organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(R*)-1-Benzyl-3-(2-hy­dr­oxy­phen­yl)indoline-2-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, S.D.N.B. Vaishnav College for Women, Chrompet, Chennai 600 044, India, and bIndustrial Chemistry Polymer Division, CSIR Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: lakssdnbvc@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 18 July 2017; accepted 8 August 2017; online 15 August 2017)

The title compound, C21H17NO2, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. The indoline ring system is almost planar in both mol­ecules (r.m.s. deviations = 0.020 and 0.024 Å for mol­ecules A and B, respectively). The benzyl and phenol rings are inclined to the indole ring system by 80.39 (12) and 68.39 (12)° in mol­ecule A, and by 79.90 (13) and 74.88 (10)° in mol­ecule B. The aryl rings are inclined to one another by 33.30 (14) and 30.62 (14)° in mol­ecules A and B, respectively. In the crystal, A mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers. The same situation is observed for the B mol­ecules and both sets of inversion dimers enclose R22(14) ring motifs. These dimers stack along the a-axis direction and are linked by offset ππ inter­actions [inter­centroid distance = 3.6802 (13) Å] involving A and B indole ring systems, forming layers parallel to the ab plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Isatin is a starting material for the synthesis of a number of organic compounds (Hajare & Chavan, 2014[Hajare, R. A. & Chavan, A. D. (2014). World. J. Pharm. Pharm. Sci, 3, 1825-1839.]). Isatin and its metabolites are constituents of many natural substances (Medvedev et al., 2007[Medvedev, A., Buneeva, O. & Glover, V. (2007). Biologics, 1, 151-162.]). It is found in humans and acts as a metabolic derivative of adrenaline (Sonawane & Tripathi, 2013[Sonawane, R. P. & Tripathi, R. R. (2013). Int. Lett. Chem. Phys. Astron. 12, 30-36.]). It exhibits endogamous activity in mammals (Chaudhary et al., 2013[Chaudhary, D. K., Ahmad, S., Maity, S. & Alam, M. S. (2013). Der Pharm. Lett, 5, 285-295.]) and has shown cardioinhibitory effects on a frog's heart, and hypotensive, respiratory depression and anti­diuretic effects (Pandeya et al., 2005[Pandeya, S. N., Smitha, S., Jyoti, M. & Sridhar, S. K. (2005). Acta Pharm. 55, 27-46.]). Isatin also possess anti­cancer (Khan et al., 2015[Khan, F. A. & Maalik, A. (2015). Trop. J. Pharm. Res. 14, 1937-1942.]), anti­oxidant (Sammaiah & Pragathi, 2014[Sammaiah, G. & Pragathi, K. (2014). World. J. Pharm. Pharm. Sci, 3, 556-565.]), anti­viral (Gomathi et al., 2013[Gomathi, R., Ram, A. & Murugan, A. (2013). Int. J. Innov. Res. Sci. Eng. Technol. 2, 5156-5166.]), anti­microbial (Saxena et al., 2015[Saxena, A., Sharma, S. & Husin, A. (2015). World. J. Pharm. Pharm. Sci, 4, 497-505.]), analgesic (Pal et al., 201), anti-inflammatory (Hajare & Chinchole, 2013[Hajare, R. A. & Chinchole, P. P. (2013). Int. J. Chem. Pharm. Sci. 1, 208-214.]), anti­tubercular (Aboul-fadl & Bin-Jubair, 2010[Aboul-fadl, T. & Bin-Jubair, F. A. S. (2010). Int. J. Res. Pharm. Sci, 1, 113-126.]), anti­convulsant (Raj, 2012[Raj, V. (2012). Int. J. Curr. Pharm. Res, 4, 1-9.]) and anti­anxiety (Grewal, 2014[Grewal, A. S. (2014). Int. J. Pharm. Res, 6, 1-7.]) activities.

The title compound, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit (Fig. 1[link]). The indoline ring system is nearly planar in both mol­ecules, the largest deviation from the mean plane being 0.042 (2) Å for atom C7 in mol­ecule A and 0.080 (2) Å for atom O3 in mol­ecule B. The dihedral angle between the isatin group and the phenol and benzyl rings are, respectively, 68.39 (12) and 80.39 (12)° for mol­ecule A and 74.88 (10) and 79.90 (13)° for mol­ecule B. The dihedral angle between the aryl rings is 33.30 (14)° for mol­ecule A and 30.62 (14)° for mol­ecule B.

[Figure 1]
Figure 1
The mol­ecular structure of the two independent mol­ecules (A and B) of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In the crystal, the A mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming AA inversion dimers. Likewise, the B mol­ecules are also linked by a pair of O—H⋯O hydrogen bonds, forming BB inversion dimers (see Table 1[link] and Fig. 2[link]). Both dimers enclose [R_{2}^{2}](14) ring motifs. These dimers stack along the a-axis direction and are linked by offset ππ inter­actions, involving A and B indole ring systems (Fig. 3[link]), forming layers parallel to the ab plane [Cg1⋯Cg2i = 3.743 (1) Å, inter­planar distance = 3.557 (1) Å, Cg1 and Cg2 are the centroids of the indole rings N1/C5–C8 and N2/C26–C29, respectively; symmetry code: (i) x, y, z].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.93 2.721 (3) 160
O4—H4⋯O3ii 0.82 1.95 2.735 (3) 160
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
A partial view along the a axis of the crystal packing of the title compound, showing the formation of the O—H⋯O hydrogen-bonded AA (blue) and BB (red) inversion dimers (see Table 1[link]; hydrogen bonds are shown as dashed lines).
[Figure 3]
Figure 3
A view along the c axis of the crystal packing of the title compound. The ππ inter­actions are shown as double black arrows and the hydrogen bonds as dashed lines (see Table 1[link]; colour code: A mol­ecules blue, B mol­ecule red).

Synthesis and crystallization

An isatin-based MBH of adduct 1-benzyl-3-hy­droxy-3-(6-oxo­cyclo­hex-1-en-1-yl)indolin-2-one (200 mg, 0.5 mmol, 1.0 equiv.) in 15 ml of dry di­chloro­methane was deposited dropwise in a flame-dried round-bottom flask equipped with a magnetic stirring bar and the solution was stirred vigorously to obtain a homogenous mixture. The resulting solution was purged with nitro­gen gas for 15 min. Tri­fluoro­acetic anhydride (0.06 ml, 0.12 mmol, and 1.5 equiv) was added dropwise to the reaction mixture and then di­methyl­amino­pyridine (20 mg, 30 mol %) was added dropwise at 273 K. The reaction mixture was gradually brought to room temperature and stirred for a further 5 h. After completion of the reaction (monitored by TLC), the mixture was diluted with CH2Cl2 and the organic layer was washed sequentially with 2 N HCl solution, H2O, and brine, then dried over Na2SO4, filtered and concentrated under reduced pressure. It was then purified by silica gel column chromatography using hexa­ne: EtOAc (8:2) as eluent and afforded the title compound. Colourless block-like crystals were obtained by slow evaporation of a solution in CH2Cl2:aceto­nitrile (1:1, v/v).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H17NO2
Mr 315.36
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 11.1344 (6), 12.0889 (5), 12.4679 (6)
α, β, γ (°) 89.171 (3), 79.125 (3), 84.202 (3)
V3) 1639.62 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.35 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.972, 0.984
No. of measured, independent and observed [I > 2σ(I)] reflections 26691, 5763, 3525
Rint 0.035
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.197, 1.02
No. of reflections 5763
No. of parameters 433
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek,2009); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(R*)-1-Benzyl-3-(2-hydroxyphenyl)indoline-2-one top
Crystal data top
C21H17NO2Z = 4
Mr = 315.36F(000) = 664
Triclinic, P1Dx = 1.278 Mg m3
a = 11.1344 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.0889 (5) ÅCell parameters from 8113 reflections
c = 12.4679 (6) Åθ = 2.4–25.7°
α = 89.171 (3)°µ = 0.08 mm1
β = 79.125 (3)°T = 296 K
γ = 84.202 (3)°Block, colourless
V = 1639.62 (14) Å30.35 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3525 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.035
ω and φ scanθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1313
Tmin = 0.972, Tmax = 0.984k = 1414
26691 measured reflectionsl = 1414
5763 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1204P)2 + 0.1554P]
where P = (Fo2 + 2Fc2)/3
5763 reflections(Δ/σ)max < 0.001
433 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.46387 (17)0.61250 (15)0.44690 (15)0.0685 (5)
H40.4921500.5771560.3906100.103*
N20.38028 (18)0.69335 (16)0.82332 (15)0.0503 (5)
O30.43219 (19)0.54674 (15)0.70547 (15)0.0718 (6)
C260.3491 (2)0.80907 (19)0.8179 (2)0.0484 (6)
C370.5165 (2)0.74505 (18)0.56209 (18)0.0456 (6)
C280.3937 (2)0.73869 (19)0.63812 (19)0.0494 (6)
H280.3305560.7249900.5961450.059*
C270.3521 (2)0.8390 (2)0.7102 (2)0.0501 (6)
C420.5483 (2)0.67851 (19)0.46908 (19)0.0489 (6)
C290.4045 (2)0.6465 (2)0.7224 (2)0.0522 (6)
C310.4977 (2)0.65051 (19)0.97035 (19)0.0486 (6)
C410.6625 (3)0.6816 (2)0.4024 (2)0.0590 (7)
H410.6841610.6367260.3404860.071*
C50.0533 (2)0.7082 (2)0.8208 (3)0.0636 (7)
O10.0392 (2)0.80217 (16)0.5609 (2)0.0898 (7)
O20.00597 (18)1.06347 (16)0.61019 (19)0.0867 (7)
H20.0163431.1159710.5694350.130*
C300.3871 (2)0.6317 (2)0.9235 (2)0.0550 (6)
H30A0.3887060.5529290.9086500.066*
H30B0.3137380.6532660.9772350.066*
C100.0150 (2)0.5262 (2)0.6615 (2)0.0570 (7)
C160.1160 (2)0.9517 (2)0.7407 (2)0.0609 (7)
N10.0688 (2)0.69565 (18)0.7074 (2)0.0666 (6)
C250.3207 (2)0.8848 (2)0.9022 (2)0.0591 (7)
H250.3192390.8628220.9742430.071*
C210.1169 (3)1.0392 (2)0.6678 (2)0.0667 (8)
C380.6004 (2)0.8135 (2)0.5845 (2)0.0580 (7)
H380.5797260.8586380.6463590.070*
