organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(3-Hy­dr­oxy­piperidin-1-yl)(4-methyl­phen­yl)methanone

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Bhaktavatsalam Memorial College for Women, Korattur, Chennai-80, Tamilnadu, India, bDepartment of Chemistry, Madras Christian College, Chennai-59, India, cDepartment of Physics, Bharathi Women's College, Chennai 600 108, Tamilnadu, India, and dPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by P. C. Healy, Griffith University, Australia (Received 26 August 2017; accepted 14 October 2017; online 27 October 2017)

In the title mol­ecule, C13H17NO2, the piperidine ring assumes a chair conformation. The dihedral angle between the mean plane of the piperidine ring and the benzene ring is 45.49 (1)°. In the crystal, mol­ecules are linked by O—H⋯O inter­molecular hydrogen bonds, leading to a mol­ecular chain running along the c-axis direction. The atoms of the hy­droxy piperidine ring and the methyl group of methyl­phenyl ring are disordered over two sets of sites with refined occupancies of 0.754 (5) and 0.246 (5).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Piperidine and its derivative have played vital roles in the design of pharmaceutical drugs (Das & Brahmachari, 2013[Das, S. & Brahmachari, G. (2013). J. Org. Biomol. Chem. 1, 33-46.]). It has been shown that the anti­oxidant activity of the title mol­ecule can be enhanced by the substitution of hydroxyl, meth­oxy, nitro and alkyl groups on the piperidine ring system (Ravindernath & Reddy, 2017[Ravindernath, A. & Reddy, M. S. (2017). Arabian J. Chem. 10, s1172-s1179.]).

In the compound (Fig. 1[link]), the bond lengths are typical of such derivatives and are in good agreement with literature values (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). The C—N distances [1.370 (5)–1.464 (5) Å], C=O distance [1.189 (5) Å] and C—O distance [1.399 (5) Å] are in good agreement with the values of similar reported structures (Revathi et al., 2015[Revathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2015). Acta Cryst. E71, o359-o360.][Revathi, B. K., Reuben Jonathan, D., Kalai Sevi, K., Dhanalakshmi, K. & Usha, G. (2015). Acta Cryst. E71, o817-o818.]; Prathebha et al., 2015[Prathebha, K., Reuben Jonathan, D., Revathi, B. K., Sathya, S. & Usha, G. (2015). Acta Cryst. E71, o39-o40.]). The +syn-periplanar(+sp) orientation of the keto group with the hy­droxy­piperidine ring is revealed by the torsion angle O1—C8—N1—C9 [15.1 (6)]°. The total angle (359.5°) around the N atom indicates sp2 hybridization of this atom. The piperidine ring (N1/C9–C13) adopts a chair conformation with puckering parameters q2 = 0.0097 (4), q3 = 0.5605 (4), QT= 0.5605 (4) Å, φ2 = −22 (21)° and θ2 = 1.0 (4)°. Atoms C10 and C13 deviate by −0.233 (2) and 0.243 (2) Å, respectively, from the mean plane through all ring atoms.

[Figure 1]
Figure 1
ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) plot of the title compound, with displacement ellipsoids drawn at the 30% probability level.

In the crystal, mol­ecules are linked through O—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]), forming chains running parallel to [001].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O1i 0.97 2.66 3.598 (7) 163
O2—H2⋯O1ii 0.82 2.02 2.802 (7) 159
O2′—H2′⋯O1′ii 0.82 2.07 2.70 (3) 134
Symmetry codes: (i) [-x, -y, z-{\script{1\over 2}}]; (ii) x, y, z-1.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the b axis with hydrogen bonds indicated by dashed lines.

Synthesis and crystallization

The title compound was synthesized following a published procedure (Revathi et al., 2015[Revathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2015). Acta Cryst. E71, o359-o360.][Revathi, B. K., Reuben Jonathan, D., Kalai Sevi, K., Dhanalakshmi, K. & Usha, G. (2015). Acta Cryst. E71, o817-o818.]). In a 250 ml round-bottomed flask, 15 ml of ethyl ­methyl ketone was added to 3-hy­droxy piperidine (0.01 mol; 1 g m) and stirred at room temperature. After 5 min, tri­ethyl­amine (0.02 mol; 1.3 ml) was added and the mixture stirred for 15 min. Then 4-methyl benzoyl chloride (0.02 mol; 1.2 ml) and 15 ml of ethyl methyl ketone were added and the reaction mixture stirred at room temperature for 2 h. A white precipitate was formed which was filtered off. The filtrate was evaporated to give the crude product. It was then recrystallized twice from ethyl methyl ketone to give yellow block-like crystals of the title compound (m.p. 70°C, yield 82%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The atoms of the hy­droxy piperidine ring and the methyl group of methyl­phenyl ring are disordered over two sets of sites with refined occupancies of 0.754 (5) and 0.246 (5).

Table 2
Experimental details

Crystal data
Chemical formula C13H17NO2
Mr 219.28
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 293
a, b, c (Å) 24.8766 (14), 6.1117 (4), 7.9388 (4)
V3) 1207.00 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.976, 0.984
No. of measured, independent and observed [I > 2σ(I)] reflections 20282, 2385, 1692
Rint 0.055
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.099, 1.11
No. of reflections 2385
No. of parameters 230
No. of restraints 99
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.13, −0.11
Absolute structure Flack x determined using 675 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al, 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.3 (5)
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker , 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

(3-Hydroxypiperidin-1-yl)(4-methylphenyl)methanone top
Crystal data top
C13H17NO2F(000) = 472
Mr = 219.28Dx = 1.207 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2385 reflections
a = 24.8766 (14) Åθ = 0.8–0.7°
b = 6.1117 (4) ŵ = 0.08 mm1
c = 7.9388 (4) ÅT = 293 K
V = 1207.00 (12) Å3Block, yellow
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2385 independent reflections
Radiation source: fine-focus sealed tube1692 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω and \ f scanθmax = 26.0°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 3030
Tmin = 0.976, Tmax = 0.984k = 77
20282 measured reflectionsl = 99
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.0531P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.13 e Å3
2385 reflectionsΔρmin = 0.11 e Å3
230 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
99 restraintsExtinction coefficient: 0.141 (11)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 675 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al. (2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.3 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H atoms were positioned geometrically and treated as riding on their parent atoms and refined with, C—H distance of 0.93–0.98 Å, O—H of 0.82 Å with Uiso(H)= 1.5 Ueq(c-methyl),and Uiso(H)= 1.2Ueq(C) for other H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C30.18222 (11)0.4020 (4)1.0752 (3)0.0762 (7)
H30.17910.53881.12560.091*
C40.13647 (8)0.2764 (3)1.0519 (3)0.0670 (6)
H40.10320.32741.08850.080*
C50.14041 (8)0.0763 (3)0.9743 (2)0.0576 (5)
C60.19040 (9)0.0040 (4)0.9234 (3)0.0701 (6)
H60.19350.13140.87080.084*
C70.23570 (8)0.1285 (4)0.9492 (3)0.0748 (6)
H70.26900.07650.91450.090*
C80.09139 (9)0.0653 (3)0.9589 (3)0.0666 (6)
C20.23190 (9)0.3301 (4)1.0261 (3)0.0733 (7)
C10.2817 (3)0.4667 (13)1.0622 (13)0.116 (3)0.754 (5)
H1A0.30730.44720.97290.174*0.754 (5)
H1B0.27190.61831.06940.174*0.754 (5)
H1C0.29740.42081.16690.174*0.754 (5)
C90.02203 (13)0.2386 (6)0.7818 (4)0.0590 (8)0.754 (5)
H9A0.01140.29930.88970.071*0.754 (5)
H9B0.00850.16120.73470.071*0.754 (5)
C100.03892 (17)0.4199 (6)0.6648 (5)0.0643 (10)0.754 (5)
H10A0.06660.50710.71870.077*0.754 (5)
H10B0.00840.51440.64280.077*0.754 (5)
C110.06016 (18)0.3312 (8)0.4998 (5)0.0669 (12)0.754 (5)
H11A0.03120.26010.43890.080*0.754 (5)
H11B0.07340.45110.43130.080*0.754 (5)
C120.10493 (16)0.1694 (7)0.5298 (4)0.0621 (9)0.754 (5)
H120.13390.24920.58670.075*0.754 (5)
C130.08638 (13)0.0078 (5)0.6499 (3)0.0529 (8)0.754 (5)
H13A0.05790.09230.59780.063*0.754 (5)
H13B0.11600.10600.67400.063*0.754 (5)
N10.06702 (11)0.0872 (5)0.8051 (3)0.0498 (7)0.754 (5)
O10.0701 (2)0.1339 (12)1.0822 (7)0.0802 (15)0.754 (5)
O20.12710 (16)0.0789 (9)0.3835 (4)0.1091 (16)0.754 (5)
H20.11180.12940.30070.164*0.754 (5)
C1'0.2820 (6)0.480 (4)1.037 (3)0.095 (7)0.246 (5)
H1'10.31390.39491.01880.142*0.246 (5)
H1'20.27960.59190.95190.142*0.246 (5)
H1'30.28350.54731.14600.142*0.246 (5)
C9'0.0545 (5)0.363 (2)0.7878 (13)0.081 (4)0.246 (5)
H9'10.07430.49530.76020.097*0.246 (5)
H9'20.03620.38830.89400.097*0.246 (5)
C10'0.0136 (5)0.325 (3)0.6554 (15)0.081 (4)0.246 (5)
H10C0.00660.45830.63640.097*0.246 (5)
H10D0.01140.21310.69330.097*0.246 (5)
C11'0.0396 (6)0.251 (3)0.4900 (19)0.087 (5)0.246 (5)
H11C0.01210.20650.41060.104*0.246 (5)
H11D0.05960.37170.44070.104*0.246 (5)
C12'0.0770 (6)0.062 (2)0.5267 (15)0.083 (4)0.246 (5)
H12'0.05470.05470.57440.100*0.246 (5)
C13'0.1182 (4)0.1118 (19)0.6524 (12)0.071 (3)0.246 (5)
H13C0.14170.22620.61030.085*0.246 (5)
H13D0.13980.01740.67340.085*0.246 (5)
N1'0.0927 (4)0.1837 (17)0.8095 (9)0.064 (3)0.246 (5)
O1'0.0737 (10)0.179 (4)1.098 (3)0.110 (8)0.246 (5)
O2'0.1012 (5)0.0230 (18)0.3875 (13)0.084 (3)0.246 (5)
H2'0.08020.01930.30790.126*0.246 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.1035 (19)0.0606 (13)0.0644 (13)0.0231 (12)0.0065 (13)0.0065 (11)
C40.0729 (13)0.0679 (14)0.0601 (12)0.0152 (10)0.0062 (10)0.0074 (10)
C50.0705 (13)0.0611 (12)0.0413 (9)0.0178 (10)0.0010 (9)0.0032 (9)
C60.0805 (14)0.0612 (11)0.0686 (14)0.0120 (11)0.0052 (11)0.0074 (10)
C70.0665 (13)0.0795 (16)0.0784 (14)0.0045 (12)0.0032 (12)0.0057 (12)
C80.0769 (13)0.0750 (14)0.0477 (11)0.0262 (11)0.0040 (11)0.0086 (10)
C20.0765 (16)0.0815 (16)0.0618 (14)0.0287 (13)0.0157 (11)0.0186 (12)
C10.126 (6)0.120 (6)0.100 (5)0.078 (5)0.028 (3)0.044 (4)
C90.0543 (17)0.071 (2)0.0519 (17)0.0210 (15)0.0023 (13)0.0046 (14)
C100.075 (2)0.059 (2)0.059 (2)0.0239 (16)0.0076 (18)0.0038 (17)
C110.075 (3)0.080 (2)0.0464 (19)0.0186 (19)0.0010 (17)0.0135 (17)
C120.062 (2)0.086 (2)0.0380 (16)0.0183 (17)0.0000 (13)0.0011 (16)
C130.0557 (16)0.0535 (17)0.0494 (16)0.0130 (14)0.0132 (12)0.0121 (13)
N10.0508 (15)0.0529 (15)0.0457 (12)0.0118 (12)0.0007 (11)0.0038 (11)
O10.082 (2)0.119 (4)0.040 (2)0.046 (2)0.0107 (16)0.002 (2)
O20.096 (3)0.186 (5)0.0448 (12)0.071 (3)0.0066 (16)0.003 (2)
C1'0.041 (8)0.153 (18)0.090 (12)0.015 (7)0.032 (7)0.037 (11)
C9'0.097 (8)0.083 (7)0.062 (6)0.046 (6)0.020 (5)0.015 (5)
C10'0.077 (8)0.108 (9)0.058 (6)0.033 (6)0.016 (6)0.015 (7)
C11'0.092 (9)0.108 (10)0.060 (6)0.050 (8)0.019 (6)0.009 (7)
C12'0.096 (8)0.093 (8)0.062 (6)0.043 (7)0.019 (6)0.019 (6)
C13'0.079 (7)0.069 (6)0.064 (6)0.016 (6)0.007 (5)0.000 (5)
N1'0.075 (6)0.076 (6)0.040 (4)0.028 (5)0.014 (4)0.015 (4)
O1'0.188 (15)0.085 (8)0.057 (8)0.075 (8)0.027 (7)0.036 (6)
O2'0.100 (8)0.097 (7)0.054 (4)0.045 (5)0.003 (5)0.024 (4)
Geometric parameters (Å, º) top
C3—C21.368 (3)C11—H11B0.9700
C3—C41.385 (3)C12—O21.399 (5)
C3—H30.9300C12—C131.515 (5)
C4—C51.373 (3)C12—H120.9800
C4—H40.9300C13—N11.444 (3)
C5—C61.380 (3)C13—H13A0.9700
C5—C81.500 (3)C13—H13B0.9700
C6—C71.375 (3)O2—H20.8200
C6—H60.9300C1'—H1'10.9600
C7—C21.379 (3)C1'—H1'20.9600
C7—H70.9300C1'—H1'30.9600
C8—O11.189 (5)C9'—N1'1.463 (11)
C8—N11.370 (3)C9'—C10'1.481 (14)
C8—O1'1.37 (2)C9'—H9'10.9700
C8—N1'1.390 (9)C9'—H9'20.9700
C2—C11.522 (5)C10'—C11'1.531 (15)
C2—C1'1.551 (13)C10'—H10C0.9700
C1—H1A0.9600C10'—H10D0.9700
C1—H1B0.9600C11'—C12'1.512 (14)
C1—H1C0.9600C11'—H11C0.9700
C9—N11.464 (3)C11'—H11D0.9700
C9—C101.506 (5)C12'—O2'1.362 (15)
C9—H9A0.9700C12'—C13'1.463 (14)
C9—H9B0.9700C12'—H12'0.9800
C10—C111.513 (5)C13'—N1'1.467 (11)
C10—H10A0.9700C13'—H13C0.9700
C10—H10B0.9700C13'—H13D0.9700
C11—C121.508 (5)O2'—H2'0.8200
C11—H11A0.9700
C2—C3—C4121.7 (2)C11—C12—C13110.1 (3)
C2—C3—H3119.1O2—C12—H12106.8
C4—C3—H3119.1C11—C12—H12106.8
C5—C4—C3119.7 (2)C13—C12—H12106.8
C5—C4—H4120.2N1—C13—C12110.6 (3)
C3—C4—H4120.2N1—C13—H13A109.5
C4—C5—C6118.73 (18)C12—C13—H13A109.5
C4—C5—C8119.50 (18)N1—C13—H13B109.5
C6—C5—C8121.60 (18)C12—C13—H13B109.5
C7—C6—C5121.2 (2)H13A—C13—H13B108.1
C7—C6—H6119.4C8—N1—C13125.0 (2)
C5—C6—H6119.4C8—N1—C9120.8 (2)
C6—C7—C2120.3 (2)C13—N1—C9113.7 (2)
C6—C7—H7119.9C12—O2—H2109.5
C2—C7—H7119.9C2—C1'—H1'1109.5
O1—C8—N1120.1 (3)C2—C1'—H1'2109.5
O1—C8—O1'11.4 (14)H1'1—C1'—H1'2109.5
N1—C8—O1'121.5 (11)C2—C1'—H1'3109.5
O1—C8—N1'121.9 (5)H1'1—C1'—H1'3109.5
N1—C8—N1'36.8 (4)H1'2—C1'—H1'3109.5
O1'—C8—N1'115.3 (11)N1'—C9'—C10'114.2 (9)
O1—C8—C5119.9 (3)N1'—C9'—H9'1108.7
N1—C8—C5119.25 (19)C10'—C9'—H9'1108.7
O1'—C8—C5119.2 (11)N1'—C9'—H9'2108.7
N1'—C8—C5110.5 (4)C10'—C9'—H9'2108.7
C3—C2—C7118.40 (19)H9'1—C9'—H9'2107.6
C3—C2—C1120.4 (5)C9'—C10'—C11'111.4 (10)
C7—C2—C1121.2 (5)C9'—C10'—H10C109.3
C3—C2—C1'121.3 (9)C11'—C10'—H10C109.3
C7—C2—C1'119.9 (9)C9'—C10'—H10D109.3
C1—C2—C1'8.1 (13)C11'—C10'—H10D109.3
C2—C1—H1A109.5H10C—C10'—H10D108.0
C2—C1—H1B109.5C12'—C11'—C10'108.5 (11)
C2—C1—H1C109.5C12'—C11'—H11C110.0
N1—C9—C10109.2 (2)C10'—C11'—H11C110.0
N1—C9—H9A109.8C12'—C11'—H11D110.0
C10—C9—H9A109.8C10'—C11'—H11D110.0
N1—C9—H9B109.8H11C—C11'—H11D108.4
C10—C9—H9B109.8O2'—C12'—C13'108.8 (10)
H9A—C9—H9B108.3O2'—C12'—C11'114.1 (11)
C9—C10—C11111.6 (3)C13'—C12'—C11'113.8 (11)
C9—C10—H10A109.3O2'—C12'—H12'106.5
C11—C10—H10A109.3C13'—C12'—H12'106.5
C9—C10—H10B109.3C11'—C12'—H12'106.5
C11—C10—H10B109.3C12'—C13'—N1'109.8 (8)
H10A—C10—H10B108.0C12'—C13'—H13C109.7
C12—C11—C10110.9 (3)N1'—C13'—H13C109.7
C12—C11—H11A109.5C12'—C13'—H13D109.7
C10—C11—H11A109.5N1'—C13'—H13D109.7
C12—C11—H11B109.5H13C—C13'—H13D108.2
C10—C11—H11B109.5C8—N1'—C9'118.4 (8)
H11A—C11—H11B108.1C8—N1'—C13'125.4 (7)
O2—C12—C11114.8 (3)C9'—N1'—C13'114.0 (8)
O2—C12—C13111.1 (3)C12'—O2'—H2'109.5
C2—C3—C4—C51.4 (3)N1'—C8—N1—C1382.2 (6)
C3—C4—C5—C60.9 (3)C5—C8—N1—C133.4 (4)
C3—C4—C5—C8176.20 (19)O1—C8—N1—C915.1 (6)
C4—C5—C6—C70.0 (3)O1'—C8—N1—C91.9 (13)
C8—C5—C6—C7175.2 (2)N1'—C8—N1—C989.1 (6)
C5—C6—C7—C20.3 (3)C5—C8—N1—C9174.6 (2)
C4—C5—C8—O163.9 (5)C12—C13—N1—C8112.6 (4)
C6—C5—C8—O1111.3 (5)C12—C13—N1—C959.2 (4)
C4—C5—C8—N1106.4 (3)C10—C9—N1—C8114.0 (4)
C6—C5—C8—N178.4 (3)C10—C9—N1—C1358.2 (4)
C4—C5—C8—O1'77.0 (13)N1'—C9'—C10'—C11'50.2 (19)
C6—C5—C8—O1'98.2 (12)C9'—C10'—C11'—C12'51.2 (19)
C4—C5—C8—N1'146.0 (5)C10'—C11'—C12'—O2'177.8 (13)
C6—C5—C8—N1'38.8 (6)C10'—C11'—C12'—C13'56.6 (19)
C4—C3—C2—C71.1 (3)O2'—C12'—C13'—N1'174.5 (10)
C4—C3—C2—C1176.7 (4)C11'—C12'—C13'—N1'57.1 (17)
C4—C3—C2—C1'174.0 (12)O1—C8—N1'—C9'18.1 (12)
C6—C7—C2—C30.2 (3)N1—C8—N1'—C9'80.7 (10)
C6—C7—C2—C1177.6 (4)O1'—C8—N1'—C9'28.7 (16)
C6—C7—C2—C1'173.2 (12)C5—C8—N1'—C9'167.5 (8)
N1—C9—C10—C1154.8 (5)O1—C8—N1'—C13'179.8 (9)
C9—C10—C11—C1254.5 (5)N1—C8—N1'—C13'81.4 (10)
C10—C11—C12—O2179.9 (4)O1'—C8—N1'—C13'169.2 (14)
C10—C11—C12—C1353.9 (5)C5—C8—N1'—C13'30.3 (12)
O2—C12—C13—N1176.0 (3)C10'—C9'—N1'—C8112.8 (14)
C11—C12—C13—N155.7 (4)C10'—C9'—N1'—C13'51.3 (17)
O1—C8—N1—C13173.6 (5)C12'—C13'—N1'—C8109.9 (14)
O1'—C8—N1—C13173.2 (13)C12'—C13'—N1'—C9'52.9 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O1i0.972.663.598 (7)163
O2—H2···O1ii0.822.022.802 (7)159
O2—H2···O1ii0.822.072.70 (3)134
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z1.
 

Acknowledgements

The authors thank the Central Instrumentation Facility, Queen Mary's College, Chennai-4 for computing facility and the SAIF, IIT, Madras, for the X-ray data collection facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, S. & Brahmachari, G. (2013). J. Org. Biomol. Chem. 1, 33–46.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPrathebha, K., Reuben Jonathan, D., Revathi, B. K., Sathya, S. & Usha, G. (2015). Acta Cryst. E71, o39–o40.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRavindernath, A. & Reddy, M. S. (2017). Arabian J. Chem. 10, s1172–s1179.  Web of Science CrossRef CAS Google Scholar
First citationRevathi, B. K., Reuben Jonathan, D., Kalai Sevi, K., Dhanalakshmi, K. & Usha, G. (2015). Acta Cryst. E71, o817–o818.  CrossRef IUCr Journals Google Scholar
First citationRevathi, B. K., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2015). Acta Cryst. E71, o359–o360.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]