organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

tert-Butyl (3-oxo­cyclo­pent­yl)carbamate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada, and bDepartment of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
*Correspondence e-mail: alough@chem.utoronto.ca

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 29 September 2017; accepted 2 October 2017; online 6 October 2017)

In the title compound, C10H17NO3, the five-membered ring is in a slightly twisted envelope conformation. The carbonyl group is disordered over two sites on the five-membered ring, with refined occupancies of 0.906 (4) and 0.094 (4). In the crystal, mol­ecules are linked via N—H⋯O hydrogen bonds forming C(4) chains along [001].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Recently, Tam and coworkers investigated the ruthenium-catalysed nucleophilic ring-opening of 3-aza-2-oxabicyclic alkenes with alcohols, which produced either a cis- or trans-1,2-cyclo­pentene depending on the catalyst used (Fig. 1[link]) (Machin et al., 2009[Machin, B. P., Howell, J., Mandel, J., Blanchard, N. & Tam, W. (2009). Org. Lett. 11, 2077-2080.]). The aim was to expand the scope of the reaction to include amine nucleophiles, though the expected nucleophilic addition product was not formed. When 3-aza-2-oxabicyclic alkene I was subjected to the same conditions as previously except using an amine instead of an alcohol, an unexpected product, II, was formed (Fig. 2[link]) with the crystal structure reported here. The investigation into the mechanism of this reaction is ongoing.

[Figure 1]
Figure 1
Previously reported ruthenium-catalysed nucleophilic ring opening of 3-aza-2-oxabicyclic alkene I with alcohols.
[Figure 2]
Figure 2
Ruthenium-catalysed ring-opening reaction of 3-aza-2-oxabicyclic alkene I with di­ethyl­amine.

The mol­ecular structure of II is shown in Fig. 3[link]. The five-membered ring is in a slightly-twisted envelope conformation with atom C1 forming the flap. The carbonyl group is disordered over two sites on the five-membered ring with refined occupancies of 0.906 (4) and 0.094 (4). In the crystal, mol­ecules are linked via N—H⋯O hydrogen bonds forming C(4) chains along [001] (Fig. 4[link], Table 1[link]) with adjacent mol­ecules related by c-glide symmetry.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.84 (2) 2.05 (2) 2.8684 (17) 164.4 (19)
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
The mol­ecule structure of II, with displacement ellipsoids drawn at the 30% probability level. The minor component of disorder is not shown.
[Figure 4]
Figure 4
Part of the crystal structure of II, with hydrogen bonds shown as dashed lines. The disorder is not shown.

Synthesis and crystallization

In a small screw-cap vial containing a stir bar, 3-aza-2-oxabicyclic alkene I (91.1 mg, 0.462 mmol, 1.0 equiv.) was added and transferred into a glove box. The catalyst Cp*RuCl(COD) (17.5 mg, 0.046 mmol, 0.10 equiv.) was added into the same vial and reagents were dissolved in di­ethyl­amine (1.8 ml). The vial was sealed, transferred out of the glove box, and heated to 313 K with continuous stirring for 42 h. The crude product was purified by column chromatography using a gradient (EtOAc:hexa­nes = 1:9 to 1:1), followed by static vacuum sublimation for two weeks by gradually heating to 363 K to give clear, colourless crystals of II.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The carbonyl group is disordered over two sites on the five-membered ring with refined occupancies of 0.906 (4) and 0.094 (4). The C=O distance in the minor component was constrained to be the same as that in the major component.

Table 2
Experimental details

Crystal data
Chemical formula C10H17NO3
Mr 199.24
Crystal system, space group Monoclinic, C2/c
Temperature (K) 147
a, b, c (Å) 20.6617 (14), 11.6924 (9), 9.9566 (7)
β (°) 111.295 (4)
V3) 2241.1 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.25 × 0.18 × 0.03
 
Data collection
Diffractometer Bruker Kappa APEX DUO CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.707, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 8250, 2586, 1695
Rint 0.039
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.130, 1.05
No. of reflections 2586
No. of parameters 139
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: APEX2 (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

tert-Butyl (3-oxocyclopentyl)carbamate top
Crystal data top
C10H17NO3F(000) = 864
Mr = 199.24Dx = 1.181 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.6617 (14) ÅCell parameters from 1745 reflections
b = 11.6924 (9) Åθ = 2.7–23.5°
c = 9.9566 (7) ŵ = 0.09 mm1
β = 111.295 (4)°T = 147 K
V = 2241.1 (3) Å3Plate, colourless
Z = 80.25 × 0.18 × 0.03 mm
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
1695 reflections with I > 2σ(I)
Radiation source: sealed tube with Bruker Triumph monochromatorRint = 0.039
φ and ω scansθmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 2526
Tmin = 0.707, Tmax = 0.746k = 1215
8250 measured reflectionsl = 1212
2586 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0552P)2 + 1.179P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2586 reflectionsΔρmax = 0.25 e Å3
139 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were placed in calculated positions with C–H = 0.98–1.00 Å and included in the refinement with Uiso(H)=1.2Ueq(C) or 1.5Ueq(Cmethyl). The H atom bonded to N was refined independently with an isotropic displacement parameter.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.52124 (7)0.36776 (15)0.60633 (18)0.0513 (6)0.906 (4)
C30.41982 (10)0.25014 (18)0.5483 (2)0.0392 (5)0.906 (4)
H3A0.43090.20730.63970.047*0.906 (4)
H3B0.43150.20190.47850.047*0.906 (4)
C40.45871 (10)0.35970 (18)0.5731 (2)0.0401 (5)0.906 (4)
O1A0.4615 (8)0.1760 (13)0.6013 (19)0.070 (7)*0.094 (4)
C3A0.41982 (10)0.25014 (18)0.5483 (2)0.0392 (5)0.094 (4)
C4A0.45871 (10)0.35970 (18)0.5731 (2)0.0401 (5)0.094 (4)
H4A10.48200.36820.50250.048*0.094 (4)
H4A20.49470.36070.67130.048*0.094 (4)
O20.25826 (7)0.51394 (12)0.68422 (12)0.0382 (4)
O30.18971 (6)0.57509 (11)0.46075 (12)0.0313 (3)
N10.27867 (7)0.46337 (13)0.48373 (15)0.0267 (3)
C10.34193 (8)0.39996 (15)0.55617 (17)0.0243 (4)
H1A0.34630.38750.65850.029*
C20.34363 (10)0.28369 (17)0.4884 (2)0.0430 (5)
H2A0.31500.22730.51630.052*
H2B0.32630.28930.38190.052*
C50.40809 (10)0.45669 (18)0.5565 (3)0.0470 (6)
H5A0.39960.49830.46510.056*
H5B0.42610.51120.63770.056*
C60.24354 (8)0.51738 (14)0.55445 (16)0.0227 (4)
C70.14221 (9)0.64310 (16)0.50923 (18)0.0293 (4)
C80.18093 (10)0.73408 (17)0.6154 (2)0.0385 (5)
H8A0.14770.78900.62790.058*
H8B0.21290.77390.57890.058*
H8C0.20730.69850.70830.058*
C90.10128 (12)0.56591 (19)0.5703 (3)0.0579 (7)
H9A0.06780.61160.59620.087*
H9B0.13300.52730.65640.087*
H9C0.07650.50870.49810.087*
C100.09596 (12)0.6992 (2)0.3699 (2)0.0571 (7)
H10A0.06120.74700.38880.086*
H10B0.07240.64000.29940.086*
H10C0.12430.74680.33170.086*
H1N0.2658 (10)0.4773 (17)0.395 (2)0.034 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0249 (9)0.0658 (12)0.0656 (11)0.0069 (8)0.0195 (7)0.0193 (9)
C30.0333 (11)0.0373 (12)0.0456 (11)0.0133 (9)0.0125 (9)0.0024 (9)
C40.0285 (10)0.0502 (13)0.0451 (11)0.0095 (9)0.0174 (8)0.0094 (10)
C3A0.0333 (11)0.0373 (12)0.0456 (11)0.0133 (9)0.0125 (9)0.0024 (9)
C4A0.0285 (10)0.0502 (13)0.0451 (11)0.0095 (9)0.0174 (8)0.0094 (10)
O20.0476 (8)0.0512 (9)0.0206 (6)0.0204 (7)0.0183 (5)0.0060 (6)
O30.0293 (7)0.0413 (8)0.0226 (6)0.0156 (6)0.0086 (5)0.0021 (5)
N10.0281 (7)0.0372 (9)0.0167 (6)0.0114 (7)0.0105 (6)0.0039 (6)
C10.0238 (8)0.0283 (9)0.0234 (8)0.0074 (7)0.0116 (6)0.0041 (7)
C20.0302 (10)0.0325 (11)0.0626 (13)0.0048 (9)0.0124 (10)0.0066 (10)
C50.0332 (11)0.0328 (11)0.0752 (15)0.0024 (9)0.0201 (11)0.0059 (11)
C60.0230 (8)0.0242 (9)0.0232 (8)0.0030 (7)0.0109 (6)0.0012 (7)
C70.0227 (8)0.0340 (10)0.0329 (9)0.0082 (8)0.0122 (7)0.0047 (8)
C80.0363 (10)0.0341 (11)0.0453 (11)0.0060 (9)0.0150 (9)0.0077 (9)
C90.0421 (12)0.0432 (13)0.104 (2)0.0013 (11)0.0458 (13)0.0002 (13)
C100.0492 (13)0.0732 (17)0.0403 (11)0.0360 (13)0.0060 (10)0.0055 (11)
Geometric parameters (Å, º) top
O1—C41.215 (2)C1—C21.524 (3)
C3—C41.484 (3)C1—H1A1.0000
C3—C21.518 (3)C2—H2A0.9900
C3—H3A0.9900C2—H2B0.9900
C3—H3B0.9900C5—H5A0.9900
C4—C51.510 (3)C5—H5B0.9900
O1A—C3A1.201 (9)C7—C91.508 (3)
C3A—C4A1.484 (3)C7—C81.508 (3)
C3A—C21.518 (3)C7—C101.518 (3)
C4A—C51.510 (3)C8—H8A0.9800
C4A—H4A10.9900C8—H8B0.9800
C4A—H4A20.9900C8—H8C0.9800
O2—C61.2158 (18)C9—H9A0.9800
O3—C61.3451 (19)C9—H9B0.9800
O3—C71.4739 (19)C9—H9C0.9800
N1—C61.339 (2)C10—H10A0.9800
N1—C11.447 (2)C10—H10B0.9800
N1—H1N0.84 (2)C10—H10C0.9800
C1—C51.518 (3)
C4—C3—C2105.30 (16)C4A—C5—C1105.03 (16)
C4—C3—H3A110.7C4—C5—C1105.03 (16)
C2—C3—H3A110.7C4—C5—H5A110.7
C4—C3—H3B110.7C1—C5—H5A110.7
C2—C3—H3B110.7C4—C5—H5B110.7
H3A—C3—H3B108.8C1—C5—H5B110.7
O1—C4—C3124.75 (19)H5A—C5—H5B108.8
O1—C4—C5126.7 (2)O2—C6—N1124.69 (15)
C3—C4—C5108.55 (16)O2—C6—O3125.33 (14)
O1A—C3A—C4A106.9 (10)N1—C6—O3109.98 (13)
O1A—C3A—C2146.6 (10)O3—C7—C9110.30 (15)
C4A—C3A—C2105.30 (16)O3—C7—C8111.30 (14)
C3A—C4A—C5108.55 (16)C9—C7—C8111.84 (17)
C3A—C4A—H4A1110.0O3—C7—C10101.94 (14)
C5—C4A—H4A1110.0C9—C7—C10111.60 (18)
C3A—C4A—H4A2110.0C8—C7—C10109.46 (17)
C5—C4A—H4A2110.0C7—C8—H8A109.5
H4A1—C4A—H4A2108.4C7—C8—H8B109.5
C6—O3—C7121.65 (12)H8A—C8—H8B109.5
C6—N1—C1122.93 (14)C7—C8—H8C109.5
C6—N1—H1N115.9 (14)H8A—C8—H8C109.5
C1—N1—H1N120.4 (13)H8B—C8—H8C109.5
N1—C1—C5115.27 (15)C7—C9—H9A109.5
N1—C1—C2113.47 (14)C7—C9—H9B109.5
C5—C1—C2103.01 (14)H9A—C9—H9B109.5
N1—C1—H1A108.3C7—C9—H9C109.5
C5—C1—H1A108.3H9A—C9—H9C109.5
C2—C1—H1A108.3H9B—C9—H9C109.5
C3A—C2—C1104.11 (15)C7—C10—H10A109.5
C3—C2—C1104.11 (15)C7—C10—H10B109.5
C3—C2—H2A110.9H10A—C10—H10B109.5
C1—C2—H2A110.9C7—C10—H10C109.5
C3—C2—H2B110.9H10A—C10—H10C109.5
C1—C2—H2B110.9H10B—C10—H10C109.5
H2A—C2—H2B109.0
C2—C3—C4—O1171.8 (2)O1—C4—C5—C1164.6 (2)
C2—C3—C4—C510.6 (2)C3—C4—C5—C112.9 (2)
O1A—C3A—C4A—C5160.6 (10)N1—C1—C5—C4A155.20 (15)
C2—C3A—C4A—C510.6 (2)C2—C1—C5—C4A31.1 (2)
C6—N1—C1—C5106.9 (2)N1—C1—C5—C4155.20 (15)
C6—N1—C1—C2134.68 (18)C2—C1—C5—C431.1 (2)
O1A—C3A—C2—C1134.5 (17)C1—N1—C6—O24.3 (3)
C4A—C3A—C2—C130.1 (2)C1—N1—C6—O3175.97 (15)
C4—C3—C2—C130.1 (2)C7—O3—C6—O20.7 (3)
N1—C1—C2—C3A163.07 (15)C7—O3—C6—N1179.64 (15)
C5—C1—C2—C3A37.8 (2)C6—O3—C7—C966.5 (2)
N1—C1—C2—C3163.07 (15)C6—O3—C7—C858.3 (2)
C5—C1—C2—C337.8 (2)C6—O3—C7—C10174.87 (17)
C3A—C4A—C5—C112.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.84 (2)2.05 (2)2.8684 (17)164.4 (19)
Symmetry code: (i) x, y+1, z1/2.
 

Funding information

AJL thanks NSERC Canada for funding.

References

First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMachin, B. P., Howell, J., Mandel, J., Blanchard, N. & Tam, W. (2009). Org. Lett. 11, 2077–2080.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]