053 (3) | −0.001 (2) | −0.008 (2) | −0.005 (2) |
C21 | 0.031 (3) | 0.019 (2) | 0.044 (3) | −0.008 (2) | −0.006 (2) | −0.003 (2) |
C22 | 0.028 (3) | 0.023 (2) | 0.053 (3) | −0.006 (2) | −0.009 (2) | 0.003 (2) |
C31 | 0.031 (3) | 0.031 (3) | 0.037 (3) | −0.004 (2) | 0.001 (2) | 0.004 (2) |
C32 | 0.027 (3) | 0.039 (3) | 0.046 (3) | −0.001 (2) | −0.002 (2) | −0.001 (2) |
C33 | 0.036 (3) | 0.036 (3) | 0.043 (3) | −0.006 (2) | 0.011 (2) | −0.001 (2) |
C34 | 0.043 (3) | 0.071 (4) | 0.046 (3) | 0.001 (3) | 0.002 (3) | 0.020 (3) |
C35 | 0.025 (3) | 0.062 (4) | 0.050 (3) | 0.002 (2) | −0.002 (2) | 0.014 (3) |
C36 | 0.051 (4) | 0.074 (4) | 0.071 (4) | −0.010 (3) | 0.019 (3) | 0.015 (3) |
C37 | 0.044 (3) | 0.076 (4) | 0.058 (4) | −0.008 (3) | 0.020 (3) | 0.001 (3) |
N1S | 0.108 (5) | 0.103 (5) | 0.098 (5) | −0.003 (5) | −0.001 (4) | 0.017 (4) |
C1S | 0.090 (6) | 0.062 (4) | 0.072 (5) | 0.008 (4) | −0.004 (4) | 0.004 (4) |
C2S | 0.102 (6) | 0.084 (5) | 0.125 (6) | 0.007 (5) | −0.002 (5) | −0.003 (4) |
Cu1—O21 | 1.959 (3) | C22—H22A | 0.9900 |
Cu1—O11 | 1.970 (3) | C22—H22B | 0.9900 |
Cu1—O22 | 1.976 (3) | C31—C32 | 1.364 (6) |
Cu1—O12 | 1.994 (3) | C31—H31 | 0.9500 |
Cu1—N31 | 2.163 (3) | C32—C33 | 1.386 (6) |
Cu1—Cu1i | 2.6392 (11) | C32—H32 | 0.9500 |
O11—C11 | 1.271 (5) | C33—C34 | 1.368 (6) |
O12—C11i | 1.251 (5) | C33—C36 | 1.526 (6) |
O21—C21 | 1.263 (5) | C34—C35 | 1.376 (6) |
O22—C21i | 1.245 (5) | C34—H34 | 0.9500 |
N31—C31 | 1.321 (5) | C35—H35 | 0.9500 |
N31—C35 | 1.337 (5) | C36—C37 | 1.470 (7) |
C11—O12i | 1.251 (5) | C36—H36A | 0.9900 |
C11—C12 | 1.510 (5) | C36—H36B | 0.9900 |
C12—C13 | 1.525 (6) | C37—C37iii | 1.508 (9) |
C12—H12A | 0.9900 | C37—H37A | 0.9900 |
C12—H12B | 0.9900 | C37—H37B | 0.9900 |
C13—C22ii | 1.521 (5) | N1S—C1S | 1.094 (8) |
C13—H13A | 0.9900 | C1S—C2S | 1.435 (9) |
C13—H13B | 0.9900 | C2S—H2S1 | 0.9800 |
C21—O22i | 1.245 (5) | C2S—H2S2 | 0.9800 |
C21—C22 | 1.510 (5) | C2S—H2S3 | 0.9800 |
C22—C13ii | 1.521 (5) | ||
O21—Cu1—O11 | 88.10 (13) | C21—C22—C13ii | 111.1 (3) |
O21—Cu1—O22 | 167.84 (12) | C21—C22—H22A | 109.4 |
O11—Cu1—O22 | 90.17 (12) | C13ii—C22—H22A | 109.4 |
O21—Cu1—O12 | 91.43 (12) | C21—C22—H22B | 109.4 |
O11—Cu1—O12 | 168.18 (12) | C13ii—C22—H22B | 109.4 |
O22—Cu1—O12 | 87.80 (12) | H22A—C22—H22B | 108.0 |
O21—Cu1—N31 | 94.73 (13) | N31—C31—C32 | 124.2 (4) |
O11—Cu1—N31 | 97.41 (12) | N31—C31—H31 | 117.9 |
O22—Cu1—N31 | 97.42 (13) | C32—C31—H31 | 117.9 |
O12—Cu1—N31 | 94.39 (13) | C31—C32—C33 | 119.4 (4) |
O21—Cu1—Cu1i | 82.35 (9) | C31—C32—H32 | 120.3 |
O11—Cu1—Cu1i | 84.67 (9) | C33—C32—H32 | 120.3 |
O22—Cu1—Cu1i | 85.51 (9) | C34—C33—C32 | 117.0 (4) |
O12—Cu1—Cu1i | 83.57 (9) | C34—C33—C36 | 120.9 (4) |
N31—Cu1—Cu1i | 176.38 (10) | C32—C33—C36 | 122.1 (5) |
C11—O11—Cu1 | 123.1 (3) | C33—C34—C35 | 119.8 (4) |
C11i—O12—Cu1 | 123.7 (3) | C33—C34—H34 | 120.1 |
C21—O21—Cu1 | 125.6 (3) | C35—C34—H34 | 120.1 |
C21i—O22—Cu1 | 121.4 (3) | N31—C35—C34 | 123.2 (4) |
C31—N31—C35 | 116.3 (4) | N31—C35—H35 | 118.4 |
C31—N31—Cu1 | 121.7 (3) | C34—C35—H35 | 118.4 |
C35—N31—Cu1 | 121.9 (3) | C37—C36—C33 | 117.4 (4) |
O12i—C11—O11 | 124.6 (4) | C37—C36—H36A | 108.0 |
O12i—C11—C12 | 118.6 (4) | C33—C36—H36A | 108.0 |
O11—C11—C12 | 116.8 (4) | C37—C36—H36B | 108.0 |
C11—C12—C13 | 115.4 (4) | C33—C36—H36B | 108.0 |
C11—C12—H12A | 108.4 | H36A—C36—H36B | 107.2 |
C13—C12—H12A | 108.4 | C36—C37—C37iii | 113.3 (6) |
C11—C12—H12B | 108.4 | C36—C37—H37A | 108.9 |
C13—C12—H12B | 108.4 | C37iii—C37—H37A | 108.9 |
H12A—C12—H12B | 107.5 | C36—C37—H37B | 108.9 |
C22ii—C13—C12 | 112.7 (4) | C37iii—C37—H37B | 108.9 |
C22ii—C13—H13A | 109.0 | H37A—C37—H37B | 107.7 |
C12—C13—H13A | 109.0 | N1S—C1S—C2S | 179.4 (10) |
C22ii—C13—H13B | 109.0 | C1S—C2S—H2S1 | 109.5 |
C12—C13—H13B | 109.0 | C1S—C2S—H2S2 | 109.5 |
H13A—C13—H13B | 107.8 | H2S1—C2S—H2S2 | 109.5 |
O22i—C21—O21 | 124.9 (4) | C1S—C2S—H2S3 | 109.5 |
O22i—C21—C22 | 117.9 (4) | H2S1—C2S—H2S3 | 109.5 |
O21—C21—C22 | 117.1 (4) | H2S2—C2S—H2S3 | 109.5 |
Cu1—O11—C11—O12i | 7.5 (6) | N31—C31—C32—C33 | 1.7 (7) |
Cu1—O11—C11—C12 | −170.5 (3) | C31—C32—C33—C34 | −1.2 (7) |
O12i—C11—C12—C13 | 17.0 (6) | C31—C32—C33—C36 | 176.2 (4) |
O11—C11—C12—C13 | −164.8 (4) | C32—C33—C34—C35 | 0.0 (7) |
C11—C12—C13—C22ii | −175.8 (3) | C36—C33—C34—C35 | −177.4 (5) |
Cu1—O21—C21—O22i | −5.5 (6) | C31—N31—C35—C34 | −0.6 (7) |
Cu1—O21—C21—C22 | 171.3 (2) | Cu1—N31—C35—C34 | 176.5 (4) |
O22i—C21—C22—C13ii | 91.8 (5) | C33—C34—C35—N31 | 0.9 (8) |
O21—C21—C22—C13ii | −85.2 (5) | C34—C33—C36—C37 | −147.8 (5) |
C35—N31—C31—C32 | −0.7 (6) | C32—C33—C36—C37 | 34.8 (8) |
Cu1—N31—C31—C32 | −177.8 (3) | C33—C36—C37—C37iii | 176.6 (5) |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y, −z+2; (iii) −x+3, −y+1, −z+1. |
Funding information
This work was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF-2017R1D1A1A02017607) and by Kwangwoon University in the year 2017.
References
Brandenburg, K. & Berndt, M. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Hwang, I. H., Bae, J. M., Kim, W.-S., Jo, Y. D., Kim, C., Kim, Y., Kim, S.-J. & Huh, S. (2012). Dalton Trans. 41, 12759–12763. Web of Science CSD CrossRef CAS PubMed Google Scholar
Hwang, I. H., Kim, H.-Y., Lee, M. M., Na, Y. J., Kim, J. H., Kim, H.-C., Kim, C., Huh, S., Kim, Y. & Kim, S.-J. (2013). Cryst. Growth Des. 13, 4815–4823. Web of Science CSD CrossRef CAS Google Scholar
Hyun, M. Y., Hwang, I. H., Lee, M. M., Kim, H., Kim, K. B., Kim, C., Kim, H.-Y., Kim, Y. & Kim, S.-J. (2013). Polyhedron, 53, 166–171. Web of Science CSD CrossRef CAS Google Scholar
Kim, H.-C., Huh, S., Kim, J. Y., Moon, H. R., Lee, D. N. & Kim, Y. (2017). CrystEngComm, 19, 99–109. Web of Science CSD CrossRef CAS Google Scholar
Lee, M. M., Kim, H.-Y., Hwang, I. H., Bae, J. M., Kim, C., Yo, C.-H., Kim, Y. & Kim, S.-J. (2014). Bull. Korean Chem. Soc. 35, 1777–1783. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.