organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

rac-2,3-Di­phenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one 1-oxide

aDepartment of Biochemistry and Molecular Biology, Pennsylvania State University, University Park PA 16802, and bPennsylvania State University, Schuylkill Campus, 200 University Drive, Schuylkill Haven, PA 17972, USA
*Correspondence e-mail: ljs43@psu.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 21 June 2017; accepted 27 July 2017; online 1 August 2017)

In the title compound, C19H14N2O2S, the thia­zine ring exhibits a screw-boat pucker. The oxygen atom on the sulfur atom of the ring is pseudo-axial on the thia­zine ring. In the crystal, 21 screw-related mol­ecules are linked by C—H⋯Ocarbon­yl hydrogen bonds, forming helices propagating along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrido­thia­zinones (including different positions of the pyridine nitro­gen) exhibit a variety of different of biological activities (Arya et al., 2014[Arya, K., Tomar, P. & Singh, J. (2014). RSC Adv. 4, 3060-3064.]). The number of 3-aryl-2,3-di­hydro-4H-pyrido[3,2-e]thia­zin-4-ones reported in the literature is small. One such compound is 2,3-diphenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one (II) (Fig. 1[link]), whose crystal structure we have previously reported (Yennawar et al., 2014[Yennawar, H. P., Singh, H. & Silverberg, L. J. (2014). Acta Cryst. E70, o638.]). Herein, we report on the crystal structure of that compound's sulfoxide, (I), prepared using the method we have reported for oxidation of five-membered 1,3-thia­zolidin-4-ones (Cannon et al., 2015[Cannon, K., Gandla, D., Lauro, S., Silverberg, L., Tierney, J. & Lagalante, A. (2015). Intl. J. Chem. (Toronto, ON, Can.), 7(2), 73-84.]; Silverberg et al., 2015[Silverberg, L. J., Pacheco, C. N., Lagalante, A., Cannon, K. C., Bachert, J. T., Xie, Y., Baker, L. & Bayliff, J. A. (2015). Intl. J. Chem. (Toronto, ON, Can.), 7(2), 150-162.]). To the best of our knowledge, this is the first report of an S-oxide of a 2,3-di­hydro-4H-pyrido[3,2-e]thia­zin-4-one, despite the evidence of enhanced activity in similar 2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-ones (Surrey et al., 1958[Surrey, A. R., Webb, W. G. & Gesler, R. M. (1958). J. Am. Chem. Soc. 80, 3469-3471.]; Surrey, 1963[Surrey, A. R. (1963). US Patent 3082209.], US Patent 3082209) and in 1,3-thia­zolidin-4-ones (Gududuru et al. 2004[Gududuru, V., Hurh, E., Dalton, J. T. & Miller, D. D. (2004). Bioorg. Med. Chem. Lett. 14, 5289-5293.].)

[Figure 1]
Figure 1
The title compound (I) and related compounds.

Although the chemical structure of the title compound, (I) (Fig. 2[link]), differs slightly from the structure of 2,3-diphenyl-2,3-di­hydro-4H-1,3-benzo­thia­zin-4-one 1-oxide (III) (Yennawar et al. 2017[Yennawar, H. P., Fox, R., Moyer, Q. J., Yang, Z. & Silverberg, L. J. (2017). Acta Cryst. E73 1189-1191.]), both compounds crystallize in the monoclinic space group P21/n, with very similar unit-cell parameters. Their crystal structures are nearly identical. The thia­zine ring in both compounds has a screw-boat conformation [puckering parameters for (I): (Q) = 0.6996 (13) Å, θ = 114.66 (12)° and φ = 205.32 (14)°; puckering parameters for (III): (Q) = 0.686 (2) Å, θ = 114.37 (17)° and φ = 210.6 (2) °]. Atom O1, on the sulfur atom, S1, of the thia­zine ring is pseudo-axial on the thia­zine ring and trans to the phenyl ring on C1, as observed for (III) and 2,3-diphenyl-2,3,5,6-tetra­hydro-4H-1,3-thia­zin-4-one 1-oxide (IV) (Yennawar et al., 2016[Yennawar, H. P., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1541-1543.]).

[Figure 2]
Figure 2
The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level..

The crystal packing of the title compound (I), is identical to that observed for compound (III), hence the supra­molecular features are common to both. Mol­ecules related by a 21 screw axis are linked by C1—H1⋯O2i hydrogen bonds, forming helices propagating along the b-axis direction (Table 1[link] and Fig. 3[link]). While C—H⋯O type inter­actions are also present in compound (IV), here the oxygen at position 1 (⋯O=S) is the acceptor of the H atom at the chiral C atom, thus forming helices propagating along the c-axis direction. The helices are linked by C—H⋯π inter­actions forming a three-dimensional supra­molecular structure. In compound (II), there are no C—H⋯O hydrogen bonds present, only C—H..π inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.98 2.30 3.249 (2) 163
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Crystal packing diagram showing C—H⋯O contacts as dotted red lines between molecules of (I), which form helical chains along b-axis direction.

Synthesis and crystallization

A 5 ml round-bottom flask was charged with 49.5 mg of 2,3-diphenyl-2,3-di­hydro-4H-pyrido[3,2-e][1,3]thia­zin-4-one and 1 ml of methanol and the mixture stirred. A solution of 75.5 mg Oxone® and 0.63 ml of distilled water was added dropwise, and the mixture was stirred until the reaction was complete, as determined by TLC. The solids were dissolved by addition of 6.3 ml distilled water. The solution was extracted twice with di­chloro­methane. The combined organic phases were washed with a sat. sodium chloride solution. The solution was dried over Na2SO4 and concentrated under vacuum to give a crude solid. Recrystallization from CH2Cl2/hexa­nes gave 35.5 mg of the title compound (68% yield, m.p. 450–551 K). Colourless thin plate-like crystals, suitable for X-ray diffraction analysis, were grown by slow evaporation of a solution in toluene.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H14N2O2S
Mr 334.38
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 9.1633 (15), 11.0861 (18), 16.250 (3)
β (°) 104.011 (3)
V3) 1601.7 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.29 × 0.15 × 0.05
 
Data collection
Diffractometer Bruker CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.794, 0.9
No. of measured, independent and observed [I > 2σ(I)] reflections 10735, 3917, 3163
Rint 0.024
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.150, 1.07
No. of reflections 3917
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.34
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS and SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2,3-Diphenyl-2,3-dihydro-4H-pyrido[3,2-e][1,3]thiazin-4-one 1-oxide top
Crystal data top
C19H14N2O2SF(000) = 696
Mr = 334.38Dx = 1.387 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.1633 (15) ÅCell parameters from 3767 reflections
b = 11.0861 (18) Åθ = 2.3–28.2°
c = 16.250 (3) ŵ = 0.22 mm1
β = 104.011 (3)°T = 298 K
V = 1601.7 (5) Å3Plate, colorless
Z = 40.29 × 0.15 × 0.05 mm
Data collection top
Bruker CCD area detector
diffractometer
3917 independent reflections
Radiation source: fine-focus sealed tube3163 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
phi and ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 712
Tmin = 0.794, Tmax = 0.9k = 1414
10735 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
3917 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.34 e Å3
Special details top

Experimental. The data collection nominally covered a full sphere of reciprocal space by a combination of 4 sets of ω scans each set at different φ and/or 2θ angles and each scan (5 s exposure) covering -0.300° degrees in ω. The crystal to detector distance was 5.82 cm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.30471 (18)0.62077 (13)0.18068 (9)0.0335 (3)
H10.31350.55300.22030.040*
C20.15996 (18)0.81146 (13)0.16516 (9)0.0324 (3)
C30.17155 (17)0.81522 (14)0.07510 (9)0.0323 (3)
C40.18742 (18)0.71236 (14)0.02869 (9)0.0349 (3)
C50.1838 (2)0.81999 (19)0.09076 (11)0.0518 (5)
H50.18900.82270.14720.062*
C60.1664 (2)0.92662 (17)0.05124 (11)0.0495 (5)
H60.15880.99920.08070.059*
C70.16044 (19)0.92452 (15)0.03313 (10)0.0405 (4)
H70.14910.99580.06120.049*
C80.19571 (18)0.70036 (13)0.29588 (9)0.0337 (3)
C90.0847 (2)0.62118 (17)0.30533 (11)0.0438 (4)
H90.03410.57450.25980.053*
C100.0496 (2)0.6120 (2)0.38294 (12)0.0572 (5)
H100.02580.55960.38980.069*
C110.1271 (3)0.6812 (2)0.45089 (13)0.0600 (6)
H110.10160.67660.50280.072*
C120.2407 (3)0.75606 (17)0.44173 (11)0.0562 (5)
H120.29390.80030.48790.067*
C130.2770 (2)0.76636 (15)0.36422 (10)0.0450 (4)
H130.35470.81680.35800.054*
C140.46180 (18)0.65049 (15)0.17426 (9)0.0359 (4)
C150.5491 (2)0.56025 (18)0.15151 (12)0.0520 (5)
H150.50980.48290.14070.062*
C160.6938 (2)0.5836 (2)0.14464 (14)0.0641 (6)
H160.75040.52290.12780.077*
C170.7537 (2)0.6968 (2)0.16282 (13)0.0647 (6)
H170.85150.71250.15890.078*
C180.6701 (2)0.7872 (2)0.18682 (12)0.0563 (5)
H180.71150.86350.19960.068*
C190.5238 (2)0.76419 (17)0.19187 (10)0.0445 (4)
H190.46680.82580.20720.053*
N10.22476 (15)0.71606 (11)0.21339 (7)0.0322 (3)
N20.19379 (18)0.71156 (14)0.05230 (9)0.0463 (4)
O10.03546 (15)0.55035 (11)0.09257 (8)0.0509 (3)
O20.09481 (14)0.89182 (10)0.19355 (7)0.0454 (3)
S10.18764 (5)0.56726 (3)0.07754 (2)0.03877 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0385 (9)0.0304 (7)0.0330 (7)0.0053 (6)0.0113 (6)0.0025 (6)
C20.0319 (8)0.0317 (7)0.0320 (7)0.0013 (6)0.0048 (6)0.0022 (5)
C30.0278 (8)0.0365 (8)0.0310 (7)0.0015 (6)0.0039 (6)0.0005 (5)
C40.0320 (8)0.0404 (8)0.0311 (7)0.0022 (6)0.0049 (6)0.0026 (6)
C50.0521 (12)0.0710 (13)0.0306 (8)0.0095 (9)0.0069 (8)0.0035 (8)
C60.0508 (11)0.0540 (11)0.0411 (9)0.0012 (8)0.0059 (8)0.0150 (8)
C70.0400 (9)0.0399 (9)0.0397 (9)0.0026 (7)0.0060 (7)0.0053 (6)
C80.0340 (8)0.0374 (8)0.0298 (7)0.0072 (6)0.0079 (6)0.0017 (6)
C90.0359 (9)0.0560 (11)0.0388 (9)0.0003 (8)0.0080 (7)0.0035 (7)
C100.0489 (12)0.0719 (13)0.0566 (12)0.0021 (10)0.0240 (9)0.0140 (10)
C110.0822 (16)0.0649 (13)0.0404 (10)0.0178 (11)0.0294 (11)0.0062 (8)
C120.0882 (16)0.0459 (10)0.0332 (8)0.0089 (10)0.0121 (9)0.0040 (7)
C130.0566 (12)0.0395 (9)0.0372 (8)0.0010 (8)0.0082 (8)0.0012 (7)
C140.0337 (8)0.0458 (9)0.0282 (7)0.0070 (7)0.0073 (6)0.0077 (6)
C150.0470 (11)0.0553 (11)0.0552 (11)0.0148 (8)0.0155 (9)0.0038 (8)
C160.0433 (11)0.0910 (17)0.0621 (13)0.0241 (11)0.0205 (10)0.0110 (11)
C170.0348 (10)0.1087 (19)0.0510 (11)0.0082 (11)0.0109 (9)0.0279 (11)
C180.0426 (11)0.0740 (13)0.0483 (10)0.0096 (10)0.0034 (9)0.0169 (9)
C190.0396 (10)0.0509 (10)0.0411 (9)0.0019 (8)0.0060 (7)0.0068 (7)
N10.0369 (7)0.0322 (6)0.0280 (6)0.0052 (5)0.0090 (5)0.0007 (5)
N20.0489 (9)0.0564 (9)0.0328 (7)0.0077 (7)0.0084 (6)0.0068 (6)
O10.0439 (8)0.0531 (7)0.0565 (8)0.0150 (6)0.0139 (6)0.0074 (6)
O20.0553 (8)0.0407 (6)0.0408 (6)0.0153 (5)0.0128 (6)0.0013 (5)
S10.0433 (3)0.0331 (2)0.0410 (2)0.00253 (16)0.01232 (19)0.00753 (15)
Geometric parameters (Å, º) top
C1—C141.505 (2)C8—C131.387 (2)
C1—N11.4573 (19)C8—N11.4391 (19)
C1—S11.8550 (15)C9—C101.379 (2)
C2—C31.493 (2)C10—C111.390 (3)
C2—N11.3639 (19)C11—C121.367 (3)
C2—O21.2232 (18)C12—C131.383 (3)
C3—C41.394 (2)C14—C151.386 (2)
C3—C71.382 (2)C14—C191.384 (2)
C4—N21.331 (2)C15—C161.382 (3)
C4—S11.7936 (16)C16—C171.373 (3)
C5—C61.373 (3)C17—C181.374 (3)
C5—N21.348 (2)C18—C191.386 (3)
C6—C71.386 (2)O1—S11.4847 (13)
C8—C91.380 (2)
C14—C1—S1111.16 (10)C9—C10—C11119.90 (19)
N1—C1—C14116.13 (13)C12—C11—C10120.29 (18)
N1—C1—S1109.24 (10)C11—C12—C13120.44 (18)
N1—C2—C3117.41 (13)C12—C13—C8118.99 (18)
O2—C2—C3120.42 (14)C15—C14—C1118.95 (16)
O2—C2—N1122.16 (14)C19—C14—C1122.48 (15)
C4—C3—C2123.29 (14)C19—C14—C15118.56 (18)
C7—C3—C2119.59 (14)C16—C15—C14120.9 (2)
C7—C3—C4117.07 (14)C17—C16—C15119.7 (2)
C3—C4—S1118.89 (12)C16—C17—C18120.4 (2)
N2—C4—C3125.13 (15)C17—C18—C19119.8 (2)
N2—C4—S1115.85 (12)C14—C19—C18120.65 (18)
N2—C5—C6123.61 (16)C2—N1—C1122.68 (12)
C5—C6—C7119.04 (16)C2—N1—C8118.43 (12)
C3—C7—C6119.15 (15)C8—N1—C1118.34 (12)
C9—C8—C13120.92 (16)C4—N2—C5115.99 (15)
C9—C8—N1119.23 (14)C4—S1—C192.96 (7)
C13—C8—N1119.84 (15)O1—S1—C1104.62 (7)
C10—C9—C8119.36 (17)O1—S1—C4106.59 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.982.303.249 (2)163
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

We thank Penn State Schuylkill for financial support and NSF funding (CHEM-0131112) for the X-ray diffractometer.

References

First citationArya, K., Tomar, P. & Singh, J. (2014). RSC Adv. 4, 3060–3064.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCannon, K., Gandla, D., Lauro, S., Silverberg, L., Tierney, J. & Lagalante, A. (2015). Intl. J. Chem. (Toronto, ON, Can.), 7(2), 73–84.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGududuru, V., Hurh, E., Dalton, J. T. & Miller, D. D. (2004). Bioorg. Med. Chem. Lett. 14, 5289–5293.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilverberg, L. J., Pacheco, C. N., Lagalante, A., Cannon, K. C., Bachert, J. T., Xie, Y., Baker, L. & Bayliff, J. A. (2015). Intl. J. Chem. (Toronto, ON, Can.), 7(2), 150-162.  Google Scholar
First citationSurrey, A. R. (1963). US Patent 3082209.  Google Scholar
First citationSurrey, A. R., Webb, W. G. & Gesler, R. M. (1958). J. Am. Chem. Soc. 80, 3469–3471.  CrossRef CAS Web of Science Google Scholar
First citationYennawar, H. P., Fox, R., Moyer, Q. J., Yang, Z. & Silverberg, L. J. (2017). Acta Cryst. E73 1189–1191.  CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P., Singh, H. & Silverberg, L. J. (2014). Acta Cryst. E70, o638.  CSD CrossRef IUCr Journals Google Scholar
First citationYennawar, H. P., Yang, Z. & Silverberg, L. J. (2016). Acta Cryst. E72, 1541–1543.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds