organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Acetyl­hydroxamic acid

CROSSMARK_Color_square_no_text.svg

aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
*Correspondence e-mail: bzarychta@uni.opole.pl

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 23 September 2017; accepted 26 September 2017; online 6 October 2017)

There is one independent mol­ecule in the asymmetric unit of the title compound (alternatively named N-hy­droxy­acetamide), C2H5NO2. It crystallizes in the noncentrosymmetric space group P43. The structure is an anhydrous form of acetyl­hydroxamic acid with typical geometry that corresponds well with the hydrated structure described by Bracher & Small [Acta Cryst. (1970), B26, 1705–1709]. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds connect the mol­ecules into chains in the c-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Hydroxamic acids were first described by Lossen (1869[Lossen, H. (1869). Justus Liebigs Ann. Chem. 150, 314-316.]). Since then, intensive work has been focused on their reactions and structures. Acetyl­hydroxamic acid can exist in two tautomeric forms, i.e. amide and imide. In addition, each of these forms may be in the form of the Z or E isomer. Hydroxamic acids have the ability to coordinate metal ions and to form complexes, thereby inter alia participating in many biochemical processes. These acids belong to the siderophores and transport iron ions as bioligands in bacteria (Miller, 1989[Miller, M. J. (1989). Chem. Rev. 89, 1563-1579.]; Neilands, 1995[Neilands, J. B. (1995). J. Biol. Chem. 270, 26723-26726.]). Hydroxamic acids are useful reagents with inter­esting biological and medical applications. This is also the result of their ability to form stable chelates with multiple metal ions (Kaczor & Proniewicz, 2004[Kaczor, A. & Proniewicz, L. M. (2004). J. Mol. Struct. 704, 189-196.]). Compounds containing hydroxamic groups are inhibitors of the activity of various metalloproteinases such as urease (Stemmler et al., 1995[Stemmler, A. J., Kampf, J. W., Kirk, M. L. & Pecoraro, V. L. (1995). J. Am. Chem. Soc. 117, 6368-6369.]), oxidase (Ikeda-Saito et al., 1991[Ikeda-Saito, M., Shelley, D. A., Lu, L., Booth, K. S., Caughey, W. S. & Kimura, S. (1991). J. Biol. Chem. 266, 3611-3616.]) and zinc proteinases involved in neoplastic diseases (Groneberg et al., 1999[Groneberg, R. D., Burns, C. J., Morrissette, M. M., Ullrich, J. W., Morris, R. L., Darnbrough, S., Djuric, S. W., Condon, S. M., McGeehan, G. M., Labaudiniere, R., Neuenschwander, K., Scotese, A. C. & Kline, J. A. (1999). J. Med. Chem. 42, 541-544.]; Hajduk et al., 1997[Hajduk, P. J., Sheppard, G., Nettesheim, D. G., Olejniczak, E. T., Shuker, S. B., Meadows, R. P., Steinman, D. H., Carrera, G. M. Jr, Marcotte, P. A., Severin, J., Walter, K., Smith, H., Gubbins, E., Simmer, R., Holzman, T. F., Morgan, D. W., Davidsen, S. K., Summers, J. B. & Fesik, S. W. (1997). J. Am. Chem. Soc. 119, 5818-5827.]). Enzyme activity is inhibited by urease inhibitors. These inhibitors do not allow the pH of the urine to rise and therefore do not allow the crystallization of calcium and magnesium. The first specific urease inhibitor was acetyl­hydroxamic acid. Acetyl­hydroxamic acid in the presence of urease-positive bacteria in vitro and in vivo reduces the pH of the urine and prevents the formation of urinary stones in rats. In higher doses in vitro studies (2–4 mg ml−1) show that it inhibits urease activity and additionally has bacteriostatic effects (Cisowska, 2003[Cisowska, A. (2003). Postępy Mikrobiol. 42, 3-23.]).

The title compound crystallizes in the non-centrosymmetric space group P43 with one independent mol­ecule in the asymmetric unit. The values of bond lengths and valance angles of the acetyl­hydroxamic acid are typical (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). The structure is the imidate of the Z isomer of acetyl­hydroxamic acid (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

In the crystal, there are inter­molecular hydrogen bonds (Table 1[link]), two N—H⋯O, one O—H⋯O and one C—H⋯O contact. The strongest hydrogen bond in the crystalline structure of acetyl­hydroxamic acid is the O1—H5⋯O2 hydrogen bond. This bond creates a twisted string along the c axis. It can be assumed that the next two hydrogen bonds of the type N—H⋯O have comparable strength. In the N1—H4⋯O2 hydrogen bond, the donor and the H atom are closer to the acceptor but form a smaller angle than the N1—H4⋯O1 hydrogen bond. Those bonds form a chain of mol­ecules along the c axis. The weakest hydrogen bond in the crystalline structure of acetyl­hydroxamic acid is C2—H1⋯O1. This hydrogen bond connects adjacent parallel mol­ecules also along the c axis. The packing is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.96 2.45 3.300 (3) 147
N1—H4⋯O1ii 0.86 2.48 3.246 (3) 149
N1—H4⋯O2ii 0.86 2.26 2.917 (3) 133
O1—H5⋯O2iii 0.82 1.81 2.624 (2) 176
Symmetry codes: (i) x+1, y, z; (ii) [-y, x, z+{\script{1\over 4}}]; (iii) [-y, x-1, z+{\script{1\over 4}}].
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the b axis.

The geometry of the presented structure corresponds well with the structure described by Bracher & Small (1970[Bracher, B. H. & Small, R. W. H. (1970). Acta Cryst. B26, 1705-1709.]).

Synthesis and crystallization

In this study, we prepared aceto­hydroxamic acid by heating equivalent proportions of acetamide and hydroxyl­amine hydro­chloride. Dried ethyl acetate was used as a solvent for extracting and recrystallizing the product (yield 17.9 g; m.p. 354–355 K).

Refinement

All H atoms were found in a difference map but set to idealized positions and treated as riding, with methyl C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C), N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N), and O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C2H5NO2
Mr 75.07
Crystal system, space group Tetragonal, P41
Temperature (K) 293
a, c (Å) 5.2344 (6), 13.809 (2)
V3) 378.34 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.05 × 0.04 × 0.03
 
Data collection
Diffractometer Xcalibur
No. of measured, independent and observed [I > 2σ(I)] reflections 2579, 751, 683
Rint 0.018
(sin θ/λ)max−1) 0.616
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.086, 1.11
No. of reflections 751
No. of parameters 47
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.10, −0.14
Absolute structure Flack x determined using 307 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.0 (4)
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]), SHELXS2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis CCD (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

N-Hydroxyacetamide top
Crystal data top
C2H5NO2Dx = 1.318 Mg m3
Mr = 75.07Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41Cell parameters from 2579 reflections
a = 5.2344 (6) Åθ = 3.9–26.0°
c = 13.809 (2) ŵ = 0.12 mm1
V = 378.34 (10) Å3T = 293 K
Z = 4Plate, colourless
F(000) = 1600.05 × 0.04 × 0.03 mm
Data collection top
Xcalibur
diffractometer
683 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Detector resolution: 1024 pixels mm-1θmax = 26.0°, θmin = 3.9°
ω–scanh = 56
2579 measured reflectionsk = 65
751 independent reflectionsl = 1616
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0584P)2 + 0.0038P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.028(Δ/σ)max < 0.001
wR(F2) = 0.086Δρmax = 0.10 e Å3
S = 1.11Δρmin = 0.14 e Å3
751 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
47 parametersExtinction coefficient: 0.24 (4)
1 restraintAbsolute structure: Flack x determined using 307 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.0 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4274 (4)0.0253 (4)0.41879 (16)0.0485 (5)
C20.6056 (5)0.2400 (5)0.4372 (2)0.0672 (7)
H10.56550.31730.49840.101*
H20.77780.17690.43850.101*
H30.58880.36470.38670.101*
N10.2554 (4)0.0170 (4)0.48604 (13)0.0600 (6)
H40.26390.06120.54070.072*
O10.0601 (3)0.1893 (3)0.46796 (13)0.0663 (5)
H50.06730.30640.50730.099*
O20.4385 (3)0.1073 (3)0.34398 (11)0.0584 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0516 (12)0.0508 (11)0.0430 (10)0.0120 (9)0.0098 (9)0.0019 (8)
C20.0614 (14)0.0644 (15)0.0759 (18)0.0010 (12)0.0132 (12)0.0134 (12)
N10.0744 (13)0.0623 (10)0.0433 (10)0.0005 (10)0.0010 (9)0.0117 (8)
O10.0715 (11)0.0685 (9)0.0589 (10)0.0048 (9)0.0023 (9)0.0067 (8)
O20.0595 (10)0.0706 (11)0.0451 (9)0.0034 (7)0.0005 (6)0.0134 (7)
Geometric parameters (Å, º) top
C1—O21.246 (3)C2—H30.9600
C1—N11.312 (3)N1—O11.386 (3)
C1—C21.482 (4)N1—H40.8600
C2—H10.9600O1—H50.8200
C2—H20.9600
O2—C1—N1121.6 (2)H1—C2—H3109.5
O2—C1—C2122.4 (2)H2—C2—H3109.5
N1—C1—C2116.0 (2)C1—N1—O1119.24 (17)
C1—C2—H1109.5C1—N1—H4120.4
C1—C2—H2109.5O1—N1—H4120.4
H1—C2—H2109.5N1—O1—H5109.5
C1—C2—H3109.5
O2—C1—N1—O19.0 (3)C2—C1—N1—O1170.80 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.962.453.300 (3)147
N1—H4···O1ii0.862.483.246 (3)149
N1—H4···O2ii0.862.262.917 (3)133
O1—H5···O2iii0.821.812.624 (2)176
Symmetry codes: (i) x+1, y, z; (ii) y, x, z+1/4; (iii) y, x1, z+1/4.
 

References

First citation[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]Allen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBracher, B. H. & Small, R. W. H. (1970). Acta Cryst. B26, 1705–1709.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCisowska, A. (2003). Postępy Mikrobiol. 42, 3–23.  CAS Google Scholar
First citationGroneberg, R. D., Burns, C. J., Morrissette, M. M., Ullrich, J. W., Morris, R. L., Darnbrough, S., Djuric, S. W., Condon, S. M., McGeehan, G. M., Labaudiniere, R., Neuenschwander, K., Scotese, A. C. & Kline, J. A. (1999). J. Med. Chem. 42, 541–544.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHajduk, P. J., Sheppard, G., Nettesheim, D. G., Olejniczak, E. T., Shuker, S. B., Meadows, R. P., Steinman, D. H., Carrera, G. M. Jr, Marcotte, P. A., Severin, J., Walter, K., Smith, H., Gubbins, E., Simmer, R., Holzman, T. F., Morgan, D. W., Davidsen, S. K., Summers, J. B. & Fesik, S. W. (1997). J. Am. Chem. Soc. 119, 5818–5827.  CrossRef CAS Web of Science Google Scholar
First citationIkeda-Saito, M., Shelley, D. A., Lu, L., Booth, K. S., Caughey, W. S. & Kimura, S. (1991). J. Biol. Chem. 266, 3611–3616.  PubMed CAS Web of Science Google Scholar
First citationKaczor, A. & Proniewicz, L. M. (2004). J. Mol. Struct. 704, 189–196.  Web of Science CrossRef CAS Google Scholar
First citationLossen, H. (1869). Justus Liebigs Ann. Chem. 150, 314–316.  CrossRef Google Scholar
First citationMiller, M. J. (1989). Chem. Rev. 89, 1563–1579.  CrossRef CAS Web of Science Google Scholar
First citationNeilands, J. B. (1995). J. Biol. Chem. 270, 26723–26726.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citation[ Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.] Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStemmler, A. J., Kampf, J. W., Kirk, M. L. & Pecoraro, V. L. (1995). J. Am. Chem. Soc. 117, 6368–6369.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]