C80.0386 (2)0.7933 (2)0.6585 (3)0.0689 (8)
C400.7439 (3)0.7510 (2)0.4276 (2)0.0677 (8)
H400.8202680.7528200.3823630.081*
C70.0038 (2)0.8830 (2)0.7478 (2)0.0648 (7)
H70.0687460.9332630.7372480.078*
C220.3256 (2)0.9492 (2)0.6852 (2)0.0632 (7)
H220.3273280.9711790.6131310.076*
C240.2945 (3)0.9949 (2)0.8759 (3)0.0694 (8)
H240.2754221.0483070.9311090.083*
C110.0165 (3)0.4223 (2)0.7062 (2)0.0683 (8)
H110.0519600.3907600.7323650.082*
C170.2264 (3)0.9277 (2)0.8038 (2)0.0690 (8)
H170.2272020.8698560.8538750.083*
C60.0122 (2)0.8185 (2)0.8486 (3)0.0643 (7)
C390.7136 (3)0.8171 (2)0.5184 (2)0.0672 (8)
H390.7687290.8640140.5353080.081*
C130.2193 (3)0.4095 (3)0.6766 (2)0.0700 (8)
H130.2876950.3702380.6810140.084*
C180.3357 (3)0.9886 (3)0.7934 (3)0.0802 (9)
H180.4093990.9725730.8367340.096*
C10.0093 (3)0.8493 (3)0.9580 (3)0.0779 (9)
H10.0380620.9222000.9789990.093*
C360.4861 (3)0.6869 (2)1.0755 (2)0.0718 (8)
H360.4080380.7023981.1176240.086*
C20.0125 (3)0.7706 (3)1.0350 (3)0.0879 (10)
H2A0.0011370.7909741.1082360.106*
C200.2257 (3)1.0979 (2)0.6558 (3)0.0780 (9)
H200.2259731.1549590.6050210.094*
C230.2962 (3)1.0267 (2)0.7696 (3)0.0726 (8)
H230.2773731.1011920.7538980.087*
C40.0742 (3)0.6298 (3)0.8971 (3)0.0727 (8)
H4A0.1012070.5565160.8765580.087*
C90.0963 (3)0.5902 (2)0.6491 (3)0.0709 (8)
H9A0.1612860.5458780.6767350.085*
H9B0.1255750.6039280.5722330.085*
C30.0542 (3)0.6621 (3)1.0051 (3)0.0835 (9)
H30.0689830.6102881.0581220.100*
C190.3343 (3)1.0721 (3)0.7191 (3)0.0841 (10)
H190.4077841.1123890.7109970.101*
C320.6145 (3)0.6286 (3)0.9098 (3)0.0751 (8)
H320.6252520.6034690.8381440.090*
C150.1186 (3)0.5711 (2)0.6259 (2)0.0710 (8)
H150.1200360.6420280.5959980.085*
C120.1174 (3)0.3632 (2)0.7134 (3)0.0777 (9)
H120.1161150.2922200.7430910.093*
C140.2197 (3)0.5139 (3)0.6335 (2)0.0761 (8)
H140.2890450.5462810.6091070.091*
C350.5864 (4)0.7011 (3)1.1198 (3)0.0973 (12)
H350.5759430.7256241.1916770.117*
C330.7156 (3)0.6440 (3)0.9551 (4)0.0982 (12)
H330.7942590.6297540.9137350.118*
C340.7003 (4)0.6798 (3)1.0604 (5)0.1030 (14)
H340.7685060.6896141.0910630.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0774 (13)0.0655 (12)0.0685 (12)0.0134 (10)0.0242 (10)0.0221 (9)
N20.0550 (12)0.0461 (12)0.0513 (12)0.0111 (9)0.0102 (10)0.0048 (9)
O30.1073 (16)0.0436 (11)0.0650 (12)0.0164 (10)0.0124 (10)0.0084 (8)
C260.0399 (13)0.0483 (14)0.0569 (15)0.0079 (10)0.0066 (11)0.0065 (11)
C370.0500 (14)0.0419 (13)0.0478 (13)0.0053 (10)0.0160 (11)0.0022 (10)
C280.0519 (14)0.0496 (14)0.0507 (14)0.0110 (11)0.0163 (11)0.0057 (11)
C270.0426 (13)0.0500 (14)0.0578 (15)0.0070 (10)0.0085 (11)0.0049 (11)
C420.0603 (16)0.0421 (13)0.0485 (14)0.0038 (11)0.0213 (12)0.0005 (11)
C290.0508 (15)0.0493 (16)0.0590 (15)0.0145 (11)0.0112 (12)0.0076 (12)
C310.0512 (15)0.0418 (13)0.0524 (14)0.0096 (10)0.0069 (12)0.0047 (11)
C410.0724 (19)0.0532 (15)0.0485 (14)0.0038 (13)0.0090 (13)0.0042 (11)
C50.0380 (14)0.0608 (18)0.092 (2)0.0133 (12)0.0069 (14)0.0085 (16)
O10.1099 (18)0.0655 (13)0.0787 (15)0.0053 (12)0.0197 (13)0.0025 (11)
O20.0701 (14)0.0613 (12)0.1211 (18)0.0184 (10)0.0067 (12)0.0114 (12)
C300.0575 (15)0.0558 (15)0.0528 (14)0.0174 (12)0.0069 (12)0.0029 (12)
C100.0591 (17)0.0497 (15)0.0562 (15)0.0016 (12)0.0018 (12)0.0111 (12)
C160.0520 (16)0.0478 (15)0.0802 (18)0.0153 (12)0.0007 (13)0.0177 (13)
N10.0558 (14)0.0536 (14)0.0845 (17)0.0089 (10)0.0041 (12)0.0108 (12)
C250.0572 (16)0.0581 (16)0.0578 (15)0.0057 (12)0.0004 (12)0.0115 (12)
C210.0587 (18)0.0454 (15)0.092 (2)0.0123 (13)0.0007 (15)0.0161 (14)
C380.0582 (16)0.0567 (15)0.0610 (16)0.0092 (12)0.0134 (13)0.0141 (12)
C80.0509 (17)0.0581 (18)0.088 (2)0.0095 (13)0.0134 (15)0.0064 (16)
C400.0599 (17)0.0609 (17)0.0768 (19)0.0066 (14)0.0011 (14)0.0045 (15)
C70.0474 (15)0.0502 (15)0.093 (2)0.0155 (12)0.0027 (14)0.0117 (15)
C220.0614 (17)0.0571 (17)0.0697 (17)0.0020 (13)0.0109 (14)0.0022 (14)
C240.0649 (18)0.0572 (17)0.079 (2)0.0022 (13)0.0011 (15)0.0188 (15)
C110.0670 (18)0.0516 (16)0.088 (2)0.0033 (13)0.0225 (16)0.0061 (14)
C170.0569 (18)0.0725 (19)0.0762 (19)0.0184 (15)0.0010 (15)0.0185 (15)
C60.0453 (15)0.0583 (17)0.088 (2)0.0143 (12)0.0031 (14)0.0142 (15)
C390.0580 (17)0.0588 (17)0.086 (2)0.0161 (13)0.0110 (15)0.0076 (15)
C130.073 (2)0.075 (2)0.0657 (17)0.0189 (16)0.0169 (15)0.0033 (15)
C180.0542 (19)0.091 (2)0.092 (2)0.0155 (17)0.0013 (16)0.031 (2)
C10.0603 (19)0.071 (2)0.103 (3)0.0149 (15)0.0110 (17)0.0228 (19)
C360.073 (2)0.079 (2)0.0649 (18)0.0019 (15)0.0204 (15)0.0119 (15)
C20.074 (2)0.106 (3)0.089 (2)0.0201 (19)0.0206 (18)0.012 (2)
C200.077 (2)0.0543 (17)0.102 (2)0.0088 (15)0.0115 (18)0.0159 (16)
C230.0681 (19)0.0467 (16)0.097 (2)0.0043 (13)0.0051 (16)0.0072 (16)
C40.0515 (17)0.0682 (19)0.099 (2)0.0089 (14)0.0147 (16)0.0056 (18)
C90.0577 (17)0.0554 (16)0.090 (2)0.0020 (13)0.0099 (15)0.0146 (15)
C30.063 (2)0.091 (3)0.101 (3)0.0152 (17)0.0232 (18)0.001 (2)
C190.061 (2)0.080 (2)0.111 (3)0.0014 (16)0.0157 (19)0.033 (2)
C320.0594 (19)0.088 (2)0.0713 (19)0.0060 (15)0.0015 (15)0.0098 (16)
C150.081 (2)0.0563 (16)0.0761 (19)0.0048 (15)0.0175 (16)0.0079 (14)
C120.093 (2)0.0561 (17)0.092 (2)0.0187 (16)0.0321 (19)0.0075 (16)
C140.074 (2)0.082 (2)0.0760 (19)0.0005 (16)0.0275 (16)0.0025 (16)
C350.118 (3)0.083 (2)0.106 (3)0.001 (2)0.063 (3)0.015 (2)
C330.050 (2)0.110 (3)0.132 (3)0.0178 (18)0.008 (2)0.042 (3)
C340.095 (3)0.076 (2)0.160 (4)0.031 (2)0.070 (3)0.031 (3)
Geometric parameters (Å, º) top
O4—C421.361 (3)C40—H400.9300
O4—H40.8200C7—C61.483 (4)
N2—C291.355 (3)C7—H70.9800
N2—C261.411 (3)C22—C231.390 (4)
N2—C301.456 (3)C22—H220.9300
O3—C291.226 (3)C24—C231.371 (4)
C26—C251.374 (3)C24—H240.9300
C26—C271.382 (3)C11—C121.379 (4)
C37—C381.377 (3)C11—H110.9300
C37—C421.390 (3)C17—C181.385 (4)
C37—C281.518 (3)C17—H170.9300
C28—C271.502 (3)C6—C11.389 (4)
C28—C291.532 (3)C39—H390.9300
C28—H280.9800C13—C141.364 (4)
C27—C221.379 (3)C13—C121.368 (4)
C42—C411.385 (4)C13—H130.9300
C31—C361.367 (4)C18—C191.359 (5)
C31—C321.377 (4)C18—H180.9300
C31—C301.497 (3)C1—C21.379 (5)
C41—C401.375 (4)C1—H10.9300
C41—H410.9300C36—C351.362 (5)
C5—C41.366 (4)C36—H360.9300
C5—C61.392 (4)C2—C31.379 (5)
C5—N11.401 (4)C2—H2A0.9300
O1—C81.220 (4)C20—C191.375 (4)
O2—C211.364 (3)C20—H200.9300
O2—H20.8200C23—H230.9300
C30—H30A0.9700C4—C31.378 (5)
C30—H30B0.9700C4—H4A0.9300
C10—C111.367 (4)C9—H9A0.9700
C10—C151.372 (4)C9—H9B0.9700
C10—C91.508 (4)C3—H30.9300
C16—C171.384 (4)C19—H190.9300
C16—C211.386 (4)C32—C331.381 (5)
C16—C71.514 (4)C32—H320.9300
N1—C81.362 (4)C15—C141.368 (4)
N1—C91.452 (4)C15—H150.9300
C25—C241.382 (4)C12—H120.9300
C25—H250.9300C14—H140.9300
C21—C201.373 (4)C35—C341.346 (6)
C38—C391.374 (4)C35—H350.9300
C38—H380.9300C33—C341.363 (6)
C8—C71.533 (4)C33—H330.9300
C40—C391.365 (4)C34—H340.9300
C42—O4—H4109.5C23—C22—H22120.6
C29—N2—C26111.12 (19)C23—C24—C25121.0 (3)
C29—N2—C30124.0 (2)C23—C24—H24119.5
C26—N2—C30124.8 (2)C25—C24—H24119.5
C25—C26—C27122.7 (2)C10—C11—C12121.5 (3)
C25—C26—N2128.2 (2)C10—C11—H11119.3
C27—C26—N2109.1 (2)C12—C11—H11119.3
C38—C37—C42118.4 (2)C18—C17—C16120.9 (3)
C38—C37—C28121.5 (2)C18—C17—H17119.6
C42—C37—C28120.2 (2)C16—C17—H17119.6
C27—C28—C37114.06 (18)C1—C6—C5118.6 (3)
C27—C28—C29101.62 (19)C1—C6—C7132.1 (3)
C37—C28—C29110.23 (19)C5—C6—C7109.3 (3)
C27—C28—H28110.2C40—C39—C38119.0 (2)
C37—C28—H28110.2C40—C39—H39120.5
C29—C28—H28110.2C38—C39—H39120.5
C22—C27—C26119.3 (2)C14—C13—C12119.4 (3)
C22—C27—C28131.1 (2)C14—C13—H13120.3
C26—C27—C28109.5 (2)C12—C13—H13120.3
O4—C42—C41122.4 (2)C19—C18—C17119.4 (3)
O4—C42—C37117.8 (2)C19—C18—H18120.3
C41—C42—C37119.8 (2)C17—C18—H18120.3
O3—C29—N2123.7 (2)C2—C1—C6119.1 (3)
O3—C29—C28127.8 (2)C2—C1—H1120.4
N2—C29—C28108.5 (2)C6—C1—H1120.4
C36—C31—C32117.9 (3)C35—C36—C31121.5 (3)
C36—C31—C30121.1 (2)C35—C36—H36119.2
C32—C31—C30120.9 (2)C31—C36—H36119.2
C40—C41—C42120.2 (3)C3—C2—C1121.1 (3)
C40—C41—H41119.9C3—C2—H2A119.5
C42—C41—H41119.9C1—C2—H2A119.5
C4—C5—C6122.4 (3)C21—C20—C19119.9 (3)
C4—C5—N1128.6 (3)C21—C20—H20120.1
C6—C5—N1109.0 (3)C19—C20—H20120.1
C21—O2—H2109.5C24—C23—C22120.9 (3)
N2—C30—C31113.23 (18)C24—C23—H23119.5
N2—C30—H30A108.9C22—C23—H23119.5
C31—C30—H30A108.9C5—C4—C3118.4 (3)
N2—C30—H30B108.9C5—C4—H4A120.8
C31—C30—H30B108.9C3—C4—H4A120.8
H30A—C30—H30B107.7N1—C9—C10111.9 (2)
C11—C10—C15117.7 (3)N1—C9—H9A109.2
C11—C10—C9122.2 (3)C10—C9—H9A109.2
C15—C10—C9120.1 (3)N1—C9—H9B109.2
C17—C16—C21118.5 (3)C10—C9—H9B109.2
C17—C16—C7121.6 (3)H9A—C9—H9B107.9
C21—C16—C7119.9 (2)C4—C3—C2120.5 (3)
C8—N1—C5111.4 (2)C4—C3—H3119.8
C8—N1—C9122.9 (3)C2—C3—H3119.8
C5—N1—C9125.1 (2)C18—C19—C20120.8 (3)
C26—C25—C24117.4 (2)C18—C19—H19119.6
C26—C25—H25121.3C20—C19—H19119.6
C24—C25—H25121.3C31—C32—C33120.2 (3)
O2—C21—C20122.5 (3)C31—C32—H32119.9
O2—C21—C16117.0 (3)C33—C32—H32119.9
C20—C21—C16120.5 (3)C14—C15—C10121.5 (3)
C39—C38—C37122.0 (2)C14—C15—H15119.3
C39—C38—H38119.0C10—C15—H15119.3
C37—C38—H38119.0C13—C12—C11119.7 (3)
O1—C8—N1123.5 (3)C13—C12—H12120.1
O1—C8—C7128.8 (3)C11—C12—H12120.1
N1—C8—C7107.6 (3)C13—C14—C15120.2 (3)
C39—C40—C41120.6 (3)C13—C14—H14119.9
C39—C40—H40119.7C15—C14—H14119.9
C41—C40—H40119.7C34—C35—C36120.4 (4)
C6—C7—C16118.5 (2)C34—C35—H35119.8
C6—C7—C8102.5 (2)C36—C35—H35119.8
C16—C7—C8112.2 (2)C34—C33—C32120.2 (3)
C6—C7—H7107.7C34—C33—H33119.9
C16—C7—H7107.7C32—C33—H33119.9
C8—C7—H7107.7C35—C34—C33119.8 (3)
C27—C22—C23118.7 (3)C35—C34—H34120.1
C27—C22—H22120.6C33—C34—H34120.1
C29—N2—C26—C25178.9 (2)C21—C16—C7—C882.0 (3)
C30—N2—C26—C250.5 (4)O1—C8—C7—C6175.7 (3)
C29—N2—C26—C270.5 (3)N1—C8—C7—C63.4 (3)
C30—N2—C26—C27179.8 (2)O1—C8—C7—C1647.4 (4)
C38—C37—C28—C2722.5 (3)N1—C8—C7—C16131.7 (2)
C42—C37—C28—C27159.4 (2)C26—C27—C22—C230.3 (4)
C38—C37—C28—C2991.0 (3)C28—C27—C22—C23175.8 (2)
C42—C37—C28—C2987.0 (2)C26—C25—C24—C230.4 (4)
C25—C26—C27—C220.0 (4)C15—C10—C11—C121.4 (4)
N2—C26—C27—C22179.4 (2)C9—C10—C11—C12177.7 (3)
C25—C26—C27—C28176.4 (2)C21—C16—C17—C180.9 (4)
N2—C26—C27—C283.0 (3)C7—C16—C17—C18177.5 (3)
C37—C28—C27—C2261.3 (3)C4—C5—C6—C10.6 (4)
C29—C28—C27—C22179.9 (2)N1—C5—C6—C1180.0 (2)
C37—C28—C27—C26114.6 (2)C4—C5—C6—C7177.6 (2)
C29—C28—C27—C264.0 (2)N1—C5—C6—C71.8 (3)
C38—C37—C42—O4179.0 (2)C16—C7—C6—C154.8 (4)
C28—C37—C42—O42.9 (3)C8—C7—C6—C1179.0 (3)
C38—C37—C42—C410.6 (3)C16—C7—C6—C5127.3 (2)
C28—C37—C42—C41177.5 (2)C8—C7—C6—C53.1 (3)
C26—N2—C29—O3179.0 (2)C41—C40—C39—C380.0 (4)
C30—N2—C29—O31.6 (4)C37—C38—C39—C400.1 (4)
C26—N2—C29—C282.1 (2)C16—C17—C18—C190.8 (4)
C30—N2—C29—C28177.21 (19)C5—C6—C1—C21.0 (4)
C27—C28—C29—O3177.6 (2)C7—C6—C1—C2176.7 (3)
C37—C28—C29—O361.2 (3)C32—C31—C36—C350.2 (4)
C27—C28—C29—N23.7 (2)C30—C31—C36—C35178.0 (3)
C37—C28—C29—N2117.6 (2)C6—C1—C2—C30.5 (5)
O4—C42—C41—C40179.1 (2)O2—C21—C20—C19177.6 (3)
C37—C42—C41—C400.5 (3)C16—C21—C20—C192.1 (4)
C29—N2—C30—C31105.8 (3)C25—C24—C23—C220.7 (4)
C26—N2—C30—C3173.5 (3)C27—C22—C23—C240.6 (4)
C36—C31—C30—N2124.5 (3)C6—C5—C4—C30.4 (4)
C32—C31—C30—N257.3 (3)N1—C5—C4—C3178.9 (3)
C4—C5—N1—C8179.9 (2)C8—N1—C9—C1095.5 (3)
C6—C5—N1—C80.5 (3)C5—N1—C9—C1075.2 (3)
C4—C5—N1—C98.5 (4)C11—C10—C9—N1120.7 (3)
C6—C5—N1—C9172.2 (2)C15—C10—C9—N160.2 (4)
C27—C26—C25—C240.0 (4)C5—C4—C3—C20.9 (4)
N2—C26—C25—C24179.2 (2)C1—C2—C3—C40.5 (5)
C17—C16—C21—O2177.4 (2)C17—C18—C19—C201.1 (5)
C7—C16—C21—O24.2 (4)C21—C20—C19—C180.3 (5)
C17—C16—C21—C202.3 (4)C36—C31—C32—C330.3 (4)
C7—C16—C21—C20176.1 (3)C30—C31—C32—C33178.5 (2)
C42—C37—C38—C390.4 (4)C11—C10—C15—C140.8 (4)
C28—C37—C38—C39177.7 (2)C9—C10—C15—C14178.3 (3)
C5—N1—C8—O1176.6 (3)C14—C13—C12—C110.1 (5)
C9—N1—C8—O14.7 (4)C10—C11—C12—C131.0 (5)
C5—N1—C8—C72.6 (3)C12—C13—C14—C150.8 (5)
C9—N1—C8—C7174.4 (2)C10—C15—C14—C130.3 (5)
C42—C41—C40—C390.2 (4)C31—C36—C35—C340.3 (5)
C17—C16—C7—C622.9 (4)C31—C32—C33—C340.6 (5)
C21—C16—C7—C6158.8 (2)C36—C35—C34—C330.0 (5)
C17—C16—C7—C896.4 (3)C32—C33—C34—C350.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.932.721 (3)160
O4—H4···O3ii0.821.952.735 (3)160
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the single-crystal XRD facility, SAIF IIT Madras, Chennai, for the data collection.

References

First citationAboul-fadl, T. & Bin-Jubair, F. A. S. (2010). Int. J. Res. Pharm. Sci, 1, 113–126.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaudhary, D. K., Ahmad, S., Maity, S. & Alam, M. S. (2013). Der Pharm. Lett, 5, 285–295.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGomathi, R., Ram, A. & Murugan, A. (2013). Int. J. Innov. Res. Sci. Eng. Technol. 2, 5156–5166.  Google Scholar
First citationGrewal, A. S. (2014). Int. J. Pharm. Res, 6, 1–7.  Google Scholar
First citationHajare, R. A. & Chavan, A. D. (2014). World. J. Pharm. Pharm. Sci, 3, 1825–1839.  CAS Google Scholar
First citationHajare, R. A. & Chinchole, P. P. (2013). Int. J. Chem. Pharm. Sci. 1, 208–214.  Google Scholar
First citationKhan, F. A. & Maalik, A. (2015). Trop. J. Pharm. Res. 14, 1937–1942.  Web of Science CrossRef CAS Google Scholar
First citationMedvedev, A., Buneeva, O. & Glover, V. (2007). Biologics, 1, 151-162.  PubMed CAS Google Scholar
First citationPandeya, S. N., Smitha, S., Jyoti, M. & Sridhar, S. K. (2005). Acta Pharm. 55, 27–46.  PubMed CAS Google Scholar
First citationRaj, V. (2012). Int. J. Curr. Pharm. Res, 4, 1–9.  CAS Google Scholar
First citationSammaiah, G. & Pragathi, K. (2014). World. J. Pharm. Pharm. Sci, 3, 556–565.  Google Scholar
First citationSaxena, A., Sharma, S. & Husin, A. (2015). World. J. Pharm. Pharm. Sci, 4, 497–505.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSonawane, R. P. & Tripathi, R. R. (2013). Int. Lett. Chem. Phys. Astron. 12, 30–36.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds