organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-[(4-Bromo­benz­yl)­­oxy]-4-(4-methyl­benzene­sulfon­yl)-1,3-thia­zole

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, India, bDepartment of Physics, The National Institutional of Engineering (NIE), Mysore 570 008, India, and cDepartment of Physics, RV College of Engineering, Bengaluru 560 059, India
*Correspondence e-mail: mpsadashiva@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 17 September 2017; accepted 16 October 2017; online 31 October 2017)

In the title compound, C17H14BrNO3S2, the mean plane of the thia­zole ring subtends dihedral angles of 3.6 (2) and 79.9 (2)° with the bromo­benzyl and toluyl rings, respectively. In the crystal, short S⋯O contacts [3.012 (3) Å] and aromatic ππ stacking between the thia­zole and toluyl rings [centroid–centroid separation = 3.687 (2) Å] are observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Thia­zoles have many applications in the field of medicinal chemistry, for instance as anti-microbial (Liaras et al., 2011[Liaras, K., Geronikaki, A., Glamočlija, J., Ćirić, A. & Soković, M. (2011). Bioorg. Med. Chem. 19, 3135-3140.]), anti-cancer (Romagnoli et al., 2012[Romagnoli, R., Baraldi, P. G., Salvador, M. K., Camacho, M. E., Preti, D., Tabrizi, M. A., Bassetto, M., Brancale, A., Hamel, E., Bortolozzi, R., Basso, G. & Viola, G. (2012). Bioorg. Med. Chem. 20, 7083-7094.]) and anti-mycobacterium tuberculosis (Shiradkar et al., 2007[Shiradkar, M. R., Murahari, K. K., Gangadasu, H. R., Suresh, T., Kalyan, C. A., Panchal, D., Kaur, R., Burange, P., Ghogare, J., Mokale, V. & Raut, M. (2007). Bioorg. Med. Chem. 15, 3997-4008.]) agents. As part of our studies of these compounds, we have synthesized the title compound to study its crystal structure.

In the mol­ecular structure (Fig. 1[link]), the mean plane of the thia­zole moiety (C11/N12/C13/S14/C15), is approximately coplanar with the bromo­benzyl ring [dihedral angle = 3.6 (2)°] and close to orthogonal to the toluyl ring [79.9 (2)°]. In the crystal, short S⋯O contacts [3.012 (3) Å] and aromatic ππ stacking between the thia­zole and toluyl rings [centroid-centroid separation = 3.687 (2) Å] are observed. A packing diagram is shown in Fig. 2[link]

[Figure 1]
Figure 1
The mol­ecular structure with 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
Packing diagram of the title compound viewed down [100].

Synthesis and crystallization

To a suspension of sodium hydride (60% suspension in paraffin; 4 mmol) in DMF (1.5 ml), a mixture of xanthate ester 2 (2 mmol), and active methyl­ene isocyanide 3 (2 mmol) in DMF (1.5 ml) was added dropwise at 0°C. The mixture was allowed to stir at room temperature for 10–20 min (monitored by TLC). After completion of the reaction, the mixture was poured into a saturated solution of ammonium chloride (20 ml) and extracted with ethyl acetate (20 ml × 2). The combined ethyl acetate layer was washed with water (20 ml), brine (20 ml), dried over anhydrous sodium sulfate and concentrated under reduced pressure to get crude products, which were purified by column chromatography using ethyl acetate–hexane as eluent. Pale-yellow blocks of the title compound were recrystallized from ethyl acetate solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C17H14BrNO3S2
Mr 424.31
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.6092 (4), 8.2768 (5), 13.8718 (8)
α, β, γ (°) 95.175 (5), 94.559 (5), 94.814 (5)
V3) 863.67 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.64
Crystal size (mm) 0.28 × 0.25 × 0.22
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 7351, 3955, 2633
Rint 0.035
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.144, 1.04
No. of reflections 3955
No. of parameters 218
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.67
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

5-[(4-Bromobenzyl)oxy]-4-(4-methylbenzenesulfonyl)-1,3-thiazole top
Crystal data top
C17H14BrNO3S2Z = 2
Mr = 424.31F(000) = 428
Triclinic, P1Dx = 1.632 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6092 (4) ÅCell parameters from 3955 reflections
b = 8.2768 (5) Åθ = 2.5–27.5°
c = 13.8718 (8) ŵ = 2.64 mm1
α = 95.175 (5)°T = 293 K
β = 94.559 (5)°Block, pale yellow
γ = 94.814 (5)°0.28 × 0.25 × 0.22 mm
V = 863.67 (9) Å3
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.035
Detector resolution: 18.4 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω and φ scansh = 99
7351 measured reflectionsk = 108
3955 independent reflectionsl = 1618
2633 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.144 w = 1/[Σ2(FO2) + (0.0501P)2 + 0.4404P]
where P = (FO2 + 2FC2)/3
S = 1.04(Δ/σ)max = 0.003
3955 reflectionsΔρmax = 0.35 e Å3
218 parametersΔρmin = 0.67 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

The H atoms were positioned geometrically and allowed to ride on their parent atom, with C–H distance in the range of 0.93 to 0.97 Å; Uiso(H) = 1.2–1.5Ueq (carrier atom) for all H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br240.46321 (8)0.97111 (7)0.79555 (4)0.0674 (2)
S80.12112 (14)0.52364 (12)1.29198 (8)0.0382 (3)
S140.39923 (15)0.56970 (15)1.16549 (9)0.0508 (4)
O90.2178 (4)0.5355 (4)1.2075 (2)0.0474 (10)
O100.1418 (4)0.3884 (3)1.3483 (2)0.0516 (11)
O160.0708 (5)0.6623 (5)1.1124 (3)0.0779 (14)
N120.2288 (5)0.4619 (4)1.3100 (3)0.0450 (12)
C10.2819 (7)1.1548 (6)1.5513 (4)0.0647 (19)
C20.2422 (6)0.9961 (5)1.4872 (3)0.0458 (16)
C30.2264 (6)0.9965 (5)1.3866 (3)0.0483 (16)
C40.1911 (6)0.8518 (5)1.3277 (3)0.0445 (16)
C50.1718 (5)0.7057 (5)1.3686 (3)0.0358 (12)
C60.1858 (6)0.7040 (5)1.4683 (3)0.0458 (14)
C70.2221 (7)0.8489 (6)1.5267 (3)0.0539 (16)
C110.1060 (5)0.5239 (5)1.2538 (3)0.0366 (12)
C130.3864 (6)0.4786 (6)1.2722 (3)0.0504 (17)
C150.1693 (6)0.5886 (5)1.1725 (3)0.0438 (14)
C170.1435 (6)0.7034 (6)1.0217 (3)0.0471 (16)
C180.0056 (6)0.7718 (5)0.9690 (3)0.0393 (14)
C190.1812 (6)0.7713 (5)1.0047 (3)0.0449 (14)
C200.3145 (6)0.8305 (5)0.9536 (3)0.0490 (17)
C210.2766 (6)0.8919 (5)0.8658 (3)0.0452 (14)
C220.1037 (7)0.8947 (5)0.8301 (3)0.0496 (16)
C230.0312 (6)0.8358 (5)0.8813 (3)0.0473 (17)
H1A0.203361.157731.602180.0970*
H1B0.265221.244321.513110.0970*
H1C0.402141.163131.579330.0970*
H30.239601.094511.358900.0580*
H40.180300.852591.260510.0540*
H60.171010.606041.495860.0550*
H70.233170.847451.593820.0650*
H130.487140.443451.301130.0610*
H16A0.228130.783451.031500.0560*
H16B0.204130.607450.984170.0560*
H180.208320.730381.063800.0540*
H190.431680.829330.978070.0590*
H210.077670.936530.771120.0600*
H220.148210.838820.856880.0570*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br240.0677 (4)0.0740 (4)0.0582 (4)0.0139 (3)0.0067 (3)0.0127 (3)
S80.0301 (5)0.0405 (5)0.0433 (6)0.0046 (4)0.0011 (4)0.0023 (5)
S140.0309 (6)0.0608 (7)0.0595 (8)0.0038 (5)0.0024 (5)0.0055 (6)
O90.0313 (17)0.0651 (19)0.0448 (17)0.0062 (15)0.0058 (13)0.0036 (15)
O100.051 (2)0.0425 (16)0.061 (2)0.0102 (15)0.0057 (16)0.0080 (15)
O160.038 (2)0.134 (3)0.065 (2)0.007 (2)0.0069 (17)0.052 (2)
N120.037 (2)0.051 (2)0.047 (2)0.0018 (17)0.0046 (17)0.0055 (17)
C10.068 (4)0.058 (3)0.064 (3)0.011 (3)0.006 (3)0.011 (3)
C20.038 (3)0.044 (2)0.053 (3)0.007 (2)0.002 (2)0.006 (2)
C30.058 (3)0.038 (2)0.049 (3)0.001 (2)0.003 (2)0.009 (2)
C40.046 (3)0.052 (3)0.036 (2)0.002 (2)0.0059 (19)0.008 (2)
C50.029 (2)0.040 (2)0.038 (2)0.0019 (17)0.0013 (17)0.0069 (18)
C60.049 (3)0.048 (2)0.040 (2)0.000 (2)0.000 (2)0.010 (2)
C70.065 (3)0.061 (3)0.034 (2)0.005 (3)0.005 (2)0.004 (2)
C110.033 (2)0.037 (2)0.039 (2)0.0032 (18)0.0028 (18)0.0004 (17)
C130.037 (3)0.058 (3)0.056 (3)0.000 (2)0.012 (2)0.001 (2)
C150.034 (2)0.048 (2)0.048 (3)0.002 (2)0.001 (2)0.004 (2)
C170.040 (3)0.059 (3)0.041 (2)0.007 (2)0.005 (2)0.003 (2)
C180.044 (3)0.038 (2)0.035 (2)0.0059 (19)0.0009 (18)0.0012 (18)
C190.045 (3)0.050 (2)0.038 (2)0.001 (2)0.004 (2)0.005 (2)
C200.041 (3)0.055 (3)0.048 (3)0.001 (2)0.007 (2)0.004 (2)
C210.048 (3)0.044 (2)0.041 (2)0.000 (2)0.000 (2)0.003 (2)
C220.059 (3)0.050 (2)0.039 (3)0.005 (2)0.005 (2)0.008 (2)
C230.042 (3)0.054 (3)0.045 (3)0.009 (2)0.006 (2)0.004 (2)
Geometric parameters (Å, º) top
Br24—C211.891 (4)C18—C191.388 (6)
S8—O91.439 (3)C18—C231.388 (6)
S8—O101.434 (3)C19—C201.366 (6)
S8—C51.760 (4)C20—C211.380 (6)
S8—C111.767 (4)C21—C221.371 (7)
S14—C131.721 (5)C22—C231.375 (7)
S14—C151.738 (5)C1—H1A0.9600
O16—C151.320 (6)C1—H1B0.9600
O16—C171.415 (6)C1—H1C0.9600
N12—C111.361 (6)C3—H30.9300
N12—C131.294 (6)C4—H40.9300
C1—C21.512 (7)C6—H60.9300
C2—C31.391 (6)C7—H70.9300
C2—C71.382 (6)C13—H130.9300
C3—C41.382 (6)C17—H16A0.9700
C4—C51.383 (6)C17—H16B0.9700
C5—C61.380 (6)C19—H180.9300
C6—C71.380 (6)C20—H190.9300
C11—C151.363 (6)C22—H210.9300
C17—C181.497 (6)C23—H220.9300
O9—S8—O10118.94 (19)Br24—C21—C22120.5 (3)
O9—S8—C5108.10 (19)C20—C21—C22119.7 (4)
O9—S8—C11107.43 (19)C21—C22—C23120.1 (4)
O10—S8—C5108.85 (18)C18—C23—C22120.6 (4)
O10—S8—C11108.17 (19)C2—C1—H1A109.00
C5—S8—C11104.40 (19)C2—C1—H1B109.00
C13—S14—C1588.4 (2)C2—C1—H1C110.00
C15—O16—C17121.7 (4)H1A—C1—H1B109.00
C11—N12—C13110.0 (4)H1A—C1—H1C109.00
C1—C2—C3120.0 (4)H1B—C1—H1C109.00
C1—C2—C7121.1 (4)C2—C3—H3120.00
C3—C2—C7118.8 (4)C4—C3—H3120.00
C2—C3—C4120.3 (4)C3—C4—H4120.00
C3—C4—C5120.1 (4)C5—C4—H4120.00
S8—C5—C4119.1 (3)C5—C6—H6120.00
S8—C5—C6120.7 (3)C7—C6—H6120.00
C4—C5—C6120.2 (4)C2—C7—H7119.00
C5—C6—C7119.5 (4)C6—C7—H7119.00
C2—C7—C6121.2 (4)S14—C13—H13122.00
S8—C11—N12119.1 (3)N12—C13—H13122.00
S8—C11—C15124.4 (3)O16—C17—H16A110.00
N12—C11—C15116.5 (4)O16—C17—H16B110.00
S14—C13—N12116.2 (3)C18—C17—H16A110.00
S14—C15—O16125.8 (3)C18—C17—H16B110.00
S14—C15—C11109.0 (3)H16A—C17—H16B108.00
O16—C15—C11125.1 (4)C18—C19—H18120.00
O16—C17—C18107.8 (4)C20—C19—H18120.00
C17—C18—C19121.8 (4)C19—C20—H19120.00
C17—C18—C23119.6 (4)C21—C20—H19120.00
C19—C18—C23118.6 (4)C21—C22—H21120.00
C18—C19—C20120.5 (4)C23—C22—H21120.00
C19—C20—C21120.5 (4)C18—C23—H22120.00
Br24—C21—C20119.8 (3)C22—C23—H22120.00
O9—S8—C5—C438.3 (4)C3—C2—C7—C60.4 (7)
O9—S8—C5—C6144.0 (3)C2—C3—C4—C50.2 (7)
O10—S8—C5—C4168.8 (3)C3—C4—C5—S8178.3 (3)
O10—S8—C5—C613.5 (4)C3—C4—C5—C60.7 (7)
C11—S8—C5—C475.8 (4)S8—C5—C6—C7178.7 (4)
C11—S8—C5—C6101.8 (4)C4—C5—C6—C71.1 (7)
O9—S8—C11—N12158.7 (3)C5—C6—C7—C21.0 (7)
O9—S8—C11—C1524.0 (4)S8—C11—C15—S14177.6 (2)
O10—S8—C11—N1229.2 (4)S8—C11—C15—O161.4 (7)
O10—S8—C11—C15153.6 (4)N12—C11—C15—S140.3 (5)
C5—S8—C11—N1286.7 (4)N12—C11—C15—O16176.0 (4)
C5—S8—C11—C1590.6 (4)O16—C17—C18—C196.7 (6)
C15—S14—C13—N120.4 (4)O16—C17—C18—C23174.2 (4)
C13—S14—C15—O16175.9 (4)C17—C18—C19—C20178.2 (4)
C13—S14—C15—C110.4 (3)C23—C18—C19—C201.0 (6)
C17—O16—C15—S1414.6 (6)C17—C18—C23—C22178.0 (4)
C17—O16—C15—C11169.8 (4)C19—C18—C23—C221.2 (6)
C15—O16—C17—C18175.3 (4)C18—C19—C20—C210.1 (6)
C13—N12—C11—S8177.5 (3)C19—C20—C21—Br24179.3 (3)
C13—N12—C11—C150.0 (5)C19—C20—C21—C220.6 (6)
C11—N12—C13—S140.3 (5)Br24—C21—C22—C23179.5 (3)
C1—C2—C3—C4179.7 (4)C20—C21—C22—C230.4 (6)
C7—C2—C3—C40.0 (7)C21—C22—C23—C180.5 (6)
C1—C2—C7—C6180.0 (5)
 

Acknowledgements

NR thanks UGC for providing RGNF and grateful to IOE, University of Mysore for the spectroscopic characterization and MPS thanks UGC-SAP DRS III for financial support. The authors also thank The National Institute of Engineering (NIE), Mysuru, and RV College of Engineering, Bengaluru, for support.

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiaras, K., Geronikaki, A., Glamočlija, J., Ćirić, A. & Soković, M. (2011). Bioorg. Med. Chem. 19, 3135–3140.  CrossRef CAS PubMed Google Scholar
First citationRomagnoli, R., Baraldi, P. G., Salvador, M. K., Camacho, M. E., Preti, D., Tabrizi, M. A., Bassetto, M., Brancale, A., Hamel, E., Bortolozzi, R., Basso, G. & Viola, G. (2012). Bioorg. Med. Chem. 20, 7083–7094.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiradkar, M. R., Murahari, K. K., Gangadasu, H. R., Suresh, T., Kalyan, C. A., Panchal, D., Kaur, R., Burange, P., Ghogare, J., Mokale, V. & Raut, M. (2007). Bioorg. Med. Chem. 15, 3997–4008.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]