organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-(5-Chloro-2-hy­dr­oxy­benzo­yl)-1-methyl-3-nitro­pyridin-2(1H)-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, S.D.N.B. Vaishnav College for Women, Chromepet, Chennai 600 044, India, and bOrganic Chemistry Division, CSIR Central Leather Research Institute, Chennai 600 020, India
*Correspondence e-mail: lakssdnbvc@gmail.com

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 13 September 2017; accepted 20 September 2017; online 6 October 2017)

In the title compound, C13H9ClN2O5, the dihedral angle between the planes of the benzene and pyridine rings is 55.30 (13)°. The nitro group is tilted by 38.21 (10)° with respect to the mean plane of the pyridine ring. In the crystal, mol­ecules are linked by O—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional framework. The crystal packing is further stabilized by ππ stacking inter­actions [inter­centroid distance = 3.5877 (17) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The pyridine moiety has profound importance in the fields of chemistry and biology (Ghosh et al., 2014[Ghosh, P. S., Manna, K., Banik, U., Das, M. & Sarkar, P. (2014). Int. J. Pharm. Pharm. Sci. 6, 39-42.]). Compounds that contain pyridine and its derivatives have occupied a central role in the development of coordination chemistry and biochemistry (Rajeswar et al., 2014[Rajeswar, V. R., Dharmale, M. K. & Pingalkar, S. R. (2014). Int. J. Curr. Res. Chem. Pharma. Sci. 1, 40-50.]). Heterocycles are important mol­ecular building blocks that are involved in the structural composition of crucial chemicals for humans, including pharmaceuticals, natural resources, veterinary, agricultural products, analytical reagents and dyes (Göktaş et al., 2014[Göktaş, F., Cesur, N., Şatana, D. & Uzun, M. (2014). Turk. J. Chem. 38, 581-591.]). In drug discovery, pyridine has been used as a bioisosteric replacement of the benzene ring (Ajit Kumar et al., 2011[Ajit Kumar, C. & Pandeya, S. N. (2011). Int. J. Res. Ayurveda. Pharm. 2, 1763-1767.]). Pyridine derivatives of different heterocyclic nuclei have shown important pharmacological properties such as anti­cancer (Abbas et al., 2015[Abbas, I., Gomha, S., Elaasser, M. & Bauomi, M. (2015). Turk. J. Chem. 39, 334-346.]), anti­microbial (Hussein et al., 2014[Hussein, A. M., El-Adasy, A. A., Hafi, I. A., Ishak, E. A., Gawish, E. H. & El-Gaby, M. A. (2014). J. App. Pharm. 6, 296-307.]), anti­bacterial (Rani et al., 2012[Rani, E. S., Parameshwar, R., Babu, V. H., Ranganath, Y. S., Kumar, B. N. & Kumar, G. A. (2012). Int. J. Pharm. Pharm. Sci. 4, 424-427.]), anti­mycobacterial (Banfi et al., 2001[Banfi, E., Mamolo, M. G., Zampieri, D., Vio, L. & Bragadin, C. M. (2001). J. Antimicrob. Chemother. 48, 705-707.]) and anti­oxidant activities (Fadda et al., 2012[Fadda, A. A., Sanad, M. & Abd El-Galil, I. (2012). Int. J. Modern Org. Chem. 1, 136-149.]).

In the title compound (Fig. 1[link]), the dihedral angle between the benzene (C1–C6) and pyridine (N1/C8–C12) rings is 55.30 (13)°. The nitro group is tilted by 38.21 (10)° with respect to the mean plane of the pyridine ring. The chlorine atom Cl1 deviates from the plane of the benzene ring by 0.009 (1) Å. The Cl1—C2—C3—C4 torsion angle of 179.7 (2)° indicates that the chlorine atom Cl1 is not quite coplanar with the phenol ring.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules are linked by O1—H1⋯O4 and O1—H1⋯O5 hydrogen bonds (Table 1[link]), forming chains, which are further linked by C1—H1A⋯O4 and C12—H12⋯O2 hydrogen bonds, forming a two-dimensional network parallel to (100) (Fig. 2[link]). The crystal packing also features ππ stacking inter­actions [Cg1⋯Cg2i = 3.5877 (17) Å, inter­planar distance = 3.3360 (11) Å, Cg1 and Cg2 are the centroids of rings N1/C8–C12 and C1–C6, respectively; symmetry code: (i) 2 − x, −y, −[{1\over 2}] + z].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.82 2.40 2.774 (3) 109
O1—H1⋯O5i 0.82 2.05 2.820 (3) 157
C1—H1A⋯O4ii 0.93 2.49 3.412 (3) 169
C12—H12⋯O2iii 0.93 2.56 3.111 (4) 118
Symmetry codes: (i) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z]; (iii) [-x+2, -y, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Hydrogen-bonding network, viewed along the a axis. Hydrogen bonds (see Table 1[link]) are shown as dashed lines.

Synthesis and crystallization

A mixture of 6-chloro-3-formyl­chromone (1 mmol), (Z)-N-methyl-1-(methyl­thio)-2-nitro­ethenamine (1 mmol), and indium tri­fluoro­methane­sulfonate (0.020 mmol) in ethanol (3 ml) were charged in a 25 ml round-bottomed flask and the mixture was heated at reflux. The resulting solution was stirred for 1h. The consumption of the starting material was monitored by TLC. After completion of the reaction, the product was filtered, washed with ethanol, dried under vacuum and the pure product obtained in good yield (88%). The purified compound was recrystallized from ethanol and DMSO-d6 by using the slow evaporation method.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H9ClN2O5
Mr 308.67
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 296
a, b, c (Å) 11.1491 (4), 15.0153 (6), 7.7045 (3)
V3) 1289.79 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.32
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.908, 0.938
No. of measured, independent and observed [I > 2σ(I)] reflections 4752, 1705, 1614
Rint 0.015
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.070, 1.06
No. of reflections 1705
No. of parameters 191
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.12, −0.21
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 481 Friedel pairs
Absolute structure parameter 0.59 (3)
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

5-(5-Chloro-2-hydroxybenzoyl)-1-methyl-3-nitropyridin-2(1H)-one top
Crystal data top
C13H9ClN2O5Dx = 1.590 Mg m3
Mr = 308.67Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 1614 reflections
a = 11.1491 (4) Åθ = 2.3–25.0°
b = 15.0153 (6) ŵ = 0.32 mm1
c = 7.7045 (3) ÅT = 296 K
V = 1289.79 (9) Å3Block, colourless
Z = 40.30 × 0.25 × 0.20 mm
F(000) = 632
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1614 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
ω and φ scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1312
Tmin = 0.908, Tmax = 0.938k = 1710
4752 measured reflectionsl = 59
1705 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.1924P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1705 reflectionsΔρmax = 0.12 e Å3
191 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), 481 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.59 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.63594 (6)0.15295 (6)0.00210 (13)0.0547 (3)
C91.0658 (2)0.18373 (17)0.2334 (4)0.0292 (6)
H91.00340.21460.28640.035*
O51.35111 (14)0.22295 (12)0.0251 (3)0.0389 (5)
C81.0640 (2)0.09006 (17)0.2281 (4)0.0262 (5)
N11.25635 (18)0.09334 (14)0.0949 (3)0.0290 (5)
C121.1613 (2)0.04804 (17)0.1581 (4)0.0278 (5)
H121.16210.01380.15380.033*
O41.1848 (2)0.36386 (13)0.0251 (4)0.0543 (6)
C131.3620 (2)0.04375 (19)0.0311 (5)0.0442 (8)
H13A1.34410.01880.02890.066*
H13B1.38160.06350.08390.066*
H13C1.42880.05430.10690.066*
O20.87647 (16)0.08953 (12)0.3612 (3)0.0433 (5)
C111.2624 (2)0.18667 (17)0.0867 (3)0.0294 (6)
O11.09214 (16)0.11145 (13)0.3731 (3)0.0415 (5)
H11.12270.15990.39410.062*
N21.14859 (19)0.32526 (15)0.1549 (4)0.0371 (6)
C20.7722 (2)0.1431 (2)0.1122 (4)0.0360 (7)
C40.9437 (3)0.20821 (18)0.2460 (4)0.0382 (7)
H40.98670.25840.27920.046*
C60.9226 (2)0.04896 (16)0.2385 (3)0.0277 (6)
C70.9520 (2)0.04566 (17)0.2865 (4)0.0278 (6)
C101.1577 (2)0.22868 (16)0.1617 (4)0.0288 (6)
O31.0998 (2)0.36325 (13)0.2761 (4)0.0542 (6)
C10.8133 (2)0.05953 (17)0.1519 (4)0.0308 (6)
H1A0.76850.00980.12120.037*
C50.9880 (2)0.12375 (17)0.2852 (4)0.0310 (6)
C30.8360 (3)0.21806 (18)0.1579 (4)0.0416 (7)
H30.80730.27440.13010.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0456 (4)0.0718 (5)0.0467 (5)0.0250 (4)0.0078 (4)0.0019 (5)
C90.0263 (11)0.0288 (13)0.0325 (14)0.0007 (11)0.0017 (12)0.0002 (13)
O50.0297 (10)0.0354 (10)0.0517 (14)0.0080 (7)0.0065 (10)0.0029 (11)
C80.0268 (11)0.0255 (13)0.0264 (13)0.0030 (10)0.0027 (11)0.0012 (12)
N10.0252 (10)0.0286 (11)0.0332 (12)0.0016 (9)0.0005 (9)0.0046 (10)
C120.0295 (12)0.0246 (12)0.0294 (13)0.0036 (10)0.0054 (11)0.0014 (12)
O40.0604 (13)0.0333 (11)0.0693 (18)0.0061 (9)0.0146 (14)0.0093 (13)
C130.0318 (13)0.0399 (16)0.061 (2)0.0034 (11)0.0084 (14)0.0076 (18)
O20.0364 (10)0.0330 (11)0.0604 (14)0.0012 (8)0.0142 (10)0.0032 (11)
C110.0273 (13)0.0304 (13)0.0305 (13)0.0042 (11)0.0046 (11)0.0007 (12)
O10.0362 (10)0.0371 (10)0.0513 (13)0.0051 (9)0.0084 (10)0.0106 (11)
N20.0312 (12)0.0285 (12)0.0515 (16)0.0056 (10)0.0002 (12)0.0020 (13)
C20.0367 (15)0.0445 (16)0.0266 (15)0.0128 (13)0.0022 (12)0.0006 (12)
C40.0492 (16)0.0279 (13)0.0376 (17)0.0043 (12)0.0070 (14)0.0041 (13)
C60.0274 (12)0.0277 (13)0.0281 (14)0.0033 (10)0.0037 (11)0.0027 (12)
C70.0273 (12)0.0266 (12)0.0294 (14)0.0022 (10)0.0009 (11)0.0044 (11)
C100.0300 (13)0.0244 (13)0.0320 (14)0.0026 (10)0.0028 (11)0.0026 (12)
O30.0534 (13)0.0370 (11)0.0720 (17)0.0006 (10)0.0165 (13)0.0192 (12)
C10.0298 (13)0.0302 (14)0.0322 (14)0.0040 (11)0.0024 (12)0.0061 (12)
C50.0308 (13)0.0328 (14)0.0295 (14)0.0021 (11)0.0056 (12)0.0050 (12)
C30.0569 (18)0.0295 (15)0.0383 (16)0.0105 (13)0.0091 (15)0.0011 (14)
Geometric parameters (Å, º) top
Cl1—C21.746 (3)C11—C101.447 (4)
C9—C101.346 (4)O1—C51.357 (3)
C9—C81.407 (4)O1—H10.8200
C9—H90.9300N2—O31.222 (4)
O5—C111.225 (3)N2—C101.455 (3)
C8—C121.366 (3)C2—C11.371 (4)
C8—C71.485 (3)C2—C31.377 (4)
N1—C121.350 (3)C4—C31.387 (4)
N1—C111.404 (3)C4—C51.394 (4)
N1—C131.477 (3)C4—H40.9300
C12—H120.9300C6—C51.386 (4)
O4—N21.224 (3)C6—C11.398 (4)
C13—H13A0.9600C6—C71.504 (3)
C13—H13B0.9600C1—H1A0.9300
C13—H13C0.9600C3—H30.9300
O2—C71.214 (3)
C10—C9—C8120.0 (2)C1—C2—C3121.2 (3)
C10—C9—H9120.0C1—C2—Cl1118.5 (2)
C8—C9—H9120.0C3—C2—Cl1120.3 (2)
C12—C8—C9117.5 (2)C3—C4—C5120.6 (3)
C12—C8—C7125.4 (2)C3—C4—H4119.7
C9—C8—C7116.9 (2)C5—C4—H4119.7
C12—N1—C11123.8 (2)C5—C6—C1119.3 (2)
C12—N1—C13119.5 (2)C5—C6—C7126.0 (2)
C11—N1—C13116.7 (2)C1—C6—C7114.5 (2)
N1—C12—C8122.2 (2)O2—C7—C8118.9 (2)
N1—C12—H12118.9O2—C7—C6118.6 (2)
C8—C12—H12118.9C8—C7—C6122.1 (2)
N1—C13—H13A109.5C9—C10—C11124.0 (2)
N1—C13—H13B109.5C9—C10—N2117.5 (2)
H13A—C13—H13B109.5C11—C10—N2118.5 (2)
N1—C13—H13C109.5C2—C1—C6120.1 (2)
H13A—C13—H13C109.5C2—C1—H1A119.9
H13B—C13—H13C109.5C6—C1—H1A119.9
O5—C11—N1120.0 (2)O1—C5—C6118.0 (2)
O5—C11—C10127.7 (2)O1—C5—C4122.3 (2)
N1—C11—C10112.2 (2)C6—C5—C4119.6 (3)
C5—O1—H1109.5C2—C3—C4119.0 (2)
O3—N2—O4123.4 (2)C2—C3—H3120.5
O3—N2—C10118.0 (3)C4—C3—H3120.5
O4—N2—C10118.6 (3)
C10—C9—C8—C123.9 (4)N1—C11—C10—C90.9 (4)
C10—C9—C8—C7171.3 (3)O5—C11—C10—N24.9 (4)
C11—N1—C12—C83.3 (4)N1—C11—C10—N2177.1 (2)
C13—N1—C12—C8176.1 (3)O3—N2—C10—C935.8 (4)
C9—C8—C12—N10.3 (4)O4—N2—C10—C9140.7 (3)
C7—C8—C12—N1174.6 (2)O3—N2—C10—C11146.1 (3)
C12—N1—C11—O5178.9 (3)O4—N2—C10—C1137.4 (4)
C13—N1—C11—O51.6 (3)C3—C2—C1—C60.8 (4)
C12—N1—C11—C102.9 (3)Cl1—C2—C1—C6179.4 (2)
C13—N1—C11—C10176.6 (2)C5—C6—C1—C20.7 (4)
C12—C8—C7—O2173.3 (3)C7—C6—C1—C2175.3 (2)
C9—C8—C7—O211.9 (4)C1—C6—C5—O1178.3 (2)
C12—C8—C7—C613.9 (4)C7—C6—C5—O14.4 (4)
C9—C8—C7—C6160.9 (2)C1—C6—C5—C40.3 (4)
C5—C6—C7—O2124.2 (3)C7—C6—C5—C4173.6 (2)
C1—C6—C7—O249.9 (3)C3—C4—C5—O1179.1 (3)
C5—C6—C7—C862.9 (4)C3—C4—C5—C61.2 (4)
C1—C6—C7—C8122.9 (3)C1—C2—C3—C40.1 (4)
C8—C9—C10—C114.3 (4)Cl1—C2—C3—C4179.7 (2)
C8—C9—C10—N2173.7 (2)C5—C4—C3—C21.1 (4)
O5—C11—C10—C9177.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.822.402.774 (3)109
O1—H1···O5i0.822.052.820 (3)157
C1—H1A···O4ii0.932.493.412 (3)169
C12—H12···O2iii0.932.563.111 (4)118
Symmetry codes: (i) x+5/2, y+1/2, z+1/2; (ii) x1/2, y1/2, z; (iii) x+2, y, z1/2.
 

Acknowledgements

The authors thank the Department of Chemistry, IIT, Chennai, for the data collection.

References

First citationAbbas, I., Gomha, S., Elaasser, M. & Bauomi, M. (2015). Turk. J. Chem. 39, 334–346.  Web of Science CrossRef CAS Google Scholar
First citationAjit Kumar, C. & Pandeya, S. N. (2011). Int. J. Res. Ayurveda. Pharm. 2, 1763–1767.  Google Scholar
First citationBanfi, E., Mamolo, M. G., Zampieri, D., Vio, L. & Bragadin, C. M. (2001). J. Antimicrob. Chemother. 48, 705–707.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFadda, A. A., Sanad, M. & Abd El-Galil, I. (2012). Int. J. Modern Org. Chem. 1, 136–149.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGhosh, P. S., Manna, K., Banik, U., Das, M. & Sarkar, P. (2014). Int. J. Pharm. Pharm. Sci. 6, 39–42.  Google Scholar
First citationGöktaş, F., Cesur, N., Şatana, D. & Uzun, M. (2014). Turk. J. Chem. 38, 581–591.  Google Scholar
First citationHussein, A. M., El-Adasy, A. A., Hafi, I. A., Ishak, E. A., Gawish, E. H. & El-Gaby, M. A. (2014). J. App. Pharm. 6, 296–307.  CAS Google Scholar
First citationRajeswar, V. R., Dharmale, M. K. & Pingalkar, S. R. (2014). Int. J. Curr. Res. Chem. Pharma. Sci. 1, 40–50.  Google Scholar
First citationRani, E. S., Parameshwar, R., Babu, V. H., Ranganath, Y. S., Kumar, B. N. & Kumar, G. A. (2012). Int. J. Pharm. Pharm. Sci. 4, 424–427.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]