organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-(Prop-2-yn-1-ylsulfan­yl)-1H-pyrazolo­[3,4-d]pyrimidine

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche Des Sciences des Médicaments, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: elhafi.mohamed1@gmail.com

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 24 August 2017; accepted 19 October 2017; online 24 October 2017)

The asymmetric unit of the title compound, C8H6N4S, consists of two independent mol­ecules differing in the orientation of the side chain. In the crystal, mol­ecules form dimers through N—H⋯N hydrogen bonds. The dimers stack along the a-axis direction with weak ππ stacking inter­actions [centroid–centroid distances of 3.898 (2) and 3.908 (2) Å]. The crystal studied was refined as a two-component twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As a continuation of our research work devoted to the development of S-substituted pyrazolo­[3,4-d]pyrimidine derivatives (El Fal et al., 2014[El Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o1038.]), we have studied the action of propargyl bromide towards 1H-pyrazolo­[3,4-d]pyrimidine-4(5H)-thione, using ethanol as solvent and potassium hydroxide as base. The title compound was isolated and its structure was established.

The asymmetric unit of the title compound consists of two independent mol­ecules differing to a small extent in the orientation of the side chain with respect to the bicyclic core (Fig. 1[link]). Thus, the dihedral angle between the mean plane of the N1–N4/C1–C5 unit and that defined by S1/C6–C8 is 79.3 (2)°, while the corresponding angle in the second mol­ecule is 76.4 (2)°. The bicyclic cores are planar with the maximum deviation from the mean plane being 0.016 (3) Å (C5) in the first mol­ecule (r.m.s. deviation = 0.0094 Å) and −0.015 (3) Å (C13) in the second (r.m.s. deviation = 0.0086 Å). The dihedral angle between the bicyclic units is 76.42 (7)°.

[Figure 1]
Figure 1
The asymmetric unit with the atom-labelling scheme and 50% probability ellipsoids for non-H atoms

In the crystal, each independent mol­ecule forms a dimer with an inversion-related counterpart through pairwise N—H⋯N hydrogen bonds (Table 1[link]). The dimers stack along the a-axis direction with the aid of head-to-tail ππ-stacking inter­actions (Fig. 2[link]). For the mol­ecules containing S1, the centroid–centroid distance is 3.898 (2) Å, while for those containing S2, the distance is 3.908 (2) Å. In both instances, the dihedral angle between the associated planes is 1.2 (2)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N2i 0.90 (6) 2.10 (6) 2.972 (4) 165 (5)
N7—H7⋯N6ii 0.81 (6) 2.18 (6) 2.965 (5) 163 (5)
Symmetry codes: (i) -x+3, -y, -z+1; (ii) -x+2, -y, -z.
[Figure 2]
Figure 2
Oblique view of the packing with N—H⋯N hydrogen bonds and ππ-stacking inter­actions shown, respectively, as blue and orange dashed lines.

Synthesis and crystallization

To a solution of 1H-pyrazolo­[3,4-d]pyrimidine-4-thione (0.5 g, 3.3 mmol) in EtOH (15 ml) was added propargyl bromide (0.25 ml, 3.3 mmol) and potassium hydroxide (0.19 g, 3.3 mmol). The mixture was refluxed for 8 h, and after cooling, the reaction mixture was poured slowly into an ice bath under stirring to homogenize the whole. The solid product was precipitated and filtered. The residue was purified by recrystallization from ethanol to afford the title compound as colourless crystals (65% yield; m.p. 398–400 K).

Refinement

Crystal data, data collection and structure refinement details are summarize in Table 2[link]. The studied crystal was found to be twinned by a 180° rotation about the b* axis, and the model was refined as a two-component twin using CELL_NOW (Sheldrick, 2008b[Sheldrick, G. M. (2008b). CELL_NOW. University of Göttingen, Göttingen, Germany.]).

Table 2
Experimental details

Crystal data
Chemical formula C8H6N4S
Mr 190.23
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 4.8851 (1), 9.8472 (3), 17.4428 (5)
α, β, γ (°) 86.380 (1), 89.606 (1), 81.027 (1)
V3) 827.15 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.09
Crystal size (mm) 0.29 × 0.09 × 0.03
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.])
Tmin, Tmax 0.46, 0.91
No. of measured, independent and observed [I > 2σ(I)] reflections 11085, 11079, 9249
Rint 0.039
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.163, 1.09
No. of reflections 11079
No. of parameters 284
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.67, −0.31
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008a).

4-(Prop-2-yn-1-ylsulfanyl)-1H-pyrazolo[3,4-d]pyrimidine top
Crystal data top
C8H6N4SF(000) = 392
Mr = 190.23Dx = 1.528 Mg m3
Triclinic, P1Melting point: 398 K
a = 4.8851 (1) ÅCu Kα radiation, λ = 1.54178 Å
b = 9.8472 (3) ÅCell parameters from 7441 reflections
c = 17.4428 (5) Åθ = 5.1–72.4°
α = 86.380 (1)°µ = 3.09 mm1
β = 89.606 (1)°T = 150 K
γ = 81.027 (1)°Plate, colourless
V = 827.15 (4) Å30.29 × 0.09 × 0.03 mm
Z = 4
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
11079 independent reflections
Radiation source: INCOATEC IµS micro-focus source9249 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 2.5°
ω scansh = 66
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 1211
Tmin = 0.46, Tmax = 0.91l = 2121
11085 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: difference Fourier map
wR(F2) = 0.163All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.072P)2 + 0.6596P]
where P = (Fo2 + 2Fc2)/3
11079 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.31 e Å3
0 constraints
Special details top

Experimental. Analysis of 887 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the triclinic system and to be twinned by a 180° rotation about the b* axis. The raw data were processed using the multi-component version ofSAINT under control of the two-component orientation file generated by CELL_NOW.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.5206 (2)0.33776 (10)0.33099 (5)0.0286 (3)
N10.8655 (7)0.3466 (3)0.44900 (18)0.0270 (7)
N21.2403 (7)0.1661 (3)0.49127 (18)0.0263 (7)
N31.2790 (7)0.0317 (3)0.41350 (19)0.0272 (7)
H31.421 (13)0.086 (6)0.438 (3)0.054 (16)*
N41.1421 (7)0.0703 (4)0.3524 (2)0.0304 (8)
C10.7945 (8)0.2734 (4)0.3936 (2)0.0233 (8)
C21.0831 (8)0.2892 (4)0.4948 (2)0.0274 (9)
H21.127 (9)0.343 (4)0.534 (3)0.026 (11)*
C31.1622 (8)0.0951 (4)0.4342 (2)0.0223 (8)
C40.9406 (8)0.0320 (4)0.3344 (2)0.0294 (9)
H40.814 (11)0.013 (5)0.291 (3)0.046 (14)*
C50.9395 (8)0.1406 (4)0.3835 (2)0.0230 (8)
C60.4067 (9)0.5068 (4)0.3667 (2)0.0315 (9)
H6A0.398 (9)0.498 (4)0.423 (3)0.027 (11)*
H6B0.212 (11)0.525 (5)0.347 (3)0.042 (13)*
C70.5835 (9)0.6066 (4)0.3404 (2)0.0308 (9)
C80.7249 (10)0.6887 (5)0.3172 (3)0.0363 (10)
H80.851 (11)0.744 (5)0.304 (3)0.039 (14)*
S20.0250 (2)0.29312 (10)0.17167 (5)0.0281 (3)
N50.3598 (7)0.3327 (3)0.05226 (18)0.0287 (7)
N60.7361 (7)0.1642 (3)0.00878 (18)0.0265 (7)
N70.7867 (7)0.0506 (4)0.08603 (19)0.0272 (7)
H70.910 (12)0.098 (5)0.064 (3)0.044 (15)*
N80.6605 (7)0.1054 (4)0.1483 (2)0.0321 (8)
C90.2964 (8)0.2445 (4)0.1088 (2)0.0249 (8)
C100.5752 (8)0.2867 (4)0.0059 (2)0.0289 (9)
H100.620 (9)0.355 (4)0.034 (3)0.027 (11)*
C110.6642 (8)0.0790 (4)0.0663 (2)0.0237 (8)
C120.4571 (9)0.0095 (4)0.1677 (2)0.0294 (9)
H120.336 (11)0.019 (5)0.209 (3)0.038 (13)*
C130.4474 (8)0.1111 (4)0.1182 (2)0.0238 (8)
C140.0920 (9)0.4710 (5)0.1372 (3)0.0310 (9)
H14A0.112 (12)0.476 (5)0.080 (3)0.051 (15)*
H14B0.260 (11)0.490 (5)0.160 (3)0.039 (13)*
C150.0894 (9)0.5647 (4)0.1597 (2)0.0313 (9)
C160.2341 (10)0.6432 (5)0.1784 (3)0.0357 (10)
H160.356 (13)0.705 (6)0.189 (4)0.060 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0232 (5)0.0360 (6)0.0253 (5)0.0025 (4)0.0072 (3)0.0030 (4)
N10.0268 (17)0.0316 (17)0.0214 (16)0.0022 (14)0.0024 (12)0.0023 (13)
N20.0234 (17)0.0315 (18)0.0235 (16)0.0043 (14)0.0059 (12)0.0021 (13)
N30.0244 (17)0.0297 (18)0.0267 (17)0.0026 (15)0.0030 (13)0.0011 (14)
N40.0275 (18)0.0326 (18)0.0310 (18)0.0032 (15)0.0040 (14)0.0034 (14)
C10.0187 (18)0.031 (2)0.0200 (18)0.0064 (16)0.0005 (13)0.0033 (15)
C20.026 (2)0.033 (2)0.0231 (19)0.0034 (17)0.0054 (15)0.0001 (16)
C30.0193 (18)0.0276 (19)0.0202 (17)0.0059 (16)0.0001 (13)0.0025 (15)
C40.025 (2)0.036 (2)0.028 (2)0.0055 (18)0.0035 (15)0.0031 (17)
C50.0206 (19)0.0297 (19)0.0189 (18)0.0066 (16)0.0008 (13)0.0031 (14)
C60.022 (2)0.039 (2)0.030 (2)0.0018 (18)0.0016 (15)0.0022 (18)
C70.030 (2)0.032 (2)0.027 (2)0.0064 (19)0.0069 (16)0.0002 (17)
C80.038 (3)0.035 (2)0.034 (2)0.001 (2)0.0024 (18)0.0028 (19)
S20.0228 (5)0.0348 (5)0.0265 (5)0.0032 (4)0.0031 (3)0.0024 (4)
N50.0277 (18)0.0336 (18)0.0238 (16)0.0024 (15)0.0009 (13)0.0002 (14)
N60.0227 (17)0.0336 (18)0.0236 (16)0.0058 (14)0.0002 (12)0.0021 (13)
N70.0226 (17)0.0315 (18)0.0263 (17)0.0009 (15)0.0033 (13)0.0002 (14)
N80.0298 (19)0.0361 (19)0.0286 (18)0.0011 (16)0.0017 (13)0.0023 (14)
C90.0211 (19)0.034 (2)0.0209 (18)0.0072 (16)0.0016 (14)0.0046 (15)
C100.028 (2)0.033 (2)0.025 (2)0.0047 (18)0.0021 (15)0.0029 (17)
C110.0201 (18)0.031 (2)0.0213 (18)0.0057 (16)0.0013 (14)0.0047 (15)
C120.027 (2)0.035 (2)0.026 (2)0.0049 (18)0.0033 (16)0.0009 (17)
C130.0183 (18)0.031 (2)0.0233 (18)0.0063 (16)0.0008 (14)0.0037 (15)
C140.019 (2)0.040 (2)0.032 (2)0.0006 (18)0.0009 (16)0.0032 (18)
C150.033 (2)0.034 (2)0.0223 (19)0.0065 (19)0.0027 (15)0.0002 (16)
C160.041 (3)0.032 (2)0.033 (2)0.003 (2)0.0040 (19)0.0017 (18)
Geometric parameters (Å, º) top
S1—C11.747 (4)S2—C91.743 (4)
S1—C61.818 (4)S2—C141.821 (4)
N1—C11.322 (5)N5—C91.339 (5)
N1—C21.362 (5)N5—C101.361 (5)
N2—C21.334 (5)N6—C101.331 (5)
N2—C31.343 (5)N6—C111.348 (5)
N3—C31.359 (5)N7—C111.347 (5)
N3—N41.366 (5)N7—N81.368 (5)
N3—H30.90 (6)N7—H70.81 (6)
N4—C41.318 (5)N8—C121.317 (6)
C1—C51.407 (5)C9—C131.403 (5)
C2—H20.95 (5)C10—H100.98 (5)
C3—C51.406 (5)C11—C131.399 (5)
C4—C51.411 (6)C12—C131.418 (6)
C4—H41.03 (6)C12—H120.93 (6)
C6—C71.457 (6)C14—C151.448 (6)
C6—H6A0.98 (5)C14—H14A1.00 (6)
C6—H6B1.00 (5)C14—H14B0.91 (5)
C7—C81.194 (7)C15—C161.187 (7)
C8—H80.90 (5)C16—H160.94 (6)
C1—S1—C6101.40 (19)C9—S2—C14101.5 (2)
C1—N1—C2117.5 (3)C9—N5—C10116.9 (3)
C2—N2—C3112.2 (3)C10—N6—C11112.1 (3)
C3—N3—N4110.9 (3)C11—N7—N8111.3 (3)
C3—N3—H3125 (4)C11—N7—H7128 (4)
N4—N3—H3124 (4)N8—N7—H7120 (4)
C4—N4—N3106.5 (3)C12—N8—N7106.3 (3)
N1—C1—C5120.4 (3)N5—C9—C13120.4 (4)
N1—C1—S1121.3 (3)N5—C9—S2120.7 (3)
C5—C1—S1118.2 (3)C13—C9—S2118.9 (3)
N2—C2—N1128.4 (4)N6—C10—N5128.8 (4)
N2—C2—H2116 (3)N6—C10—H10116 (3)
N1—C2—H2116 (3)N5—C10—H10115 (3)
N2—C3—N3127.8 (3)N7—C11—N6127.4 (4)
N2—C3—C5125.4 (3)N7—C11—C13107.0 (3)
N3—C3—C5106.8 (3)N6—C11—C13125.6 (4)
N4—C4—C5111.3 (3)N8—C12—C13110.9 (4)
N4—C4—H4114 (3)N8—C12—H12125 (3)
C5—C4—H4134 (3)C13—C12—H12124 (3)
C3—C5—C1115.9 (3)C11—C13—C9116.1 (3)
C3—C5—C4104.4 (3)C11—C13—C12104.5 (3)
C1—C5—C4139.6 (3)C9—C13—C12139.4 (4)
C7—C6—S1112.2 (3)C15—C14—S2113.1 (3)
C7—C6—H6A112 (3)C15—C14—H14A110 (3)
S1—C6—H6A109 (2)S2—C14—H14A109 (3)
C7—C6—H6B116 (3)C15—C14—H14B111 (3)
S1—C6—H6B100 (3)S2—C14—H14B103 (3)
H6A—C6—H6B108 (4)H14A—C14—H14B110 (4)
C8—C7—C6178.5 (4)C16—C15—C14178.8 (5)
C7—C8—H8172 (3)C15—C16—H16175 (4)
C3—N3—N4—C40.2 (4)C11—N7—N8—C120.1 (4)
C2—N1—C1—C50.5 (6)C10—N5—C9—C130.4 (5)
C2—N1—C1—S1179.4 (3)C10—N5—C9—S2179.8 (3)
C6—S1—C1—N10.1 (4)C14—S2—C9—N51.6 (3)
C6—S1—C1—C5179.8 (3)C14—S2—C9—C13178.6 (3)
C3—N2—C2—N10.2 (6)C11—N6—C10—N50.4 (6)
C1—N1—C2—N20.4 (6)C9—N5—C10—N60.2 (6)
C2—N2—C3—N3178.8 (4)N8—N7—C11—N6179.0 (3)
C2—N2—C3—C50.9 (5)N8—N7—C11—C130.1 (4)
N4—N3—C3—N2180.0 (4)C10—N6—C11—N7178.7 (4)
N4—N3—C3—C50.3 (4)C10—N6—C11—C130.1 (5)
N3—N4—C4—C50.1 (5)N7—N8—C12—C130.3 (4)
N2—C3—C5—C11.7 (6)N7—C11—C13—C9178.3 (3)
N3—C3—C5—C1178.0 (3)N6—C11—C13—C90.7 (5)
N2—C3—C5—C4179.9 (4)N7—C11—C13—C120.3 (4)
N3—C3—C5—C40.2 (4)N6—C11—C13—C12179.2 (3)
N1—C1—C5—C31.4 (5)N5—C9—C13—C110.8 (5)
S1—C1—C5—C3178.5 (3)S2—C9—C13—C11179.4 (3)
N1—C1—C5—C4178.7 (5)N5—C9—C13—C12178.7 (4)
S1—C1—C5—C41.1 (7)S2—C9—C13—C121.5 (6)
N4—C4—C5—C30.1 (5)N8—C12—C13—C110.4 (4)
N4—C4—C5—C1177.5 (5)N8—C12—C13—C9177.7 (4)
C1—S1—C6—C779.3 (3)C9—S2—C14—C1576.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N2i0.90 (6)2.10 (6)2.972 (4)165 (5)
N7—H7···N6ii0.81 (6)2.18 (6)2.965 (5)163 (5)
Symmetry codes: (i) x+3, y, z+1; (ii) x+2, y, z.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o1038.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008a). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008b). CELL_NOW. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]