organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(2R,4S,5S)-5-Hy­dr­oxy-4-methyl-3-oxohept-6-en-2-yl benzoate

CROSSMARK_Color_square_no_text.svg

aFakultät Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
*Correspondence e-mail: hans.preut@tu-dortmund.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 August 2017; accepted 23 October 2017; online 27 October 2017)

The title compound, C15H18O4, which crystallizes with two mol­ecules in the asymmetric unit, was obtained in the course of the total synthesis of curvicollides A–C and fusaequisin A. It features the relative configuration of the Western aldol part of the natural products. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The asymmetric synthesis of the title compound (I) (Fig. 1[link]) is based on Paterson`s anti-aldol chemistry utilizing enanti­omerically pure (R)-3-oxo­pentan-2-yl benzoate (II) synthesized in accordance to published procedures from commercially available (R)-ethyl lactate (Paterson et al., 1994[Paterson, I., Wallace, D. J. & Velázquez, S. M. (1994). Tetrahedron Lett. 35, 9083-9086.], Paterson, 1998[Paterson, I. (1998). Synthesis, pp. 639-652.]). In the following hitherto unpublished example of a Paterson aldol reaction, chloro­dicyclo­hexyl­borane in the presence of tri­ethyl­amine was employed to generate the (E)-configured boron enolate of (R)-ethyl ketone (II), which was then treated with an excess of acroleine as the electrophile. The title compound (I) was obtained in good yields (80%) and excellent diastereoselectivities (dr > 95:5). From a synthetic perspective, compound (I) can be viewed as a versatile building block as it ensures high enantio- and diastereoselectivities as well as facile expandability in several directions. The latter is due to the fact that the benzoyl­ated α-hy­droxy ketone on one hand, and the vinyl group on the other can be orthogonally transformed into a whole variety of synthetic products. In particular, the title compound represents a synthetic precursor for the Western side chains of Curvicollides A–C (Che et al., 2004[Che, Y., Gloer, J. B. & Wicklow, D. T. (2004). Org. Lett. 6, 1249-1252.]) and Fusaequisin A (Shiono et al., 2013[Shiono, Y., Shibuya, F., Murayama, T., Koseki, T., Poumale, H. M. P. & Ngadjui, B. T. (2013). Z. Naturforsch. Teil B, 68, 289-292.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the labeling of all non-H atoms. Displacement ellipsoids are shown at the 50% probability level. The asymmetric unit contains two mol­ecules.

Compound (I) crystallizes with two mol­ecules in the asymmetric unit (Fig. 1[link]) with similar conformations (r.m.s. overlay fit = 0.329 Å). The absolute structure (C8 R, C11 S, C13 S; C23 R, S26 S, C28 S) is well established based on refinement of the Flack parameter (Table 2[link]). In the crystal, weak C—H⋯O hydrogen bonds (Table 1[link]) link the mol­ecules.

Table 2
Experimental details

Crystal data
Chemical formula C15H18O4
Mr 262.29
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 15.6945 (8), 4.9102 (2), 20.1737 (10)
β (°) 112.712 (2)
V3) 1434.10 (12)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.72
Crystal size (mm) 0.98 × 0.10 × 0.08
 
Data collection
Diffractometer Bruker D8 VENTURE area detector
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.])
Tmin, Tmax 0.350, 0.470
No. of measured, independent and observed [I > 2σ(I)] reflections 22281, 5396, 5143
Rint 0.051
(sin θ/λ)max−1) 0.609
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.04
No. of reflections 5396
No. of parameters 349
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.28
Absolute structure Flack x determined using 2185 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.02 (6)
Computer programs: SMART and SAINT (Bruker, 2012[Bruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]), SHELXD, SHELXL97 and SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8⋯O7 0.84 2.63 3.140 (3) 120
C8—H8A⋯O3i 1.00 2.41 3.235 (3) 140
C23—H23⋯O7ii 1.00 2.54 3.189 (3) 122
C26—H26⋯O7ii 1.00 2.29 3.205 (3) 151
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.

Synthesis and crystallization

The reaction was carried out in two parallel batches under an argon atmosphere. To a solution of the ketone (II) (C12H14O3, 206.24 g mol−1, 778 mg, 3.772 mmol, 1 equiv.) in Et2O (32 ml were successively added dried 3 Å mol­ecular sieves (200 mg, 0.1 mbar, 473 K, 1 h), chloro­dicyclo­hexyl­borane (c-Hex2BCl, 1 M in hexane, 5.79 ml, 5.79 mmol,1.53 equiv.) and tri­ethyl­amine (C6H15N, 101.19 g mol−1, 0.726 g mol−1, 0.97 ml, 704.2 mg, 6.959 mmol, 1.84 equiv.) at 223 K. The clear, colorless suspension was stirred for 20 min at 232 K and the color of the suspension turned to white. The white, turbid suspension was cooled to 193 K and to the solution freshly distilled acrolein (C3H4O, 56.06 g mol−1, 0.839 g ml−1, 1.05 ml, 881 mg, 15.715 mmol, 4.17 equiv.) was added dropwise over a period of 10 min at 193 K. The white suspension was stirred at 193 K for 1 h and was then diluted by the addition of aqueous phosphate pH 7 buffer (20 ml and CH2Cl2 (20 ml). The decolorized mixture was then warmed to room temperature and transferred into a separating funnel using CH2Cl2 (10 ml) for rinsing. The phase were separated and the aqueous layer was extracted with CH2Cl2 (3 × 30 ml). The combined organic phases were dried (MgSO4) and concentrated under reduced pressure. The oily yellowish residue was purified by flash chromatography (cyclo­hexa­ne–ethyl acetate, 50:1 to 20:1 to 10:1 to 5:1) to deliver the aldol (I) (C15H18O4, 262.30 g mol−1, 787 mg, 3.000 mmol, 80%) as a white solid. Crystallization of (I) was accomplished from a solution in hot cyclo­hexane (50 ml, 333 K) by slow cooling to room temperature. The product crystallized in colorless needles: m.p. 365–369 K; Rf 0.45 (cyclo­hexa­ne–ethyl acetate, 2:1); [α]D20 = −39.7 (c = 0.6 in CHCl3); 1H NMR (500 MHz, CDCl3) δ 1.23 (d, 3J = 7.3 Hz, 3H), 1.57 (d, 3J = 7.0 Hz, 3H), 2.36 (d, 3J = 5.4 Hz, 1H), 2.93 (quin, 3J = 7.3 Hz, 1H), 4.24–4.30 (m, 1H), 5.21 (app d, 3J = 10.3 Hz, 1H), 5.31 (app d, 3J = 17.1 Hz, 1H), 5.44 (q, 3J = 7.0 Hz, 1H), 5.84 (ddd, 3J = 17.1, 10.3, 6.8 Hz, 1H), 7.43–7.49 (m, 2H), 7.56–7.62 (m, 1H), 8.06–8.11 (m, 2H); 13C NMR (151 MHz CDCl3) δ 14.55 (CH3), 15.84 (CH3), 47.93 (CH), 74.91 (CH), 75.29 (CH), 117.32 (CH2), 128.61 (CH), 129.61 (C), 129.96 (CH), 133.51 (CH), 138.40 (CH), 165.99 (C), 211.25 (C); IR ν 3330 (w), 2980 (w), 2935 (w), 1720 (s), 1605 (w), 1450 (m), 1380 (m), 1350 (m), 1315 (m), 1300 (m), 1265 (s), 1175 (w), 1115 (s), 1065 (m), 1015 (m), 1000 (s), 950 (m), 920 (m), 745 (w), 710 (s), 685 (w) cm−1. Analysis calculated for C15H18O4: C, 68.68; H, 6.92; found: C, 68.7; H, 7.0.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Structural data


Computing details top

Data collection: SMART (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

(2R,4S,5S)-5-Hydroxy-4-methyl-3-oxohept-6-en-2-yl benzoate top
Crystal data top
C15H18O4F(000) = 560
Mr = 262.29Dx = 1.215 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 15.6945 (8) ÅCell parameters from 9866 reflections
b = 4.9102 (2) Åθ = 3.1–72.5°
c = 20.1737 (10) ŵ = 0.72 mm1
β = 112.712 (2)°T = 100 K
V = 1434.10 (12) Å3Needle, colourless
Z = 40.98 × 0.10 × 0.08 mm
Data collection top
Bruker D8 VENTURE area detector
diffractometer
5396 independent reflections
Radiation source: microfocus sealed X-ray tube5143 reflections with I > 2σ(I)
Detector resolution: 7.9 pixels mm-1Rint = 0.051
ω and φ scansθmax = 70.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1919
Tmin = 0.350, Tmax = 0.470k = 55
22281 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.212P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5396 reflectionsΔρmax = 0.40 e Å3
349 parametersΔρmin = 0.28 e Å3
1 restraintAbsolute structure: Flack x determined using 2185 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H-atoms attached to C, except those in CH3, were placed in calculated positions (C-H = 0.95-1.00Å and Uiso(H) = 1.2 Ueq(C)). CH3 hydrogen atoms, which were taken from a Fourier map (AFIX 137), were allowed to rotate but not to tip (C-H = 0.98 Å and Uiso(H) = 1.5 Ueq(C)). H-atoms attached to O were placed in calculated positions (O-H = 0.84Å and Uiso(H) = 1.5 Ueq(C)).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O60.44530 (10)0.7087 (3)0.23069 (8)0.0297 (3)
O20.97206 (10)0.2429 (3)0.75670 (8)0.0267 (3)
O40.97357 (9)0.3000 (3)0.51804 (8)0.0270 (3)
H40.99340.14380.51490.040*
O10.82462 (10)0.1587 (3)0.74079 (9)0.0313 (4)
O80.53681 (11)0.7325 (4)0.02037 (9)0.0355 (4)
H80.50350.62010.03070.053*
O50.58656 (11)0.7084 (4)0.31915 (9)0.0384 (4)
O30.88168 (14)0.4843 (3)0.63246 (9)0.0388 (4)
O70.54639 (18)0.4739 (4)0.16545 (13)0.0567 (6)
C100.89931 (14)0.2484 (4)0.62747 (11)0.0247 (4)
C60.90938 (15)0.4881 (4)0.82787 (11)0.0252 (4)
C110.86074 (14)0.1032 (4)0.55512 (11)0.0223 (4)
H110.89460.07210.55850.027*
C210.46950 (15)0.4252 (4)0.33115 (12)0.0256 (4)
C130.87508 (13)0.2880 (4)0.49904 (11)0.0226 (4)
H130.85290.47490.50400.027*
C50.98921 (15)0.6447 (5)0.85657 (11)0.0282 (4)
H51.03840.61760.84090.034*
C220.50808 (15)0.6266 (5)0.29529 (12)0.0278 (4)
C80.95719 (14)0.0841 (4)0.69332 (11)0.0250 (4)
H8A0.92420.08840.69500.030*
C230.48191 (16)0.8800 (5)0.19033 (12)0.0291 (5)
H230.51541.03780.22050.035*
C70.89546 (14)0.2800 (4)0.77118 (11)0.0243 (4)
C140.82627 (15)0.1980 (5)0.42279 (11)0.0287 (5)
H140.84010.02360.40910.034*
C250.54742 (16)0.7171 (5)0.16606 (12)0.0314 (5)
C200.37594 (16)0.3604 (5)0.30452 (12)0.0308 (5)
H200.33400.44910.26280.037*
C160.53049 (16)0.2961 (5)0.39209 (13)0.0336 (5)
H160.59420.34180.41040.040*
C150.76517 (17)0.3506 (6)0.37411 (12)0.0371 (5)
H15A0.75040.52570.38670.044*
H15B0.73560.28620.32620.044*
C280.62499 (15)0.7506 (5)0.07868 (12)0.0322 (5)
H280.64960.56160.09150.039*
C180.40574 (17)0.0346 (5)0.39970 (13)0.0338 (5)
H180.38400.10100.42290.041*
C120.75833 (15)0.0434 (5)0.53746 (12)0.0304 (5)
H12A0.75220.06100.57680.046*
H12B0.73290.06240.49290.046*
H12C0.72450.21530.53140.046*
C40.99678 (17)0.8405 (5)0.90809 (12)0.0342 (5)
H4A1.05110.94820.92740.041*
C190.34438 (16)0.1657 (5)0.33928 (13)0.0343 (5)
H190.28050.12190.32170.041*
C10.83745 (16)0.5302 (5)0.85134 (13)0.0338 (5)
H10.78260.42460.83180.041*
C170.49868 (17)0.1007 (6)0.42635 (13)0.0359 (5)
H170.54050.01210.46810.043*
C260.61548 (16)0.8774 (5)0.14491 (12)0.0307 (5)
H260.59341.06950.13390.037*
C30.92564 (18)0.8797 (5)0.93149 (13)0.0371 (5)
H30.93151.01260.96720.045*
C20.84610 (18)0.7253 (6)0.90288 (13)0.0400 (6)
H20.79710.75350.91870.048*
C91.05202 (17)0.0179 (6)0.69334 (14)0.0389 (6)
H9A1.08390.18730.69120.058*
H9B1.04480.09510.65150.058*
H9C1.08840.08130.73740.058*
C240.39994 (18)0.9808 (7)0.12633 (16)0.0460 (7)
H24A0.36550.82490.09840.069*
H24B0.42161.09430.09600.069*
H24C0.35961.08870.14300.069*
C290.6908 (2)0.9059 (7)0.05534 (15)0.0485 (7)
H290.67181.08100.03490.058*
C270.7077 (2)0.8744 (8)0.21025 (15)0.0509 (7)
H27A0.69740.92890.25330.076*
H27B0.75081.00200.20220.076*
H27C0.73390.69040.21700.076*
C300.7708 (2)0.8223 (12)0.0606 (2)0.0802 (14)
H30A0.79250.64850.08070.096*
H30B0.80820.93440.04440.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O60.0295 (7)0.0313 (8)0.0306 (8)0.0010 (6)0.0143 (6)0.0062 (7)
O20.0254 (7)0.0311 (8)0.0252 (7)0.0017 (6)0.0113 (6)0.0026 (6)
O40.0231 (7)0.0244 (7)0.0371 (8)0.0000 (6)0.0156 (6)0.0022 (6)
O10.0256 (7)0.0354 (9)0.0338 (8)0.0041 (6)0.0126 (6)0.0091 (7)
O80.0390 (8)0.0325 (9)0.0332 (8)0.0028 (7)0.0120 (7)0.0013 (7)
O50.0304 (8)0.0417 (10)0.0430 (9)0.0039 (7)0.0140 (7)0.0119 (8)
O30.0645 (12)0.0228 (8)0.0302 (9)0.0060 (8)0.0196 (8)0.0015 (7)
O70.1004 (17)0.0197 (9)0.0799 (15)0.0014 (9)0.0678 (14)0.0039 (9)
C100.0304 (10)0.0210 (10)0.0271 (10)0.0012 (8)0.0160 (8)0.0004 (8)
C60.0301 (10)0.0246 (10)0.0192 (9)0.0013 (8)0.0077 (8)0.0028 (8)
C110.0245 (10)0.0200 (9)0.0253 (10)0.0001 (7)0.0130 (8)0.0008 (8)
C210.0302 (11)0.0225 (10)0.0294 (11)0.0006 (8)0.0175 (9)0.0016 (8)
C130.0224 (9)0.0229 (10)0.0260 (10)0.0006 (8)0.0130 (8)0.0013 (8)
C50.0323 (11)0.0281 (11)0.0213 (10)0.0003 (9)0.0071 (8)0.0041 (8)
C220.0302 (11)0.0246 (10)0.0315 (11)0.0039 (8)0.0152 (9)0.0028 (9)
C80.0267 (10)0.0260 (11)0.0244 (10)0.0020 (8)0.0123 (8)0.0019 (8)
C230.0336 (11)0.0253 (11)0.0326 (11)0.0028 (9)0.0176 (9)0.0041 (9)
C70.0246 (10)0.0259 (10)0.0223 (10)0.0015 (8)0.0088 (8)0.0021 (8)
C140.0319 (11)0.0296 (11)0.0291 (11)0.0054 (9)0.0168 (9)0.0055 (9)
C250.0446 (13)0.0223 (12)0.0324 (12)0.0001 (9)0.0205 (10)0.0028 (9)
C200.0301 (11)0.0341 (12)0.0306 (11)0.0002 (9)0.0145 (9)0.0011 (9)
C160.0279 (11)0.0401 (13)0.0348 (12)0.0007 (9)0.0145 (9)0.0059 (10)
C150.0368 (12)0.0470 (14)0.0261 (11)0.0045 (10)0.0107 (10)0.0018 (10)
C280.0351 (11)0.0318 (12)0.0331 (12)0.0018 (10)0.0167 (10)0.0053 (10)
C180.0430 (13)0.0312 (12)0.0363 (12)0.0046 (10)0.0254 (11)0.0001 (10)
C120.0276 (11)0.0349 (12)0.0327 (11)0.0033 (9)0.0161 (9)0.0009 (9)
C40.0399 (12)0.0316 (12)0.0244 (10)0.0055 (9)0.0049 (9)0.0017 (9)
C190.0325 (11)0.0396 (13)0.0355 (12)0.0077 (10)0.0184 (10)0.0045 (10)
C10.0319 (12)0.0396 (13)0.0316 (12)0.0028 (10)0.0140 (9)0.0076 (10)
C170.0371 (12)0.0396 (13)0.0344 (12)0.0029 (10)0.0176 (10)0.0100 (10)
C260.0389 (12)0.0249 (10)0.0350 (11)0.0001 (9)0.0216 (10)0.0041 (9)
C30.0495 (14)0.0340 (12)0.0242 (10)0.0017 (11)0.0103 (10)0.0060 (10)
C20.0420 (13)0.0467 (14)0.0342 (12)0.0023 (11)0.0180 (10)0.0086 (11)
C90.0295 (12)0.0530 (15)0.0364 (13)0.0085 (11)0.0150 (10)0.0009 (11)
C240.0382 (13)0.0566 (17)0.0464 (15)0.0067 (12)0.0197 (12)0.0228 (13)
C290.0509 (16)0.0613 (18)0.0454 (15)0.0170 (14)0.0318 (13)0.0216 (14)
C270.0509 (16)0.0655 (19)0.0360 (14)0.0105 (14)0.0164 (12)0.0122 (14)
C300.0534 (19)0.130 (4)0.071 (2)0.019 (2)0.0389 (17)0.038 (3)
Geometric parameters (Å, º) top
O6—C221.356 (3)C16—C171.383 (3)
O6—C231.436 (3)C16—H160.9500
O2—C71.355 (2)C15—H15A0.9500
O2—C81.438 (2)C15—H15B0.9500
O4—C131.443 (2)C28—C291.499 (4)
O4—H40.8400C28—C261.533 (3)
O1—C71.200 (3)C28—H281.0000
O8—C281.432 (3)C18—C171.384 (4)
O8—H80.8400C18—C191.386 (4)
O5—C221.205 (3)C18—H180.9500
O3—C101.204 (3)C12—H12A0.9800
O7—C251.194 (3)C12—H12B0.9800
C10—C81.519 (3)C12—H12C0.9800
C10—C111.524 (3)C4—C31.383 (4)
C6—C51.392 (3)C4—H4A0.9500
C6—C11.398 (3)C19—H190.9500
C6—C71.486 (3)C1—C21.381 (4)
C11—C131.533 (3)C1—H10.9500
C11—C121.534 (3)C17—H170.9500
C11—H111.0000C26—C271.536 (4)
C21—C161.386 (3)C26—H261.0000
C21—C201.392 (3)C3—C21.382 (4)
C21—C221.485 (3)C3—H30.9500
C13—C141.496 (3)C2—H20.9500
C13—H131.0000C9—H9A0.9800
C5—C41.387 (3)C9—H9B0.9800
C5—H50.9500C9—H9C0.9800
C8—C91.523 (3)C24—H24A0.9800
C8—H8A1.0000C24—H24B0.9800
C23—C241.511 (3)C24—H24C0.9800
C23—C251.525 (3)C29—C301.286 (5)
C23—H231.0000C29—H290.9500
C14—C151.311 (4)C27—H27A0.9800
C14—H140.9500C27—H27B0.9800
C25—C261.515 (3)C27—H27C0.9800
C20—C191.386 (3)C30—H30A0.9500
C20—H200.9500C30—H30B0.9500
C22—O6—C23114.68 (17)O8—C28—C26110.66 (18)
C7—O2—C8114.31 (16)C29—C28—C26112.2 (2)
C13—O4—H4109.5O8—C28—H28108.0
C28—O8—H8109.5C29—C28—H28108.0
O3—C10—C8121.1 (2)C26—C28—H28108.0
O3—C10—C11120.7 (2)C17—C18—C19120.2 (2)
C8—C10—C11118.12 (17)C17—C18—H18119.9
C5—C6—C1119.5 (2)C19—C18—H18119.9
C5—C6—C7122.80 (19)C11—C12—H12A109.5
C1—C6—C7117.7 (2)C11—C12—H12B109.5
C10—C11—C13108.21 (16)H12A—C12—H12B109.5
C10—C11—C12107.76 (16)C11—C12—H12C109.5
C13—C11—C12112.39 (17)H12A—C12—H12C109.5
C10—C11—H11109.5H12B—C12—H12C109.5
C13—C11—H11109.5C3—C4—C5120.4 (2)
C12—C11—H11109.5C3—C4—H4A119.8
C16—C21—C20120.2 (2)C5—C4—H4A119.8
C16—C21—C22117.7 (2)C20—C19—C18120.2 (2)
C20—C21—C22122.1 (2)C20—C19—H19119.9
O4—C13—C14110.86 (16)C18—C19—H19119.9
O4—C13—C11106.00 (16)C2—C1—C6120.0 (2)
C14—C13—C11114.91 (17)C2—C1—H1120.0
O4—C13—H13108.3C6—C1—H1120.0
C14—C13—H13108.3C16—C17—C18119.9 (2)
C11—C13—H13108.3C16—C17—H17120.1
C4—C5—C6119.9 (2)C18—C17—H17120.1
C4—C5—H5120.1C25—C26—C28110.55 (18)
C6—C5—H5120.1C25—C26—C27106.7 (2)
O5—C22—O6122.4 (2)C28—C26—C27111.5 (2)
O5—C22—C21125.0 (2)C25—C26—H26109.3
O6—C22—C21112.60 (19)C28—C26—H26109.3
O2—C8—C10109.07 (16)C27—C26—H26109.3
O2—C8—C9107.01 (18)C2—C3—C4119.9 (2)
C10—C8—C9111.59 (18)C2—C3—H3120.0
O2—C8—H8A109.7C4—C3—H3120.0
C10—C8—H8A109.7C1—C2—C3120.4 (2)
C9—C8—H8A109.7C1—C2—H2119.8
O6—C23—C24106.33 (18)C3—C2—H2119.8
O6—C23—C25109.98 (18)C8—C9—H9A109.5
C24—C23—C25110.8 (2)C8—C9—H9B109.5
O6—C23—H23109.9H9A—C9—H9B109.5
C24—C23—H23109.9C8—C9—H9C109.5
C25—C23—H23109.9H9A—C9—H9C109.5
O1—C7—O2123.20 (19)H9B—C9—H9C109.5
O1—C7—C6124.51 (19)C23—C24—H24A109.5
O2—C7—C6112.29 (17)C23—C24—H24B109.5
C15—C14—C13122.5 (2)H24A—C24—H24B109.5
C15—C14—H14118.7C23—C24—H24C109.5
C13—C14—H14118.7H24A—C24—H24C109.5
O7—C25—C26121.7 (2)H24B—C24—H24C109.5
O7—C25—C23121.3 (2)C30—C29—C28125.5 (4)
C26—C25—C23117.00 (19)C30—C29—H29117.2
C19—C20—C21119.5 (2)C28—C29—H29117.2
C19—C20—H20120.3C26—C27—H27A109.5
C21—C20—H20120.3C26—C27—H27B109.5
C17—C16—C21120.1 (2)H27A—C27—H27B109.5
C17—C16—H16120.0C26—C27—H27C109.5
C21—C16—H16120.0H27A—C27—H27C109.5
C14—C15—H15A120.0H27B—C27—H27C109.5
C14—C15—H15B120.0C29—C30—H30A120.0
H15A—C15—H15B120.0C29—C30—H30B120.0
O8—C28—C29109.8 (2)H30A—C30—H30B120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O70.842.633.140 (3)120
C8—H8A···O3i1.002.413.235 (3)140
C23—H23···O7ii1.002.543.189 (3)122
C26—H26···O7ii1.002.293.205 (3)151
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Funding information

We acknowledge financial support by the Deutsche Forschungsgemeinschaft and TU Dortmund, Technical University Dortmund within the funding program: Open Access Publishing.

References

First citationChe, Y., Gloer, J. B. & Wicklow, D. T. (2004). Org. Lett. 6, 1249–1252.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPaterson, I. (1998). Synthesis, pp. 639–652.  CrossRef Google Scholar
First citationPaterson, I., Wallace, D. J. & Velázquez, S. M. (1994). Tetrahedron Lett. 35, 9083–9086.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShiono, Y., Shibuya, F., Murayama, T., Koseki, T., Poumale, H. M. P. & Ngadjui, B. T. (2013). Z. Naturforsch. Teil B, 68, 289–292.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]