organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N′-[(1E)-1-(4-Chloro­phen­yl)ethyl­­idene]-2-(2,3-di­methyl­anilino)benzohydrazide

CROSSMARK_Color_square_no_text.svg

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eDepartment of Chemistry, College of Education, Kirkuk University, Kirkuk, Iraq, and fNational Organization for Drug Control and Research, Giza, Egypt
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 7 August 2017; accepted 16 August 2017; online 21 August 2017)

In the title compound, C23H22ClN3O, the dihedral angle between the planes of the chloro­phenyl and di­methyl­phenyl rings is 62.49 (10)°. These rings make dihedral angles of 21.11 (9) and 59.85 (9)°, respectively, with the central benzene ring. In the crystal, mol­ecules are linked into a three-dimensional supra­molecular network by N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds, and weak C—H⋯π inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Mefenamic acid (MA), or 2-[(2,3-di­methyl­phen­yl)amino]­benzoic acid, belongs to the family of N-aryl­anthranilic acids. It is one of the most widely used non-steroidal anti-inflammatory drugs (NSAIDs), having both anti-inflammatory and analgesic activities (Arun & Ashok, 2009[Arun, R. & Ashok, K. C. K. (2009). Int. J. Curr. Pharm. Res. 1, 47-55.]). NSAIDs are associated with gastrointestinal ulcers, serious cardiovascular events and hypertension (Gupta & Kulkarni, 2013[Gupta, K. & Kulkarni, A. P. (2013). Asian J. Med. Pharm. Res. 3, 18-23.]). Recently, it was found that masking the carb­oxy­lic acid group in the parent drug of NSAIDs led to safer prodrug profiles and enhanced the pharmacophoric efficacy (Mague et al., 2014[Mague, J. T., Mohamed, S. K., Akkurt, M., Potgieter, H. & Albayati, M. R. (2014). Acta Cryst. E70, o631-o632.]). In addition, some evidence showed that the hydrazone group present in the anti-inflammatory drug structure is behind its inhibitory character (Mohamed et al., 2012[Mohamed, S. K., Albayati, M. R., Omara, W. A. M., Abd-Elhamid, A. A., Potgeiter, H., Hameed, A. S. & Al-Janabi, K. M. (2012). J. Chem. Pharm. Res. 4, 3505-3517.]). Further to our ongoing study of the functionalization of NSAIDs (Mohamed et al., 2015a[Mohamed, S. K., Mague, J. T., Akkurt, M., Mohamed, A. F. & Albayati, M. R. (2015a). Acta Cryst. E71, o957-o958.],b[Mohamed, S. K., Albayati, M. R., Abd Allah, O. A. A. & El-Saghier, A. M. M. (2015b). Int. J. Pharm. Sci. Rev. Res. 45, 232-242.]), the title compound was synthesized as a hydrazone profile incorporating MA as a core structure without a free carb­oxy­lic group.

The title mol­ecule (Fig. 1[link]) is twisted, with the dihedral angle between the planes of the chloro­phenyl and di­methyl­phenyl rings being 62.49 (10)°. The chloro­phenyl and di­methyl­phenyl rings make dihedral angles of 21.11 (9) and 59.85 (9)° with the central benzene ring, respectively. The bridging fragment (C1/N1/N2/O1/C8) is not planar, with an N1—N2—C8—O1 torsion angle of 5.0 (2)°. All bond lengths and angles (Table 1[link]) are comparable with those of related structures (Zhen & Han, 2005[Zhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o4360-o4361.]; Chantrapromma et al., 2014[Chantrapromma, S., Boonnak, N., Horkaew, J., Quah, C. K. & Fun, H.-K. (2014). Acta Cryst. E70, o150-o151.]; Fun et al., 2011[Fun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644-o2645.]; Horkaew et al., 2012[Horkaew, J., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2012). Acta Cryst. E68, o1069-o1070.]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C9–C14 and C15–C20 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1i 0.86 (2) 2.53 (2) 3.3194 (18) 153 (2)
N2—H2N⋯N1i 0.86 (2) 2.34 (2) 3.0563 (18) 141 (2)
N3—H3N⋯O1 0.86 (2) 1.99 (2) 2.691 (2) 139 (2)
C10—H10⋯O1i 0.95 2.51 3.278 (2) 138
C12—H12⋯Cg3ii 0.95 2.91 3.737 (2) 146
C21—H21CCg2iii 0.98 2.94 3.720 (3) 138
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+2; (iii) -x, -y+1, -z+1.
[Figure 1]
Figure 1
The structure of the title compound, with displacement ellipsoids for non-H atoms drawn at the 50% probability level.

In the crystal (Fig. 2[link]), mol­ecules are linked by N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]) into a three-dimensional network. Weak C—H⋯π inter­actions (Table 1[link]) are also present.

[Figure 2]
Figure 2
Part of the packing diagram for the title compound, viewing down the c axis.

Synthesis and crystallization

The title compound was synthesized according to our pre­viously reported procedure (Mohamed et al., 2015a[Mohamed, S. K., Mague, J. T., Akkurt, M., Mohamed, A. F. & Albayati, M. R. (2015a). Acta Cryst. E71, o957-o958.]). The product was recrystallized from ethanol solution to yield yellow blocks of (I) (m.p. 473–477 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms on C atoms were placed in calculated positions and allowed to ride on their carrier atoms, with aromatic C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C), and methyl C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C). H atoms on N atoms were found in a difference Fourier map and were refined, with the N—H distances restrained to 0.86 (2) Å and with Uiso(H) = 1.2Ueq(N).

Table 2
Experimental details

Crystal data
Chemical formula C23H22ClN3O
Mr 391.88
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 13.1089 (4), 19.6738 (6), 7.9333 (2)
β (°) 96.899 (2)
V3) 2031.20 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.80
Crystal size (mm) 0.45 × 0.25 × 0.10
 
Data collection
Diffractometer Rigaku Oxford Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.749, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7509, 3854, 3295
Rint 0.020
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.132, 1.01
No. of reflections 3854
No. of parameters 262
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.40
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and WinGX (Farrugia, 2012).

N'-[(1E)-1-(4-Chlorophenyl)ethylidene]-2-(2,3-dimethylanilino)benzohydrazide top
Crystal data top
C23H22ClN3OF(000) = 824
Mr = 391.88Dx = 1.281 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 13.1089 (4) ÅCell parameters from 3019 reflections
b = 19.6738 (6) Åθ = 4.1–71.1°
c = 7.9333 (2) ŵ = 1.80 mm1
β = 96.899 (2)°T = 173 K
V = 2031.20 (10) Å3Prism, colourless
Z = 40.45 × 0.25 × 0.10 mm
Data collection top
Rigaku Oxford Gemini
diffractometer
3854 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source3295 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 16.0416 pixels mm-1θmax = 71.4°, θmin = 4.1°
ω scansh = 1516
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 239
Tmin = 0.749, Tmax = 1.000l = 99
7509 measured reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0717P)2 + 0.6046P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3854 reflectionsΔρmax = 0.37 e Å3
262 parametersΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.38673 (13)0.82927 (9)0.6434 (2)0.0373 (4)
C20.45079 (13)0.84964 (9)0.5093 (2)0.0380 (4)
C30.51538 (14)0.80264 (11)0.4452 (2)0.0450 (4)
H3A0.52210.75830.49280.054*
C40.57021 (15)0.82006 (13)0.3121 (3)0.0554 (5)
H40.61570.78840.27010.066*
C50.55760 (17)0.88399 (14)0.2419 (3)0.0583 (6)
C60.49458 (18)0.93127 (12)0.3018 (3)0.0574 (6)
H60.48660.97500.25100.069*
C70.44242 (16)0.91431 (10)0.4382 (2)0.0478 (5)
H70.40040.94730.48360.057*
C80.24073 (13)0.68585 (8)0.70860 (18)0.0315 (3)
C90.17766 (12)0.65811 (8)0.83703 (19)0.0320 (3)
C100.12799 (13)0.70152 (9)0.9389 (2)0.0353 (4)
H100.13630.74920.92810.042*
C110.06683 (14)0.67704 (9)1.0554 (2)0.0397 (4)
H110.03320.70741.12360.048*
C120.05530 (14)0.60724 (10)1.0711 (2)0.0413 (4)
H120.01450.58981.15250.050*
C130.10221 (14)0.56296 (9)0.9703 (2)0.0384 (4)
H130.09340.51540.98340.046*
C140.16279 (13)0.58687 (8)0.8485 (2)0.0343 (4)
C150.19282 (13)0.47261 (8)0.7284 (2)0.0359 (4)
C160.22356 (15)0.43079 (11)0.8668 (2)0.0477 (4)
H160.25230.45000.97160.057*
C170.21207 (16)0.36117 (11)0.8509 (3)0.0533 (5)
H170.23220.33250.94540.064*
C180.17132 (16)0.33337 (9)0.6975 (3)0.0509 (5)
H180.16360.28550.68780.061*
C190.14150 (15)0.37399 (9)0.5579 (3)0.0435 (4)
C200.15184 (12)0.44481 (8)0.5730 (2)0.0347 (4)
C210.1000 (2)0.34189 (12)0.3907 (3)0.0730 (7)
H21A0.10140.29230.40230.110*
H21B0.14260.35550.30300.110*
H21C0.02910.35700.35830.110*
C220.12136 (16)0.49003 (10)0.4219 (2)0.0464 (4)
H22A0.18050.49670.35900.070*
H22B0.09850.53410.46080.070*
H22C0.06530.46870.34750.070*
C230.3623 (2)0.87996 (12)0.7733 (3)0.0633 (7)
H23A0.39850.92260.75710.095*
H23B0.38440.86220.88730.095*
H23C0.28810.88830.76080.095*
Cl10.62355 (6)0.90513 (5)0.07017 (9)0.0951 (3)
N10.35227 (10)0.76846 (7)0.62931 (16)0.0322 (3)
N20.29092 (11)0.74519 (7)0.74680 (16)0.0317 (3)
H2N0.2954 (16)0.7615 (10)0.848 (2)0.038*
N30.20736 (14)0.54361 (8)0.7410 (2)0.0445 (4)
H3N0.2270 (18)0.5635 (11)0.654 (2)0.053*
O10.24471 (11)0.65752 (6)0.57097 (15)0.0424 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0380 (8)0.0442 (9)0.0299 (8)0.0101 (7)0.0051 (6)0.0016 (7)
C20.0337 (8)0.0489 (10)0.0317 (8)0.0158 (7)0.0049 (6)0.0047 (7)
C30.0376 (9)0.0576 (11)0.0402 (9)0.0108 (8)0.0059 (7)0.0053 (8)
C40.0373 (9)0.0833 (15)0.0475 (11)0.0155 (10)0.0129 (8)0.0152 (11)
C50.0458 (11)0.0896 (16)0.0419 (10)0.0328 (11)0.0151 (8)0.0010 (11)
C60.0599 (12)0.0634 (13)0.0506 (11)0.0254 (11)0.0140 (10)0.0083 (10)
C70.0498 (10)0.0492 (10)0.0463 (10)0.0161 (8)0.0136 (8)0.0008 (8)
C80.0395 (8)0.0310 (7)0.0240 (7)0.0002 (6)0.0043 (6)0.0035 (6)
C90.0359 (8)0.0362 (8)0.0238 (7)0.0069 (6)0.0026 (6)0.0006 (6)
C100.0420 (9)0.0348 (8)0.0291 (7)0.0071 (7)0.0038 (6)0.0025 (6)
C110.0436 (9)0.0442 (9)0.0328 (8)0.0043 (7)0.0110 (7)0.0043 (7)
C120.0443 (9)0.0493 (10)0.0321 (8)0.0109 (8)0.0115 (7)0.0023 (7)
C130.0461 (9)0.0366 (8)0.0333 (8)0.0101 (7)0.0073 (7)0.0026 (7)
C140.0402 (8)0.0356 (8)0.0269 (7)0.0070 (7)0.0034 (6)0.0008 (6)
C150.0376 (8)0.0324 (8)0.0387 (8)0.0022 (7)0.0092 (7)0.0021 (7)
C160.0487 (10)0.0509 (10)0.0420 (9)0.0057 (8)0.0006 (8)0.0085 (8)
C170.0514 (11)0.0458 (10)0.0626 (13)0.0074 (9)0.0058 (9)0.0233 (9)
C180.0529 (11)0.0295 (8)0.0730 (14)0.0021 (8)0.0186 (10)0.0049 (9)
C190.0419 (9)0.0353 (9)0.0543 (11)0.0030 (7)0.0092 (8)0.0044 (8)
C200.0296 (7)0.0343 (8)0.0407 (9)0.0021 (6)0.0069 (6)0.0013 (7)
C210.0935 (19)0.0511 (13)0.0728 (16)0.0187 (13)0.0027 (14)0.0197 (12)
C220.0506 (10)0.0464 (10)0.0416 (9)0.0018 (8)0.0026 (8)0.0041 (8)
C230.0870 (17)0.0562 (12)0.0537 (12)0.0331 (12)0.0376 (12)0.0182 (10)
Cl10.0815 (5)0.1470 (8)0.0648 (4)0.0449 (5)0.0413 (3)0.0049 (4)
N10.0324 (7)0.0400 (7)0.0243 (6)0.0044 (6)0.0046 (5)0.0042 (5)
N20.0372 (7)0.0375 (7)0.0210 (6)0.0062 (6)0.0059 (5)0.0020 (5)
N30.0661 (10)0.0332 (7)0.0379 (8)0.0106 (7)0.0215 (7)0.0013 (6)
O10.0654 (8)0.0355 (6)0.0289 (6)0.0076 (6)0.0161 (5)0.0023 (5)
Geometric parameters (Å, º) top
C1—N11.279 (2)C13—H130.9500
C1—C21.487 (2)C14—N31.383 (2)
C1—C231.496 (3)C15—C161.392 (3)
C2—C31.391 (3)C15—C201.396 (2)
C2—C71.391 (3)C15—N31.412 (2)
C3—C41.390 (3)C16—C171.382 (3)
C3—H3A0.9500C16—H160.9500
C4—C51.377 (4)C17—C181.382 (3)
C4—H40.9500C17—H170.9500
C5—C61.366 (4)C18—C191.384 (3)
C5—Cl11.749 (2)C18—H180.9500
C6—C71.389 (3)C19—C201.404 (2)
C6—H60.9500C19—C211.510 (3)
C7—H70.9500C20—C221.508 (2)
C8—O11.2325 (19)C21—H21A0.9800
C8—N21.356 (2)C21—H21B0.9800
C8—C91.491 (2)C21—H21C0.9800
C9—C101.390 (2)C22—H22A0.9800
C9—C141.419 (2)C22—H22B0.9800
C10—C111.381 (2)C22—H22C0.9800
C10—H100.9500C23—H23A0.9800
C11—C121.389 (3)C23—H23B0.9800
C11—H110.9500C23—H23C0.9800
C12—C131.377 (3)N1—N21.3804 (18)
C12—H120.9500N2—H2N0.859 (15)
C13—C141.403 (2)N3—H3N0.861 (16)
N1—C1—C2114.40 (15)C16—C15—N3120.34 (17)
N1—C1—C23125.56 (16)C20—C15—N3118.98 (15)
C2—C1—C23119.93 (16)C17—C16—C15119.74 (19)
C3—C2—C7118.80 (17)C17—C16—H16120.1
C3—C2—C1120.22 (17)C15—C16—H16120.1
C7—C2—C1120.85 (17)C18—C17—C16119.91 (18)
C4—C3—C2120.5 (2)C18—C17—H17120.0
C4—C3—H3A119.8C16—C17—H17120.0
C2—C3—H3A119.8C17—C18—C19121.24 (17)
C5—C4—C3119.0 (2)C17—C18—H18119.4
C5—C4—H4120.5C19—C18—H18119.4
C3—C4—H4120.5C18—C19—C20119.34 (18)
C6—C5—C4121.96 (19)C18—C19—C21119.94 (19)
C6—C5—Cl1119.00 (19)C20—C19—C21120.71 (19)
C4—C5—Cl1119.04 (19)C15—C20—C19119.15 (16)
C5—C6—C7118.8 (2)C15—C20—C22120.55 (15)
C5—C6—H6120.6C19—C20—C22120.29 (17)
C7—C6—H6120.6C19—C21—H21A109.5
C6—C7—C2120.9 (2)C19—C21—H21B109.5
C6—C7—H7119.5H21A—C21—H21B109.5
C2—C7—H7119.5C19—C21—H21C109.5
O1—C8—N2121.07 (14)H21A—C21—H21C109.5
O1—C8—C9121.73 (14)H21B—C21—H21C109.5
N2—C8—C9117.16 (13)C20—C22—H22A109.5
C10—C9—C14119.45 (15)C20—C22—H22B109.5
C10—C9—C8120.62 (14)H22A—C22—H22B109.5
C14—C9—C8119.81 (15)C20—C22—H22C109.5
C11—C10—C9121.66 (16)H22A—C22—H22C109.5
C11—C10—H10119.2H22B—C22—H22C109.5
C9—C10—H10119.2C1—C23—H23A109.5
C10—C11—C12118.90 (16)C1—C23—H23B109.5
C10—C11—H11120.5H23A—C23—H23B109.5
C12—C11—H11120.5C1—C23—H23C109.5
C13—C12—C11120.82 (16)H23A—C23—H23C109.5
C13—C12—H12119.6H23B—C23—H23C109.5
C11—C12—H12119.6C1—N1—N2118.65 (14)
C12—C13—C14121.14 (16)C8—N2—N1116.17 (13)
C12—C13—H13119.4C8—N2—H2N120.5 (14)
C14—C13—H13119.4N1—N2—H2N121.7 (14)
N3—C14—C13122.27 (15)C14—N3—C15126.10 (15)
N3—C14—C9119.78 (15)C14—N3—H3N113.8 (16)
C13—C14—C9117.94 (15)C15—N3—H3N116.4 (16)
C16—C15—C20120.61 (16)
N1—C1—C2—C335.9 (2)C8—C9—C14—N30.3 (2)
C23—C1—C2—C3147.8 (2)C10—C9—C14—C133.4 (2)
N1—C1—C2—C7139.95 (17)C8—C9—C14—C13179.50 (15)
C23—C1—C2—C736.4 (3)C20—C15—C16—C170.9 (3)
C7—C2—C3—C40.2 (3)N3—C15—C16—C17177.81 (18)
C1—C2—C3—C4175.68 (16)C15—C16—C17—C180.8 (3)
C2—C3—C4—C51.6 (3)C16—C17—C18—C190.0 (3)
C3—C4—C5—C61.5 (3)C17—C18—C19—C200.7 (3)
C3—C4—C5—Cl1178.09 (15)C17—C18—C19—C21178.3 (2)
C4—C5—C6—C70.5 (3)C16—C15—C20—C190.3 (3)
Cl1—C5—C6—C7179.95 (16)N3—C15—C20—C19177.20 (16)
C5—C6—C7—C22.4 (3)C16—C15—C20—C22178.26 (17)
C3—C2—C7—C62.2 (3)N3—C15—C20—C221.3 (2)
C1—C2—C7—C6173.65 (17)C18—C19—C20—C150.5 (3)
O1—C8—C9—C10144.71 (17)C21—C19—C20—C15178.4 (2)
N2—C8—C9—C1032.9 (2)C18—C19—C20—C22179.07 (18)
O1—C8—C9—C1431.3 (2)C21—C19—C20—C220.1 (3)
N2—C8—C9—C14151.01 (15)C2—C1—N1—N2179.22 (14)
C14—C9—C10—C112.1 (2)C23—C1—N1—N23.2 (3)
C8—C9—C10—C11178.15 (15)O1—C8—N2—N15.0 (2)
C9—C10—C11—C120.3 (3)C9—C8—N2—N1177.36 (13)
C10—C11—C12—C131.3 (3)C1—N1—N2—C8167.86 (15)
C11—C12—C13—C140.1 (3)C13—C14—N3—C155.2 (3)
C12—C13—C14—N3177.36 (17)C9—C14—N3—C15174.63 (17)
C12—C13—C14—C92.5 (3)C16—C15—N3—C1463.0 (3)
C10—C9—C14—N3176.43 (16)C20—C15—N3—C14120.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C9–C14 and C15–C20 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.86 (2)2.53 (2)3.3194 (18)153 (2)
N2—H2N···N1i0.86 (2)2.34 (2)3.0563 (18)141 (2)
N3—H3N···O10.86 (2)1.99 (2)2.691 (2)139 (2)
C10—H10···O1i0.952.513.278 (2)138
C12—H12···Cg3ii0.952.913.737 (2)146
C21—H21C···Cg2iii0.982.943.720 (3)138
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1, z+2; (iii) x, y+1, z+1.
 

Funding information

Funding for this research was provided by: NSF–MRI program (grant No. CHE-1039027), for the purchase of the X-ray diffractometer.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationArun, R. & Ashok, K. C. K. (2009). Int. J. Curr. Pharm. Res. 1, 47–55.  Google Scholar
First citationChantrapromma, S., Boonnak, N., Horkaew, J., Quah, C. K. & Fun, H.-K. (2014). Acta Cryst. E70, o150–o151.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Horkaew, J. & Chantrapromma, S. (2011). Acta Cryst. E67, o2644–o2645.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGupta, K. & Kulkarni, A. P. (2013). Asian J. Med. Pharm. Res. 3, 18–23.  Google Scholar
First citationHorkaew, J., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2012). Acta Cryst. E68, o1069–o1070.  CSD CrossRef IUCr Journals Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M., Potgieter, H. & Albayati, M. R. (2014). Acta Cryst. E70, o631–o632.  CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Albayati, M. R., Abd Allah, O. A. A. & El-Saghier, A. M. M. (2015b). Int. J. Pharm. Sci. Rev. Res. 45, 232–242.  Google Scholar
First citationMohamed, S. K., Albayati, M. R., Omara, W. A. M., Abd-Elhamid, A. A., Potgeiter, H., Hameed, A. S. & Al-Janabi, K. M. (2012). J. Chem. Pharm. Res. 4, 3505–3517.  CAS Google Scholar
First citationMohamed, S. K., Mague, J. T., Akkurt, M., Mohamed, A. F. & Albayati, M. R. (2015a). Acta Cryst. E71, o957–o958.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o4360–o4361.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds