organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Methyl (2R)-2-benzamido-2-{[(1R)-2-meth­­oxy-2-oxo-1-phenyl­eth­yl]amino}­acetate

aFormation Doctorale Molécules Bioactives, Santé et Biotechnologies, Centre détudes Doctorales Sciences et Technologies, LCO, Faculté des Sciences Dhar El Marhaz, Fès, Morocco, bLaboratoire de Chimie Organique, Faculté des Sciences Dhar el Mahraz, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, and cLaboratoire de Chimie des Matériaux et Biotechnologie des Produits Naturels, E.Ma.Me.P.S., Université Moulay Ismail, Faculté des Sciences, Meknès, Morocco
*Correspondence e-mail: anouar.alami@usmba.ac.ma

Edited by J. Simpson, University of Otago, New Zealand (Received 27 July 2017; accepted 4 August 2017; online 11 August 2017)

In the title compound, C19H20N2O5, the dihedral angle between the phenyl rings is 58.85 (8)°, while that between the planes of the methyl acetate groups is 88.30 (8)°. The molecular conformation is also influenced by the presence of an intramolecular N—H⋯O hydrogen bond. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules, forming chains propagating along the a-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The synthesis of new α-AAs (α-amino­acetates) and their esters is of inter­national inter­est because of their extensive applications in enzymology, medicine, pharmacology and industry (Leite et al., 2006[Leite, A. C. L., de Lima, R. S., Moreira, D. R. de M., Cardoso, M. V. de O., Gouveia de Brito, A. C., Farias dos Santos, L. M., Hernandes, M. Z., Kiperstok, A. C., de Lima, R. S. & Soares, M. B. P. (2006). Bioorg. Med. Chem. 14, 3749-3757.]; Mikołajczyk, 2005[Mikołajczyk, M. (2005). J. Organomet. Chem. 690, 2488-2496.]; Joly et al., 2004[Joly, G. D. & Jacobsen, E. N. (2004). J. Am. Chem. Soc. 126, 4102-4103.]). Our strategy used nucleophilic substitution of the N-protected methyl α-azido glycinate with 2-amino-2-phenyl­acetate in methyl­ene chloride, in the presence of tri­ethyl­amine as a base (Boukallaba et al., 2006[Boukallaba, K., Elachqar, A., El Hallaoui, A., Alami, A., El Hajji, S., Labriti, B., Martinez, J. & Rolland, V. (2006). Phosphorus Sulfur Silicon, 181, 819-823.]) to produce the title compound in good yield.

In the title mol­ecule (Fig. 1[link]), the dihedral angles between the phenyl rings and those between the planes of the methyl acetate groups are 58.85 (8) and 88.30 (8)° respectively. The twisted conformation of the molecule is also influenced by the presence of an intramolecular N—H⋯O hydrogen bond (Table 1[link]). In the crystal, N—H⋯O and C—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]) link the mol­ecules into chains propagating along the a-axis direction.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.85 (1) 2.09 (1) 2.9147 (15) 162 (1)
N2—H2N⋯O5 0.85 (1) 2.52 (1) 2.8334 (15) 103 (1)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].
[Figure 1]
Figure 1
The structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres with arbitrary radii.
[Figure 2]
Figure 2
A view of the crystal packing of along the b axis. Hydrogen bonds are drawn as dashed lines.

Synthesis and crystallization

To a stirred solution of methyl 2-amino-2-phenyl­acetate (2 mmol) and tri­ethyl­amine (4 mmol) in 10 ml of dry methyl­ene chloride, N-benzoyl­ated methyl α-azido­glycinate (2.6 mmol) was added. The mixture was stirred at 0°C for 1 h then at room temperature for 16 h. The resulting solution was washed with citric acid (15%), then with a saturated solution of sodium bicarbonate (NaHCO3). Solvents were removed and colourless single crystals of the title compound were obtained by recrystallization from ether (yield = 86%; m.p = 126–128°C.).

1H NMR (300.13 MHz; CDCl3, δH p.p.m.): 3.3 (e, 1H, NH–CH–Ph); 3.51 (s, 3H, –OCH3); 3.78 (s, 3H, –OCH3); 4.65 (s, 1H, NH–CH–Ph); 5.52 (d, 1H, N–CH–N, J = 8.4 Hz); 6.75 (d, 1H, NHBz, J = 8.4 Hz); 7.28–7.82 (m, 10Harom).

13C NMR (75.47 MHz; CDCl3, δC p.p.m.): 52.44 (1C, OCH3); 52.88 (1C, OCH3); 61.97 (1C, NH–CH—Ph); 63.62 (1C, N–CH—N); 127.13–137.48 (10C, Carom); 167.14, 170.14 and 173.63 (3C, CO).

Elemental Analysis: Calculated for C19H20N2O5 (%): C, 64.04; H, 5.66; N, 7.86; Found (%): C 63.84, H 5.67, N 7.89. MS ESI m/z (%) = 356.49.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H20N2O5
Mr 356.37
Crystal system, space group Orthorhombic, P212121
Temperature (K) 173
a, b, c (Å) 9.3432 (6), 10.4314 (8), 18.0901 (14)
V3) 1763.1 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.35 × 0.16 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.967, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 28362, 3455, 3246
Rint 0.029
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.065, 1.04
No. of reflections 3455
No. of parameters 246
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.13
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1822 Friedel pairs
Absolute structure parameter −0.3 (8)
Computer programs: APEX2 and SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Methyl (2R)-2-benzamido-2-{[(1R)-2-methoxy-2-oxo-1-phenylethyl]amino}acetate top
Crystal data top
C19H20N2O5F(000) = 752
Mr = 356.37Dx = 1.343 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 365 reflections
a = 9.3432 (6) Åθ = 1.6–25.2°
b = 10.4314 (8) ŵ = 0.10 mm1
c = 18.0901 (14) ÅT = 173 K
V = 1763.1 (2) Å3Prism, colourless
Z = 40.35 × 0.16 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
3455 independent reflections
Radiation source: fine-focus sealed tube3246 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scanθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 117
Tmin = 0.967, Tmax = 0.986k = 1212
28362 measured reflectionsl = 2222
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0234P)2 + 0.3377P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.14 e Å3
3455 reflectionsΔρmin = 0.13 e Å3
246 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0073 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1822 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.3 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C140.12279 (14)0.23661 (11)0.98202 (7)0.0305 (3)
H140.21020.25800.95260.037*
N10.16831 (11)0.14782 (10)1.03988 (6)0.0315 (2)
O30.15911 (11)0.40644 (9)1.06499 (6)0.0464 (3)
O10.04242 (10)0.16104 (10)1.09856 (6)0.0456 (3)
O20.03638 (11)0.41900 (9)0.99493 (6)0.0475 (3)
C150.06822 (15)0.08188 (12)0.88463 (7)0.0359 (3)
H150.16760.10360.86840.043*
N20.01902 (12)0.18778 (10)0.93039 (6)0.0321 (2)
C120.12463 (14)0.00585 (12)1.14380 (7)0.0330 (3)
C180.06847 (13)0.36261 (11)1.01468 (7)0.0323 (3)
C130.07640 (13)0.11150 (12)1.09329 (7)0.0322 (3)
C10.12382 (16)0.15859 (14)0.79537 (8)0.0452 (3)
H10.14440.22760.82790.054*
C60.02209 (14)0.06888 (13)0.81452 (7)0.0353 (3)
C90.19247 (18)0.19864 (15)1.23588 (9)0.0493 (4)
H90.21460.26931.26690.059*
O50.04305 (14)0.07267 (10)0.96120 (7)0.0620 (3)
C80.27280 (17)0.17514 (15)1.17398 (9)0.0479 (4)
H80.35190.22881.16270.057*
C190.1260 (2)0.53040 (15)1.09662 (10)0.0572 (4)
H19A0.14600.59771.06020.086*
H19B0.18510.54431.14070.086*
H19C0.02460.53321.11040.086*
C70.23931 (16)0.07355 (13)1.12783 (8)0.0423 (3)
H70.29540.05821.08490.051*
C40.0684 (2)0.04241 (16)0.70022 (9)0.0571 (4)
H40.04920.11200.66780.069*
C50.00429 (18)0.03273 (15)0.76647 (8)0.0474 (4)
H50.07300.09600.77940.057*
C110.04614 (19)0.01734 (17)1.20718 (9)0.0560 (4)
H110.03160.03731.21960.067*
C160.07709 (18)0.04722 (14)0.92455 (8)0.0471 (4)
O40.17846 (16)0.11697 (13)0.92196 (8)0.0816 (4)
C30.1684 (2)0.04823 (18)0.68102 (9)0.0619 (5)
H30.21790.04180.63530.074*
C100.0801 (2)0.11964 (19)1.25270 (9)0.0657 (5)
H100.02500.13511.29590.079*
C20.1965 (2)0.14844 (17)0.72849 (9)0.0592 (4)
H20.26600.21100.71550.071*
C170.0486 (3)0.19393 (18)1.00059 (13)0.0933 (8)
H17A0.02250.26370.96690.140*
H17B0.14580.20811.01930.140*
H17C0.01860.19181.04210.140*
H1N0.2540 (14)0.1193 (14)1.0386 (8)0.039 (4)*
H2N0.0591 (14)0.1679 (13)0.9516 (7)0.033 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C140.0284 (6)0.0311 (6)0.0321 (6)0.0018 (5)0.0005 (5)0.0026 (5)
N10.0270 (5)0.0325 (5)0.0352 (5)0.0043 (4)0.0002 (5)0.0039 (4)
O30.0447 (5)0.0364 (5)0.0581 (6)0.0044 (4)0.0181 (5)0.0123 (5)
O10.0363 (5)0.0549 (6)0.0454 (5)0.0140 (5)0.0072 (4)0.0097 (5)
O20.0412 (6)0.0406 (5)0.0607 (6)0.0089 (4)0.0159 (5)0.0052 (5)
C150.0341 (6)0.0374 (7)0.0362 (7)0.0007 (6)0.0017 (5)0.0037 (5)
N20.0307 (5)0.0324 (5)0.0332 (5)0.0013 (4)0.0016 (5)0.0005 (4)
C120.0340 (6)0.0337 (6)0.0314 (6)0.0010 (5)0.0040 (5)0.0003 (5)
C180.0311 (6)0.0305 (6)0.0351 (6)0.0020 (5)0.0040 (5)0.0042 (5)
C130.0322 (6)0.0333 (6)0.0310 (6)0.0022 (5)0.0010 (5)0.0018 (5)
C10.0494 (8)0.0441 (8)0.0421 (7)0.0024 (7)0.0045 (7)0.0009 (6)
C60.0383 (7)0.0365 (7)0.0310 (6)0.0076 (5)0.0033 (5)0.0012 (5)
C90.0577 (9)0.0423 (8)0.0479 (8)0.0024 (7)0.0112 (7)0.0134 (7)
O50.0676 (8)0.0449 (6)0.0736 (8)0.0110 (6)0.0148 (6)0.0246 (6)
C80.0477 (8)0.0397 (7)0.0562 (9)0.0076 (7)0.0043 (7)0.0055 (7)
C190.0653 (10)0.0380 (8)0.0681 (10)0.0046 (7)0.0147 (9)0.0170 (7)
C70.0429 (8)0.0412 (7)0.0427 (7)0.0053 (6)0.0041 (6)0.0062 (6)
C40.0746 (11)0.0543 (9)0.0426 (8)0.0127 (9)0.0008 (8)0.0113 (7)
C50.0570 (9)0.0446 (8)0.0407 (8)0.0036 (7)0.0012 (7)0.0050 (7)
C110.0566 (10)0.0626 (10)0.0487 (8)0.0169 (8)0.0150 (8)0.0159 (8)
C160.0599 (9)0.0377 (7)0.0436 (8)0.0078 (7)0.0176 (7)0.0074 (6)
O40.0964 (10)0.0652 (8)0.0831 (9)0.0450 (8)0.0142 (8)0.0072 (7)
C30.0760 (12)0.0700 (11)0.0397 (8)0.0191 (10)0.0167 (8)0.0003 (8)
C100.0731 (12)0.0746 (12)0.0494 (9)0.0129 (10)0.0160 (9)0.0265 (9)
C20.0636 (10)0.0595 (10)0.0546 (10)0.0007 (9)0.0191 (8)0.0069 (8)
C170.139 (2)0.0537 (11)0.0873 (14)0.0394 (13)0.0489 (15)0.0349 (10)
Geometric parameters (Å, º) top
C14—N21.4395 (16)C9—H90.9500
C14—N11.4610 (16)O5—C161.331 (2)
C14—C181.5277 (17)O5—C171.4527 (19)
C14—H141.0000C8—C71.385 (2)
N1—C131.3469 (17)C8—H80.9500
N1—H1N0.855 (13)C19—H19A0.9800
O3—C181.3246 (15)C19—H19B0.9800
O3—C191.4474 (17)C19—H19C0.9800
O1—C131.2282 (15)C7—H70.9500
O2—C181.1973 (15)C4—C31.374 (3)
C15—N21.4549 (16)C4—C51.381 (2)
C15—C61.5294 (18)C4—H40.9500
C15—C161.530 (2)C5—H50.9500
C15—H151.0000C11—C101.385 (2)
N2—H2N0.850 (12)C11—H110.9500
C12—C111.382 (2)C16—O41.1952 (19)
C12—C71.3848 (19)C3—C21.378 (3)
C12—C131.5009 (17)C3—H30.9500
C1—C61.378 (2)C10—H100.9500
C1—C21.392 (2)C2—H20.9500
C1—H10.9500C17—H17A0.9800
C6—C51.393 (2)C17—H17B0.9800
C9—C81.370 (2)C17—H17C0.9800
C9—C101.369 (2)
N2—C14—N1115.89 (10)C9—C8—H8119.8
N2—C14—C18109.37 (10)C7—C8—H8119.8
N1—C14—C18111.41 (10)O3—C19—H19A109.5
N2—C14—H14106.5O3—C19—H19B109.5
N1—C14—H14106.5H19A—C19—H19B109.5
C18—C14—H14106.5O3—C19—H19C109.5
C13—N1—C14120.44 (11)H19A—C19—H19C109.5
C13—N1—H1N121.3 (10)H19B—C19—H19C109.5
C14—N1—H1N118.2 (10)C12—C7—C8120.44 (14)
C18—O3—C19116.33 (11)C12—C7—H7119.8
N2—C15—C6111.39 (11)C8—C7—H7119.8
N2—C15—C16114.64 (11)C3—C4—C5120.22 (16)
C6—C15—C16110.07 (11)C3—C4—H4119.9
N2—C15—H15106.8C5—C4—H4119.9
C6—C15—H15106.8C4—C5—C6120.67 (15)
C16—C15—H15106.8C4—C5—H5119.7
C14—N2—C15115.15 (10)C6—C5—H5119.7
C14—N2—H2N111.8 (9)C12—C11—C10120.44 (15)
C15—N2—H2N110.0 (10)C12—C11—H11119.8
C11—C12—C7118.61 (13)C10—C11—H11119.8
C11—C12—C13118.31 (12)O4—C16—O5124.52 (15)
C7—C12—C13122.99 (12)O4—C16—C15124.07 (16)
O2—C18—O3123.96 (12)O5—C16—C15111.41 (12)
O2—C18—C14125.39 (12)C4—C3—C2119.61 (15)
O3—C18—C14110.51 (10)C4—C3—H3120.2
O1—C13—N1120.90 (12)C2—C3—H3120.2
O1—C13—C12122.21 (12)C9—C10—C11120.49 (15)
N1—C13—C12116.86 (11)C9—C10—H10119.8
C6—C1—C2120.23 (15)C11—C10—H10119.8
C6—C1—H1119.9C3—C2—C1120.43 (16)
C2—C1—H1119.9C3—C2—H2119.8
C1—C6—C5118.82 (13)C1—C2—H2119.8
C1—C6—C15121.92 (12)O5—C17—H17A109.5
C5—C6—C15119.17 (12)O5—C17—H17B109.5
C8—C9—C10119.61 (14)H17A—C17—H17B109.5
C8—C9—H9120.2O5—C17—H17C109.5
C10—C9—H9120.2H17A—C17—H17C109.5
C16—O5—C17116.64 (16)H17B—C17—H17C109.5
C9—C8—C7120.38 (15)
N2—C14—N1—C1368.46 (15)N2—C15—C6—C5175.99 (12)
C18—C14—N1—C1357.43 (15)C16—C15—C6—C547.69 (17)
N1—C14—N2—C1564.44 (15)C10—C9—C8—C71.2 (2)
C18—C14—N2—C15168.63 (10)C11—C12—C7—C81.0 (2)
C6—C15—N2—C14158.86 (11)C13—C12—C7—C8175.46 (13)
C16—C15—N2—C1475.32 (15)C9—C8—C7—C120.3 (2)
C19—O3—C18—O20.1 (2)C3—C4—C5—C60.3 (2)
C19—O3—C18—C14175.61 (13)C1—C6—C5—C41.1 (2)
N2—C14—C18—O27.24 (17)C15—C6—C5—C4175.50 (14)
N1—C14—C18—O2136.67 (13)C7—C12—C11—C101.4 (2)
N2—C14—C18—O3177.07 (11)C13—C12—C11—C10175.25 (16)
N1—C14—C18—O347.65 (14)C17—O5—C16—O40.2 (2)
C14—N1—C13—O16.90 (19)C17—O5—C16—C15179.10 (13)
C14—N1—C13—C12171.27 (10)N2—C15—C16—O4131.74 (15)
C11—C12—C13—O113.9 (2)C6—C15—C16—O4101.76 (17)
C7—C12—C13—O1162.54 (13)N2—C15—C16—O549.39 (16)
C11—C12—C13—N1167.94 (13)C6—C15—C16—O577.11 (14)
C7—C12—C13—N115.60 (19)C5—C4—C3—C20.4 (3)
C2—C1—C6—C51.2 (2)C8—C9—C10—C110.8 (3)
C2—C1—C6—C15175.29 (14)C12—C11—C10—C90.5 (3)
N2—C15—C6—C17.55 (18)C4—C3—C2—C10.3 (3)
C16—C15—C6—C1135.86 (14)C6—C1—C2—C30.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.85 (1)2.09 (1)2.9147 (15)162 (1)
N2—H2N···O50.85 (1)2.52 (1)2.8334 (15)103 (1)
C1—H1···N20.952.442.8000 (18)102
C7—H7···O2i0.952.583.4530 (18)153
Symmetry code: (i) x+1/2, y+1/2, z+2.
 

References

First citationBoukallaba, K., Elachqar, A., El Hallaoui, A., Alami, A., El Hajji, S., Labriti, B., Martinez, J. & Rolland, V. (2006). Phosphorus Sulfur Silicon, 181, 819–823.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJoly, G. D. & Jacobsen, E. N. (2004). J. Am. Chem. Soc. 126, 4102–4103.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLeite, A. C. L., de Lima, R. S., Moreira, D. R. de M., Cardoso, M. V. de O., Gouveia de Brito, A. C., Farias dos Santos, L. M., Hernandes, M. Z., Kiperstok, A. C., de Lima, R. S. & Soares, M. B. P. (2006). Bioorg. Med. Chem. 14, 3749–3757.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMikołajczyk, M. (2005). J. Organomet. Chem. 690, 2488–2496.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds