organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

cis-Cyclo­hexane-1,3-di­carb­­oxy­lic acid–N,N′-(pen­tane-1,5-di­yl)bis­­(pyridine-4-carboxamide)–water (1/1/2)

CROSSMARK_Color_square_no_text.svg

aE-35 Holmes Hall, Lyman Briggs College, Michigan State University, 919 E. Shaw Lane, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 23 September 2017; accepted 12 October 2017; online 20 October 2017)

The title cocrystal, C8H12O4·C17H20N4O2·2H2O, shows O—H⋯N hydrogen bonded supra­molecular chain motifs of cis-1,3-cyclo­hexa­nedi­carb­oxy­lic acid (H2cdc) mol­ecules alternating with N,N′-(pentane-1,5-di­yl)bis­(pyridine-4-carboxamide)­pentane (bpcpe) mol­ecules. These chain motifs are aggregated by C—H⋯O inter­actions into supra­molecular layers and slabs, which are stacked into the three-dimensional crystal structure by means of O—H⋯O inter­actions mediated by the water mol­ecules of crystallization.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound was isolated during an exploratory synthetic effort aiming to produce divalent cadmium coordination polymers containing both cis-cyclo­hexane-1,3-di­carboxyl­ate (cdc) and N,N′-(pentane-1,5-di­yl)bis­(pyridine-4-carboxamide) (bpcpe) ligands. Reports of cadmium coordination polymers containing cdc ligands have been seldom to date, with {[Cd(L)(cdc)]·H2O}n [L = 1,3-di(1H-imidazol-4-yl)benzene] representing one of the few known examples (Chen et al., 2014[Chen, Z., Zhao, Y., Wang, P., Chen, S. S. & Sun, W. Y. (2014). Polyhedron, 67, 253-263.]). The bpcpe ligand has also rarely been used in coordination polymer chemistry to this point, with {[Cu(bpcpe)2(H2O)2)(ClO4)2]·2H2O·4CH3OH}n being one of the very few reported examples (Mukherjee & Biradha, 2013[Mukherjee, G. & Biradha, K. (2013). Cryst. Growth Des. 13, 4100-4109.]).

The asymmetric unit of the title cocrystal contains a cis-cyclo­hexane-1,3-di­carb­oxy­lic acid (H2cdc) mol­ecule, a bpcpe mol­ecule, and two water mol­ecules of crystallization (Fig. 1[link]). Adjacent H2cdc and bpcpe mol­ecules form supra­molecular chain motifs (Fig. 2[link]) by means of O—H⋯N hydrogen-bonding inter­actions (Table 1[link]) between protonated H2cdc carboxyl­ate groups and the pyridyl ring N atoms in the bpcpe mol­ecules. Nonclassical C—H⋯O inter­actions (C9—H9⋯O2iv and C21—H21⋯O4v; Table 1[link]) between bpcpe pyridyl rings and unprotonated H2cdc O atoms construct supra­molecular layer motifs oriented parallel to the ab crystal planes (Fig. 3[link]). Additional C—H⋯O inter­actions (C6—H6⋯O6vi; Table 1[link]) between the tertiary C atoms of the H2cdc mol­ecules and bpcpe C=O carbonyl O atoms result in bilayer slab motifs (Fig. 4[link]). Supra­molecular O—H⋯O hydrogen-bonding inter­actions (Table 1[link]) mediated by the water mol­ecules of crystallization aggregate the supra­molecular slabs into the full three-dimensional crystal structure of the title cocrystal (Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 1.79 2.6251 (18) 178
O3—H3A⋯N4i 0.84 1.79 2.6300 (19) 173
N2—H2⋯O1Wii 0.88 2.03 2.8868 (19) 165
N3—H3⋯O2Wii 0.88 2.01 2.849 (2) 159
O2W—H2WA⋯O2iii 0.87 1.94 2.809 (2) 177
O2W—H2WB⋯O6 0.87 1.90 2.7684 (19) 173
O1W—H1WA⋯O5 0.87 1.88 2.7365 (18) 168
O1W—H1WB⋯O4iii 0.87 1.99 2.863 (2) 178
C9—H9⋯O2iv 0.95 2.51 3.143 (2) 124
C21—H21⋯O4v 0.95 2.46 3.238 (2) 139
C6—H6⋯O6vi 1.00 2.50 3.478 (2) 167
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x-1, y, z; (v) x-1, y-1, z; (vi) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The asymmetric unit of the title cocrystal. Displacement ellipsoids are drawn at the 50% probability level. The H-atom positions are denoted by gray sticks. Color code: N blue, O red, C black, and H grey.
[Figure 2]
Figure 2
A hydrogen-bonded chain in the title cocrystal, oriented parallel to [010]. O—H⋯N hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
Supra­molecular layer motif parallel to the ab crystal planes formed by nonclassical C—H⋯O inter­actions (shown as dashed lines) between neighboring chain motifs.
[Figure 4]
Figure 4
Aggregation of supra­molecular layers into bilayer slabs by additional. C—H⋯O hydrogen-bonding inter­actions (shown as dashed lines).
[Figure 5]
Figure 5
Stacking of supra­molecular slab motifs in the title cocrystal, to afford the three-dimensional crystal structure, mediated by O—H⋯O hydrogen-bonding inter­actions (shown as dashed lines) involving the water mol­ecules of crystallization.

Synthesis and crystallization

Cd(NO3)2·4H2O (114 mg, 0.37 mmol), cis-cyclo­hexane-1,3-di­carb­oxy­lic acid (64 mg, 0.37 mmol), bpcpe (115 mg, 0.37 mmol) and 0.75 ml of a 1.0 M NaOH solution were placed into 10 ml distilled H2O in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 2 d, and then cooled slowly to 273 K. Colorless crystals of the title cocrystal (74 mg, 38% yield, based on cis-cyclo­hexane-1,3-di­carb­oxy­lic acid) were isolated after washing with distilled water and acetone, and drying in air.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H12O4·C17H20N4O2·2H2O
Mr 520.58
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 6.8931 (9), 25.486 (3), 15.2828 (19)
β (°) 96.739 (2)
V3) 2666.3 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.38 × 0.20 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.677, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 21494, 4904, 3656
Rint 0.041
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.136, 1.04
No. of reflections 4904
No. of parameters 342
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.22
Computer programs: COSMO (Bruker, 2009[Bruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.]), APEX2 (Bruker, 2012[Bruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), CrystalMaker (Palmer, 2013[Palmer, D. (2013). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: COSMO (Bruker, 2009); cell refinement: APEX2 (Bruker, 2012); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: CrystalMaker (Palmer, 2013); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

cis-Cyclohexane-1,3-dicarboxylic acid–N,N'-(pentane-1,5-diyl)bis(pyridine-4-carboxamide)–water (1/1/2) top
Crystal data top
C8H12O4·C17H20N4O2·2H2OF(000) = 1112
Mr = 520.58Dx = 1.297 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.8931 (9) ÅCell parameters from 7916 reflections
b = 25.486 (3) Åθ = 2.7–25.3°
c = 15.2828 (19) ŵ = 0.10 mm1
β = 96.739 (2)°T = 173 K
V = 2666.3 (6) Å3Chunk, yellow
Z = 40.38 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
4904 independent reflections
Radiation source: sealed tube3656 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 8.4 pixels mm-1θmax = 25.4°, θmin = 1.6°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 3030
Tmin = 0.677, Tmax = 0.745l = 1718
21494 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0742P)2 + 0.4255P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4904 reflectionsΔρmax = 0.23 e Å3
342 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Experimental. Data was collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a nylon loop using Paratone oil. Data were measured using omega and phi scans of 0.5° per frame for 30 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections.Data reduction was performed using the SAINT software which corrects for Lp. Scaling and absorption corrections were applied using SADABS6 multi-scan technique, supplied by George Sheldrick. The structures are solved by the direct method using the SHELXS-97 program and refined by least squares method on F2, SHELXL-97, incorporated in OLEX2.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. 1. Fixed Uiso At 1.2 times of: All C(H) groups, All C(H,H) groups, All N(H) groups At 1.5 times of: All O(H) groups, All O(H,H) groups 2.a Free rotating group: O2W(H2WA,H2WB), O1W(H1WA,H1WB) 2.b Ternary CH refined with riding coordinates: C2(H2A), C6(H6) 2.c Secondary CH2 refined with riding coordinates: C1(H1A,H1B), C3(H3B,H3C), C4(H4A,H4B), C5(H5A,H5B), C15(H15A,H15B), C16(H16A, H16B), C17(H17A,H17B), C18(H18A,H18B), C19(H19A,H19B) 2.d Aromatic/amide H refined with riding coordinates: N2(H2), N3(H3), C9(H9), C10(H10), C12(H12), C13(H13), C21(H21), C22(H22), C24(H24), C25(H25) 2.e Idealised tetrahedral OH refined as rotating group: O1(H1), O3(H3A)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69221 (18)0.70893 (5)0.46245 (9)0.0415 (3)
H10.64890.68070.48070.062*
O20.97352 (19)0.67403 (5)0.51706 (11)0.0566 (4)
O30.75087 (19)0.90622 (5)0.54822 (10)0.0494 (4)
H3A0.72140.93340.57470.074*
O41.0488 (2)0.92646 (6)0.60909 (10)0.0647 (5)
O50.12014 (17)0.48185 (5)0.61568 (9)0.0429 (3)
O60.19314 (17)0.13036 (5)0.71696 (9)0.0437 (3)
N10.5492 (2)0.62099 (5)0.51727 (9)0.0341 (3)
N20.4134 (2)0.44849 (5)0.66705 (9)0.0309 (3)
H20.54110.45260.67380.037*
N30.4875 (2)0.16526 (5)0.76547 (9)0.0333 (3)
H30.61450.16000.77340.040*
N40.6284 (2)0.00909 (5)0.62335 (10)0.0405 (4)
C10.9160 (2)0.80455 (6)0.52173 (11)0.0330 (4)
H1A0.95870.79450.58360.040*
H1B0.77200.80820.51460.040*
C20.9750 (2)0.76158 (6)0.45969 (11)0.0316 (4)
H2A0.92260.77140.39810.038*
C31.1964 (3)0.75739 (7)0.46439 (13)0.0402 (4)
H3B1.25020.74490.52370.048*
H3C1.23050.73130.42070.048*
C41.2881 (3)0.81000 (7)0.44617 (13)0.0431 (5)
H4A1.24560.82060.38460.052*
H4B1.43210.80640.45310.052*
C51.2305 (3)0.85243 (7)0.50838 (13)0.0396 (4)
H5A1.28290.84350.56970.048*
H5B1.28750.88640.49320.048*
C61.0094 (2)0.85722 (6)0.50142 (12)0.0337 (4)
H60.96190.86630.43890.040*
C70.8812 (3)0.71042 (6)0.48201 (11)0.0324 (4)
C80.9407 (3)0.90007 (7)0.55893 (12)0.0375 (4)
C90.3591 (3)0.61025 (7)0.50323 (12)0.0376 (4)
H90.27610.63400.46850.045*
C100.2769 (3)0.56648 (7)0.53651 (12)0.0355 (4)
H100.14050.56010.52460.043*
C110.3962 (2)0.53176 (6)0.58778 (10)0.0289 (4)
C120.5942 (2)0.54227 (6)0.60169 (11)0.0320 (4)
H120.68060.51900.63570.038*
C130.6644 (3)0.58703 (6)0.56543 (11)0.0336 (4)
H130.80070.59400.57520.040*
C140.3000 (2)0.48484 (6)0.62487 (11)0.0304 (4)
C150.3270 (2)0.40181 (6)0.70226 (12)0.0339 (4)
H15A0.22510.38760.65740.041*
H15B0.26340.41170.75470.041*
C160.4771 (3)0.35976 (6)0.72765 (12)0.0358 (4)
H16A0.58030.37400.77180.043*
H16B0.53900.34930.67510.043*
C170.3854 (3)0.31174 (6)0.76581 (12)0.0358 (4)
H17A0.37560.31790.82910.043*
H17B0.25130.30710.73570.043*
C180.5013 (3)0.26172 (6)0.75602 (12)0.0346 (4)
H18A0.50890.25510.69270.042*
H18B0.63610.26650.78520.042*
C190.4099 (3)0.21464 (6)0.79581 (12)0.0373 (4)
H19A0.43570.21650.86080.045*
H19B0.26670.21550.77950.045*
C200.3735 (2)0.12807 (6)0.72641 (11)0.0310 (4)
C210.4367 (3)0.00126 (7)0.61656 (13)0.0438 (5)
H210.35300.02710.58750.053*
C220.3537 (3)0.04258 (7)0.64964 (12)0.0393 (4)
H220.21570.04660.64330.047*
C230.4720 (2)0.08057 (6)0.69197 (11)0.0308 (4)
C240.6715 (3)0.07249 (6)0.70014 (12)0.0374 (4)
H240.75830.09760.72930.045*
C250.7427 (3)0.02756 (7)0.66535 (13)0.0414 (4)
H250.88010.02240.67150.050*
O2W0.09932 (19)0.17555 (6)0.80134 (11)0.0575 (4)
H2WA0.06390.17410.85780.086*
H2WB0.00030.16280.77790.086*
O1W0.16723 (18)0.44347 (6)0.70724 (10)0.0574 (4)
H1WA0.06460.45530.68540.086*
H1WB0.12810.43860.76280.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0357 (7)0.0325 (7)0.0549 (8)0.0046 (5)0.0003 (6)0.0107 (6)
O20.0408 (8)0.0367 (7)0.0918 (11)0.0044 (6)0.0066 (7)0.0236 (7)
O30.0443 (8)0.0385 (8)0.0652 (9)0.0075 (6)0.0050 (7)0.0188 (7)
O40.0515 (9)0.0694 (10)0.0731 (11)0.0112 (8)0.0071 (8)0.0408 (8)
O50.0284 (7)0.0435 (7)0.0563 (8)0.0029 (5)0.0036 (6)0.0149 (6)
O60.0312 (7)0.0466 (8)0.0521 (8)0.0071 (6)0.0003 (6)0.0113 (6)
N10.0387 (9)0.0276 (7)0.0371 (8)0.0005 (6)0.0093 (6)0.0003 (6)
N20.0281 (7)0.0247 (7)0.0401 (8)0.0019 (6)0.0054 (6)0.0025 (6)
N30.0317 (8)0.0242 (7)0.0452 (9)0.0011 (6)0.0098 (6)0.0004 (6)
N40.0476 (10)0.0294 (8)0.0465 (9)0.0036 (7)0.0142 (7)0.0020 (7)
C10.0301 (9)0.0310 (9)0.0384 (10)0.0001 (7)0.0058 (7)0.0032 (7)
C20.0334 (9)0.0267 (8)0.0348 (9)0.0019 (7)0.0047 (7)0.0010 (7)
C30.0368 (10)0.0331 (9)0.0524 (12)0.0037 (8)0.0131 (9)0.0007 (8)
C40.0363 (10)0.0403 (10)0.0551 (12)0.0018 (8)0.0148 (9)0.0003 (9)
C50.0352 (10)0.0380 (10)0.0460 (11)0.0053 (8)0.0062 (8)0.0031 (8)
C60.0358 (9)0.0301 (9)0.0352 (9)0.0024 (7)0.0042 (7)0.0039 (7)
C70.0357 (10)0.0278 (9)0.0346 (9)0.0026 (7)0.0080 (7)0.0014 (7)
C80.0422 (11)0.0307 (9)0.0397 (10)0.0046 (8)0.0057 (8)0.0041 (8)
C90.0378 (10)0.0326 (9)0.0435 (11)0.0070 (8)0.0097 (8)0.0096 (8)
C100.0291 (9)0.0348 (9)0.0436 (10)0.0027 (7)0.0084 (8)0.0044 (8)
C110.0338 (9)0.0243 (8)0.0296 (9)0.0015 (7)0.0077 (7)0.0006 (7)
C120.0338 (9)0.0280 (9)0.0339 (9)0.0005 (7)0.0024 (7)0.0006 (7)
C130.0336 (9)0.0297 (9)0.0377 (10)0.0029 (7)0.0048 (8)0.0020 (7)
C140.0297 (9)0.0282 (9)0.0337 (9)0.0014 (7)0.0048 (7)0.0012 (7)
C150.0338 (9)0.0256 (8)0.0431 (10)0.0028 (7)0.0077 (8)0.0031 (7)
C160.0359 (10)0.0302 (9)0.0415 (10)0.0004 (7)0.0057 (8)0.0038 (7)
C170.0365 (10)0.0284 (9)0.0440 (10)0.0014 (7)0.0111 (8)0.0033 (7)
C180.0355 (9)0.0277 (9)0.0418 (10)0.0024 (7)0.0092 (8)0.0036 (7)
C190.0420 (10)0.0259 (9)0.0461 (11)0.0025 (7)0.0143 (8)0.0007 (8)
C200.0321 (10)0.0301 (9)0.0309 (9)0.0044 (7)0.0043 (7)0.0042 (7)
C210.0474 (12)0.0344 (10)0.0494 (12)0.0026 (8)0.0047 (9)0.0098 (8)
C220.0350 (10)0.0367 (10)0.0455 (11)0.0002 (8)0.0022 (8)0.0044 (8)
C230.0363 (9)0.0269 (8)0.0303 (9)0.0019 (7)0.0078 (7)0.0032 (7)
C240.0345 (10)0.0273 (9)0.0506 (11)0.0009 (7)0.0063 (8)0.0013 (8)
C250.0370 (10)0.0309 (9)0.0580 (12)0.0033 (8)0.0125 (9)0.0012 (9)
O2W0.0338 (7)0.0620 (9)0.0771 (11)0.0019 (7)0.0084 (7)0.0228 (9)
O1W0.0286 (7)0.0764 (10)0.0675 (10)0.0011 (7)0.0075 (7)0.0284 (8)
Geometric parameters (Å, º) top
O1—H10.8400C9—H90.9500
O1—C71.302 (2)C9—C101.376 (2)
O2—C71.213 (2)C10—H100.9500
O3—H3A0.8400C10—C111.387 (2)
O3—C81.309 (2)C11—C121.382 (2)
O4—C81.209 (2)C11—C141.510 (2)
O5—C141.233 (2)C12—H120.9500
O6—C201.236 (2)C12—C131.381 (2)
N1—C91.331 (2)C13—H130.9500
N1—C131.336 (2)C15—H15A0.9900
N2—H20.8800C15—H15B0.9900
N2—C141.329 (2)C15—C161.508 (2)
N2—C151.461 (2)C16—H16A0.9900
N3—H30.8800C16—H16B0.9900
N3—C191.464 (2)C16—C171.524 (2)
N3—C201.327 (2)C17—H17A0.9900
N4—C211.328 (2)C17—H17B0.9900
N4—C251.337 (2)C17—C181.521 (2)
C1—H1A0.9900C18—H18A0.9900
C1—H1B0.9900C18—H18B0.9900
C1—C21.534 (2)C18—C191.515 (2)
C1—C61.536 (2)C19—H19A0.9900
C2—H2A1.0000C19—H19B0.9900
C2—C31.523 (2)C20—C231.512 (2)
C2—C71.512 (2)C21—H210.9500
C3—H3B0.9900C21—C221.378 (3)
C3—H3C0.9900C22—H220.9500
C3—C41.522 (2)C22—C231.377 (2)
C4—H4A0.9900C23—C241.382 (2)
C4—H4B0.9900C24—H240.9500
C4—C51.523 (3)C24—C251.377 (2)
C5—H5A0.9900C25—H250.9500
C5—H5B0.9900O2W—H2WA0.8696
C5—C61.521 (2)O2W—H2WB0.8702
C6—H61.0000O1W—H1WA0.8703
C6—C81.512 (2)O1W—H1WB0.8696
C7—O1—H1109.5C12—C11—C14124.41 (14)
C8—O3—H3A109.5C11—C12—H12120.5
C9—N1—C13117.79 (14)C13—C12—C11118.99 (15)
C14—N2—H2119.9C13—C12—H12120.5
C14—N2—C15120.28 (14)N1—C13—C12122.85 (16)
C15—N2—H2119.9N1—C13—H13118.6
C19—N3—H3118.7C12—C13—H13118.6
C20—N3—H3118.7O5—C14—N2122.56 (15)
C20—N3—C19122.52 (15)O5—C14—C11119.11 (15)
C21—N4—C25117.23 (15)N2—C14—C11118.33 (14)
H1A—C1—H1B108.1N2—C15—H15A109.2
C2—C1—H1A109.5N2—C15—H15B109.2
C2—C1—H1B109.5N2—C15—C16112.12 (14)
C2—C1—C6110.55 (14)H15A—C15—H15B107.9
C6—C1—H1A109.5C16—C15—H15A109.2
C6—C1—H1B109.5C16—C15—H15B109.2
C1—C2—H2A108.1C15—C16—H16A109.3
C3—C2—C1110.97 (14)C15—C16—H16B109.3
C3—C2—H2A108.1C15—C16—C17111.48 (14)
C7—C2—C1108.93 (13)H16A—C16—H16B108.0
C7—C2—H2A108.1C17—C16—H16A109.3
C7—C2—C3112.43 (14)C17—C16—H16B109.3
C2—C3—H3B109.3C16—C17—H17A109.0
C2—C3—H3C109.3C16—C17—H17B109.0
H3B—C3—H3C108.0H17A—C17—H17B107.8
C4—C3—C2111.40 (14)C18—C17—C16112.91 (14)
C4—C3—H3B109.3C18—C17—H17A109.0
C4—C3—H3C109.3C18—C17—H17B109.0
C3—C4—H4A109.3C17—C18—H18A109.2
C3—C4—H4B109.3C17—C18—H18B109.2
C3—C4—C5111.53 (15)H18A—C18—H18B107.9
H4A—C4—H4B108.0C19—C18—C17112.11 (14)
C5—C4—H4A109.3C19—C18—H18A109.2
C5—C4—H4B109.3C19—C18—H18B109.2
C4—C5—H5A109.6N3—C19—C18111.67 (14)
C4—C5—H5B109.6N3—C19—H19A109.3
H5A—C5—H5B108.1N3—C19—H19B109.3
C6—C5—C4110.24 (15)C18—C19—H19A109.3
C6—C5—H5A109.6C18—C19—H19B109.3
C6—C5—H5B109.6H19A—C19—H19B107.9
C1—C6—H6107.3O6—C20—N3123.57 (15)
C5—C6—C1110.87 (14)O6—C20—C23118.90 (15)
C5—C6—H6107.3N3—C20—C23117.53 (14)
C8—C6—C1110.28 (14)N4—C21—H21118.5
C8—C6—C5113.38 (14)N4—C21—C22123.05 (17)
C8—C6—H6107.3C22—C21—H21118.5
O1—C7—C2114.58 (14)C21—C22—H22120.2
O2—C7—O1122.53 (16)C23—C22—C21119.58 (17)
O2—C7—C2122.87 (16)C23—C22—H22120.2
O3—C8—C6112.97 (15)C22—C23—C20117.45 (15)
O4—C8—O3123.05 (17)C22—C23—C24117.77 (15)
O4—C8—C6123.98 (17)C24—C23—C20124.78 (15)
N1—C9—H9118.4C23—C24—H24120.5
N1—C9—C10123.21 (16)C25—C24—C23119.03 (17)
C10—C9—H9118.4C25—C24—H24120.5
C9—C10—H10120.5N4—C25—C24123.34 (17)
C9—C10—C11118.92 (16)N4—C25—H25118.3
C11—C10—H10120.5C24—C25—H25118.3
C10—C11—C14117.37 (14)H2WA—O2W—H2WB104.5
C12—C11—C10118.23 (15)H1WA—O1W—H1WB104.5
O6—C20—C23—C221.5 (2)C9—C10—C11—C121.3 (2)
O6—C20—C23—C24178.30 (16)C9—C10—C11—C14178.60 (15)
N1—C9—C10—C110.5 (3)C10—C11—C12—C131.0 (2)
N2—C15—C16—C17178.96 (14)C10—C11—C14—O56.9 (2)
N3—C20—C23—C22178.53 (15)C10—C11—C14—N2173.68 (15)
N3—C20—C23—C241.7 (2)C11—C12—C13—N10.1 (3)
N4—C21—C22—C230.0 (3)C12—C11—C14—O5172.95 (16)
C1—C2—C3—C454.9 (2)C12—C11—C14—N26.4 (2)
C1—C2—C7—O169.37 (19)C13—N1—C9—C100.6 (3)
C1—C2—C7—O2109.11 (19)C14—N2—C15—C16166.15 (15)
C1—C6—C8—O359.2 (2)C14—C11—C12—C13178.87 (15)
C1—C6—C8—O4121.5 (2)C15—N2—C14—O52.1 (2)
C2—C1—C6—C557.09 (19)C15—N2—C14—C11178.56 (14)
C2—C1—C6—C8176.51 (14)C15—C16—C17—C18155.48 (16)
C2—C3—C4—C555.8 (2)C16—C17—C18—C19178.95 (15)
C3—C2—C7—O1167.20 (15)C17—C18—C19—N3164.15 (15)
C3—C2—C7—O214.3 (2)C19—N3—C20—O64.5 (3)
C3—C4—C5—C656.8 (2)C19—N3—C20—C23175.56 (14)
C4—C5—C6—C157.5 (2)C20—N3—C19—C18124.01 (17)
C4—C5—C6—C8177.86 (15)C20—C23—C24—C25179.65 (16)
C5—C6—C8—O3175.77 (15)C21—N4—C25—C240.8 (3)
C5—C6—C8—O43.5 (3)C21—C22—C23—C20179.54 (16)
C6—C1—C2—C355.44 (18)C21—C22—C23—C240.7 (3)
C6—C1—C2—C7179.73 (14)C22—C23—C24—C250.6 (3)
C7—C2—C3—C4177.15 (15)C23—C24—C25—N40.2 (3)
C9—N1—C13—C120.9 (2)C25—N4—C21—C220.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.792.6251 (18)178
O3—H3A···N4i0.841.792.6300 (19)173
N2—H2···O1Wii0.882.032.8868 (19)165
N3—H3···O2Wii0.882.012.849 (2)159
O2W—H2WA···O2iii0.871.942.809 (2)177
O2W—H2WB···O60.871.902.7684 (19)173
O1W—H1WA···O50.871.882.7365 (18)168
O1W—H1WB···O4iii0.871.992.863 (2)178
C9—H9···O2iv0.952.513.143 (2)124
C21—H21···O4v0.952.463.238 (2)139
C6—H6···O6vi1.002.503.478 (2)167
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1, y1/2, z+3/2; (iv) x1, y, z; (v) x1, y1, z; (vi) x+1, y+1, z+1.
 

Acknowledgements

We thank Dr Richard Staples for crystallographic assistance.

Funding information

Funding for this research was provided by: Michigan State University Honors College.

References

First citationBruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2012). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z., Zhao, Y., Wang, P., Chen, S. S. & Sun, W. Y. (2014). Polyhedron, 67, 253–263.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMukherjee, G. & Biradha, K. (2013). Cryst. Growth Des. 13, 4100–4109.  CSD CrossRef CAS Google Scholar
First citationPalmer, D. (2013). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]