organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-{(E)-[(2-Hy­dr­oxy­naphthalen-1-yl)methyl­­idene]amino}-1,5-di­methyl-2-phenyl-2,3-di­hydro-1H-pyrazol-3-one: a new polymorph (β-phase)

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq, and fNational Organization for Drug Control and Research (NODCAR), Giza, Egypt
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by J. Jasinsk, Keene State College, USA (Received 22 July 2017; accepted 8 August 2017; online 15 August 2017)

The title mol­ecule, C22H19N3O2, is a new polymorphic modification, viz. the β-phase; the α-phase has been previously published [Liang & Wang (2010[Liang, Q. & Wang, Q. (2010). Acta Cryst. E66, o1968-o1969.]). Acta Cryst. E66, o1968–o1969]. In the crystal of the β-phase, the mol­ecules pack in helical chains generated by C—H⋯O hydrogen bonds and offset ππ-stacking inter­actions. Adjacent chains are associated through C—H⋯π inter­actions. In the α-phase, mol­ecules are linked by C—H⋯O and N—H⋯O hydrogen bonds, forming layers parallel to the (10-2) plane. In addition, ππ-stacking inter­actions and C—H⋯π(ring) inter­actions consolidate the packing. The packing is compared to that of the α-phase. The title compound was refined as a two-component twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The chemistry of pyrazolone has gained increasing attention due to its diverse pharmacological properties such as cytotoxic, anti-inflammatory, anti­microbial, anti­oxidant, anti­fungal, anti­viral, oral hypoglycaemic activity (Kumar et al., 2012[Kumar, L., Thakur, C. & Sharma, V. (2012). Int. J. Res. Pharm. Sci. 2, 13-22.]). One of the most significant pyrazolone derivatives is anti­pyrine. Anti­pyrine derivatives are reported to exhibit analgesic and anti-inflammatory effects, anti­viral and anti­bacterial activities and have also been used as hair-color additives and to increase the local anesthetic effect of lidocaine (Anupama et al., 2012[Anupama, B., Padmaja, M. & Kumari, C. G. (2012). E-J. Chem. 9, 389-400.]). Schiff bases of 4-amino­anti­pyrine and their metal complexes have a variety of applications in biological, analytical and pharmacological areas. Studies of new kinds of chemotherapeutic Schiff bases are now attracting the attention of biochemists (Shakru, 2015[Shakru, R. (2015). Int. J. Conceptions Comput. Information Technol. 3, 52-56.]). In light of these facts and as a continuation of our work on the synthesis of Schiff bases and hydrazones of the biological active nucleus (Mohamed et al., 2015[Mohamed, S. K., Albayati, M. R., Abd Allah, O. A. & El-Saghier, A. M. M. (2015). Int. J. Pharm. Sci. Rev. Res. 31, 232-242.]), the title compound was synthesized. Here, we present the crystal structure of a new polymorph (Fig. 1[link]), which we have called the β-phase. The α-phase corresponds to the crystal form reported earlier (Liang & Wang, 2010[Liang, Q. & Wang, Q. (2010). Acta Cryst. E66, o1968-o1969.]).

[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 50% probability ellipsoids.

The β-phase crystallizes in the monoclinic space group P21/c, with a = 13.7321 (3), b = 6.7719 (2), c = 19.1916 (4) Å, β = 99.428 (1) °, V = 1760.57 (7) Å3 and Z = 4 (Table 2[link]), while the α-phase crystallizes in the same space group, with a = 8.0636 (7), b = 7.4407 (6), c = 30.169 (3) Å, β = 94.329 (2)°, V = 1804.9 (3) Å3, Z = 4. The bond lengths and bond angles in the β-phase are in good agreement with the values observed in the α-phase. The C11—C6—N2—N1 and C7—C6—N2—C1 torsion angles are 146.38 (12) and 107.37 (15)°, respectively. In the α-phase, the corresponding angles are similar [147.2 (2) and 115.1 (2)°, respectively].

Table 2
Experimental details

Crystal data
Chemical formula C22H19N3O2
Mr 357.40
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 13.7321 (3), 6.7719 (2), 19.1916 (4)
β (°) 99.428 (1)
V3) 1760.57 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.71
Crystal size (mm) 0.24 × 0.23 × 0.05
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.])
Tmin, Tmax 0.85, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 69179, 6532, 5754
Rint 0.051
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.095, 1.04
No. of reflections 6532
No. of parameters 252
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.16
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), PLATON (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

In the β-phase, the mean planes of the phenyl ring and the naphthalene moiety make dihedral angles of 56.97 (7) and 12.14 (6)°, respectively, with that of the central heterocyclic ring, while in the α-phase, the corres­ponding dihedral angles are 50.39 (13) and 11.62 (10)°. The dihedral angles between the mean planes of the phenyl ring and the naphthalene ring system in the α- and β-phases are 61.81 (10) and 64.63 (5)°, respectively.

In the β-phase (Fig. 1[link]), the conformation is partially determined by the intra­molecular O2—H1⋯N3 and C12—H12⋯O1 hydrogen bonds (Table 1[link]). In the crystal, the mol­ecules form helical chains along the 21 axes which involve C4—H4B⋯O1i and C5—H5A⋯O2ii [symmetry codes: (i) x, y + 1, z; (ii) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]] (Table 1[link] and Fig. 2[link]) as well as pairwise, offset ππ-stacking inter­actions between the C1–C3/ N1/ N2 and the C17–C22 rings across centers of symmetry (Fig. 3[link]). In these, the distance between centroids is 3.889 (1) Å, the perpendicular distance between the rings is 3.254 (1) Å and the slippage is 1.53 Å. C9—H9⋯π(ring) inter­actions with the benzene ring in an adjacent chain (H9⋯centroid = 2.73 Å; C9—H9⋯centroid = 140°; Fig. 3[link]) tie the chains together.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1⋯N3 1.00 (2) 1.64 (2) 2.5502 (14) 150 (2)
C4—H4B⋯O1i 0.98 2.55 3.5049 (18) 166
C5—H5A⋯O2ii 0.98 2.52 3.3923 (17) 148
C12—H12⋯O1 0.95 2.32 2.9978 (16) 128
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing viewed along the b axis with C—H⋯O hydrogen bonds shown as dotted lines.
[Figure 3]
Figure 3
Detail of the offset π-π-stacking and the C—H⋯π inter­action [symmetry code (i): 1 − x, 1 − y, 1 − z; (ii): −x, −[{1\over 2}] + y, [{1\over 2}] − z].

In the α-phase (Fig. 4[link]), the mol­ecular conformation is also partially determined by the intra­molecular O—H⋯N [2.569 (2) Å, 148°] and C—H⋯O [3.083 (3) Å, 128°] hydrogen bonds.

[Figure 4]
Figure 4
The mol­ecule of the α-phase with labeling scheme and 30% probability ellipsoids.

In the crystal of the β-phase, the mol­ecules form helical chains along the 21 axes which involve C—H⋯O and C—H⋯O (Table 1[link] and Fig. 2[link]) as well as pairwise, offset ππ-stacking inter­actions (Fig. 3[link]). C—H⋯π(ring) inter­actions with the benzene ring in an adjacent chain (Fig. 3[link]) tie the chains together. In the crystal of the α-phase (Figs. 5[link] and 6[link]), mol­ecules are linked by C—H⋯O and N—H⋯O hydrogen bonds, forming layers parallel to the (10[\overline{2}]) plane. In addition, ππ-stacking inter­actions and C—H⋯π(ring) inter­actions contribute to the mol­ecular packing.

[Figure 5]
Figure 5
Packing viewed along the a axis of of the α-phase.
[Figure 6]
Figure 6
Packing viewed along the b axis of of the α-phase.

Synthesis and crystallization

A mixture of 1 mmol (203 mg) of 4-amino­anti­pyrine and 1 mmol (172 mg) of 2-hy­droxy­naphthalene-1-carbaldehyde with a few drops of glacial acetic acid was refluxed in 25 ml of absolute ethanol for 6 h. The mixture was cooled and left for evaporation at room temperature. The solid was collected and recrystallized from ethanol to afford yellow crystals of good quality for X-ray diffraction with m.p = 485–488 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The title compound was refined as a two-component twin. The H atoms of the methyl group (C5) were refined as disordered over two sets of atomic sites in a 0.57 (2):0.43 (2) ratio.

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015a); molecular graphics: DIAMOND (Brandenburg & Putz, 2012) and PLATON (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4-{(E)-[(2-Hydroxynaphthalen-1-yl)methylidene]amino}-1,5-dimethyl-2-phenyl-2,3-dihydro-1H-pyrazol-3-one top
Crystal data top
C22H19N3O2F(000) = 752
Mr = 357.40Dx = 1.348 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 13.7321 (3) ÅCell parameters from 9892 reflections
b = 6.7719 (2) Åθ = 4.7–72.4°
c = 19.1916 (4) ŵ = 0.71 mm1
β = 99.428 (1)°T = 150 K
V = 1760.57 (7) Å3Plate, yellow
Z = 40.24 × 0.23 × 0.05 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
6532 independent reflections
Radiation source: INCOATEC IµS micro-focus source5754 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.051
Detector resolution: 10.4167 pixels mm-1θmax = 72.5°, θmin = 3.3°
ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Sheldrick, 2009)
k = 88
Tmin = 0.85, Tmax = 0.96l = 2223
69179 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.2553P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
6532 reflectionsΔρmax = 0.21 e Å3
252 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0063 (6)
Special details top

Experimental. Analysis of 1195 reflections having I/σ(I) > 13 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the monoclinic system and to be twinned by a 180° rotation about the c axis. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.36874 (7)0.43580 (13)0.39097 (5)0.0331 (2)
H10.6674 (18)0.768 (3)0.3736 (12)0.077 (7)*
O20.74041 (7)0.75220 (14)0.37735 (5)0.0343 (2)
N10.32968 (8)0.87923 (15)0.30077 (6)0.0288 (3)
N20.29535 (8)0.71017 (16)0.33098 (6)0.0278 (2)
N30.55962 (8)0.67844 (16)0.38249 (6)0.0263 (2)
C10.37593 (9)0.60272 (18)0.36613 (7)0.0256 (3)
C20.46053 (9)0.72526 (18)0.36180 (6)0.0251 (3)
C30.42822 (9)0.89174 (19)0.32357 (7)0.0265 (3)
C40.48594 (11)1.0662 (2)0.30724 (8)0.0354 (3)
H4A0.55621.04330.32450.053*
H4B0.46401.18320.33040.053*
H4C0.47571.08720.25600.053*
C50.26206 (11)1.0460 (2)0.28403 (8)0.0335 (3)
H5A0.28521.12980.24850.050*0.651 (19)
H5B0.26001.12340.32690.050*0.651 (19)
H5C0.19580.99660.26550.050*0.651 (19)
H5D0.20951.03820.31290.050*0.349 (19)
H5E0.23291.04150.23390.050*0.349 (19)
H5F0.29841.17000.29410.050*0.349 (19)
C60.20697 (9)0.61651 (18)0.29731 (7)0.0265 (3)
C70.18437 (10)0.6067 (2)0.22427 (7)0.0316 (3)
H70.22610.66720.19560.038*
C80.09971 (11)0.5071 (2)0.19373 (8)0.0360 (3)
H80.08280.50100.14380.043*
C90.03978 (10)0.4165 (2)0.23564 (9)0.0383 (3)
H90.01780.34790.21440.046*
C100.06376 (10)0.4259 (2)0.30848 (9)0.0370 (3)
H100.02290.36230.33710.044*
C110.14726 (10)0.52779 (19)0.33982 (8)0.0308 (3)
H110.16320.53660.38980.037*
C120.58626 (9)0.51723 (18)0.41693 (7)0.0259 (3)
H120.53750.43540.43210.031*
C130.68951 (9)0.45992 (19)0.43270 (7)0.0265 (3)
C140.76203 (10)0.5805 (2)0.41184 (7)0.0295 (3)
C150.86264 (10)0.5260 (2)0.42589 (8)0.0367 (3)
H150.91100.60910.41100.044*
C160.89041 (10)0.3553 (2)0.46066 (8)0.0381 (3)
H160.95850.32180.47030.046*
C170.82053 (10)0.2258 (2)0.48297 (7)0.0327 (3)
C180.84983 (12)0.0482 (2)0.51936 (8)0.0410 (4)
H180.91800.01610.52990.049*
C190.78211 (13)0.0777 (2)0.53952 (8)0.0425 (4)
H190.80310.19650.56370.051*
C200.68136 (12)0.0308 (2)0.52439 (8)0.0378 (3)
H200.63410.11920.53800.045*
C210.65050 (10)0.1412 (2)0.49018 (7)0.0314 (3)
H210.58200.17060.48080.038*
C220.71852 (10)0.2764 (2)0.46839 (6)0.0277 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0305 (5)0.0246 (5)0.0428 (6)0.0014 (4)0.0021 (4)0.0081 (4)
O20.0326 (5)0.0340 (5)0.0376 (5)0.0029 (4)0.0094 (4)0.0045 (4)
N10.0295 (6)0.0210 (5)0.0343 (6)0.0006 (4)0.0005 (5)0.0045 (4)
N20.0270 (5)0.0216 (5)0.0332 (6)0.0013 (4)0.0002 (4)0.0037 (4)
N30.0260 (5)0.0268 (6)0.0257 (5)0.0003 (4)0.0030 (4)0.0009 (4)
C10.0270 (6)0.0231 (6)0.0261 (6)0.0014 (5)0.0027 (5)0.0002 (5)
C20.0267 (6)0.0241 (6)0.0245 (6)0.0002 (5)0.0045 (5)0.0011 (5)
C30.0299 (6)0.0245 (6)0.0249 (6)0.0005 (5)0.0042 (5)0.0016 (5)
C40.0380 (7)0.0292 (7)0.0380 (8)0.0046 (6)0.0033 (6)0.0065 (6)
C50.0372 (7)0.0254 (7)0.0357 (7)0.0060 (6)0.0005 (6)0.0047 (5)
C60.0235 (6)0.0203 (6)0.0344 (7)0.0025 (5)0.0008 (5)0.0015 (5)
C70.0298 (7)0.0301 (7)0.0347 (7)0.0025 (5)0.0048 (6)0.0014 (5)
C80.0347 (7)0.0321 (7)0.0384 (8)0.0034 (6)0.0026 (6)0.0076 (6)
C90.0287 (7)0.0269 (7)0.0564 (9)0.0012 (5)0.0014 (6)0.0064 (6)
C100.0302 (7)0.0280 (7)0.0539 (9)0.0022 (5)0.0099 (6)0.0008 (6)
C110.0310 (7)0.0244 (6)0.0370 (7)0.0029 (5)0.0058 (6)0.0007 (5)
C120.0257 (6)0.0263 (6)0.0254 (6)0.0012 (5)0.0030 (5)0.0011 (5)
C130.0263 (6)0.0288 (6)0.0239 (6)0.0000 (5)0.0029 (5)0.0025 (5)
C140.0298 (7)0.0319 (7)0.0272 (6)0.0015 (5)0.0054 (5)0.0029 (5)
C150.0269 (7)0.0438 (8)0.0401 (8)0.0031 (6)0.0077 (6)0.0056 (6)
C160.0257 (6)0.0475 (8)0.0398 (8)0.0059 (6)0.0017 (6)0.0072 (7)
C170.0328 (7)0.0368 (7)0.0269 (6)0.0073 (6)0.0000 (5)0.0060 (6)
C180.0435 (8)0.0435 (9)0.0334 (8)0.0167 (7)0.0011 (6)0.0041 (6)
C190.0607 (10)0.0342 (8)0.0310 (7)0.0158 (7)0.0032 (7)0.0029 (6)
C200.0514 (9)0.0321 (7)0.0301 (7)0.0028 (7)0.0069 (6)0.0009 (6)
C210.0356 (7)0.0313 (7)0.0266 (6)0.0012 (6)0.0028 (5)0.0002 (5)
C220.0305 (7)0.0300 (6)0.0217 (6)0.0024 (5)0.0019 (5)0.0040 (5)
Geometric parameters (Å, º) top
O1—C11.2370 (15)C8—C91.385 (2)
O2—C141.3465 (16)C8—H80.9500
O2—H11.00 (2)C9—C101.384 (2)
N1—C31.3549 (17)C9—H90.9500
N1—N21.3996 (14)C10—C111.388 (2)
N1—C51.4641 (16)C10—H100.9500
N2—C11.4016 (16)C11—H110.9500
N2—C61.4269 (16)C12—C131.4533 (17)
N3—C121.2974 (16)C12—H120.9500
N3—C21.3902 (16)C13—C141.3963 (18)
C1—C21.4410 (18)C13—C221.4434 (18)
C2—C31.3783 (17)C14—C151.4127 (19)
C3—C41.4844 (18)C15—C161.358 (2)
C4—H4A0.9800C15—H150.9500
C4—H4B0.9800C16—C171.417 (2)
C4—H4C0.9800C16—H160.9500
C5—H5A0.9800C17—C181.416 (2)
C5—H5B0.9800C17—C221.4245 (18)
C5—H5C0.9800C18—C191.363 (2)
C5—H5D0.9801C18—H180.9500
C5—H5E0.9799C19—C201.403 (2)
C5—H5F0.9798C19—H190.9500
C6—C111.3850 (19)C20—C211.370 (2)
C6—C71.3866 (19)C20—H200.9500
C7—C81.3883 (19)C21—C221.4189 (19)
C7—H70.9500C21—H210.9500
C14—O2—H1105.6 (13)C7—C8—H8119.8
C3—N1—N2107.68 (10)C10—C9—C8120.05 (13)
C3—N1—C5125.91 (11)C10—C9—H9120.0
N2—N1—C5118.52 (11)C8—C9—H9120.0
N1—N2—C1109.34 (10)C9—C10—C11120.22 (14)
N1—N2—C6119.68 (10)C9—C10—H10119.9
C1—N2—C6122.21 (10)C11—C10—H10119.9
C12—N3—C2121.23 (11)C6—C11—C10119.16 (13)
O1—C1—N2123.59 (12)C6—C11—H11120.4
O1—C1—C2131.64 (12)C10—C11—H11120.4
N2—C1—C2104.69 (10)N3—C12—C13120.99 (12)
C3—C2—N3123.59 (12)N3—C12—H12119.5
C3—C2—C1108.03 (11)C13—C12—H12119.5
N3—C2—C1127.79 (11)C14—C13—C22119.05 (12)
N1—C3—C2109.77 (11)C14—C13—C12120.09 (12)
N1—C3—C4121.41 (12)C22—C13—C12120.85 (12)
C2—C3—C4128.83 (12)O2—C14—C13122.40 (12)
C3—C4—H4A109.5O2—C14—C15116.70 (12)
C3—C4—H4B109.5C13—C14—C15120.90 (13)
H4A—C4—H4B109.5C16—C15—C14120.22 (14)
C3—C4—H4C109.5C16—C15—H15119.9
H4A—C4—H4C109.5C14—C15—H15119.9
H4B—C4—H4C109.5C15—C16—C17121.73 (13)
N1—C5—H5A109.5C15—C16—H16119.1
N1—C5—H5B109.4C17—C16—H16119.1
H5A—C5—H5B109.5C18—C17—C16121.54 (14)
N1—C5—H5C109.5C18—C17—C22119.47 (14)
H5A—C5—H5C109.5C16—C17—C22119.00 (13)
H5B—C5—H5C109.5C19—C18—C17121.28 (14)
N1—C5—H5D109.5C19—C18—H18119.4
N1—C5—H5E109.5C17—C18—H18119.4
H5D—C5—H5E109.4C18—C19—C20119.69 (14)
N1—C5—H5F109.5C18—C19—H19120.2
H5D—C5—H5F109.5C20—C19—H19120.2
H5E—C5—H5F109.5C21—C20—C19120.58 (15)
C11—C6—C7121.24 (12)C21—C20—H20119.7
C11—C6—N2117.89 (12)C19—C20—H20119.7
C7—C6—N2120.80 (12)C20—C21—C22121.53 (14)
C6—C7—C8118.91 (13)C20—C21—H21119.2
C6—C7—H7120.5C22—C21—H21119.2
C8—C7—H7120.5C21—C22—C17117.43 (12)
C9—C8—C7120.42 (14)C21—C22—C13123.48 (12)
C9—C8—H8119.8C17—C22—C13119.09 (12)
C3—N1—N2—C17.40 (14)C7—C6—C11—C100.56 (19)
C5—N1—N2—C1158.31 (11)N2—C6—C11—C10176.36 (12)
C3—N1—N2—C6155.64 (11)C9—C10—C11—C61.2 (2)
C5—N1—N2—C653.45 (16)C2—N3—C12—C13174.24 (11)
N1—N2—C1—O1171.60 (12)N3—C12—C13—C141.11 (19)
C6—N2—C1—O124.3 (2)N3—C12—C13—C22177.35 (11)
N1—N2—C1—C25.62 (13)C22—C13—C14—O2178.92 (11)
C6—N2—C1—C2152.90 (12)C12—C13—C14—O20.43 (19)
C12—N3—C2—C3178.23 (12)C22—C13—C14—C150.69 (19)
C12—N3—C2—C18.1 (2)C12—C13—C14—C15179.17 (12)
O1—C1—C2—C3175.00 (14)O2—C14—C15—C16179.79 (12)
N2—C1—C2—C31.89 (14)C13—C14—C15—C160.6 (2)
O1—C1—C2—N33.7 (2)C14—C15—C16—C170.9 (2)
N2—C1—C2—N3173.22 (12)C15—C16—C17—C18179.83 (13)
N2—N1—C3—C26.14 (14)C15—C16—C17—C220.1 (2)
C5—N1—C3—C2154.30 (12)C16—C17—C18—C19178.73 (14)
N2—N1—C3—C4173.52 (12)C22—C17—C18—C191.3 (2)
C5—N1—C3—C425.4 (2)C17—C18—C19—C200.3 (2)
N3—C2—C3—N1169.14 (11)C18—C19—C20—C210.7 (2)
C1—C2—C3—N12.64 (14)C19—C20—C21—C220.6 (2)
N3—C2—C3—C411.2 (2)C20—C21—C22—C170.46 (19)
C1—C2—C3—C4176.99 (13)C20—C21—C22—C13179.51 (12)
N1—N2—C6—C11146.38 (12)C18—C17—C22—C211.39 (18)
C1—N2—C6—C1169.57 (16)C16—C17—C22—C21178.69 (12)
N1—N2—C6—C736.68 (17)C18—C17—C22—C13178.58 (12)
C1—N2—C6—C7107.37 (15)C16—C17—C22—C131.34 (18)
C11—C6—C7—C80.5 (2)C14—C13—C22—C21178.40 (12)
N2—C6—C7—C8177.35 (12)C12—C13—C22—C210.07 (19)
C6—C7—C8—C91.0 (2)C14—C13—C22—C171.63 (18)
C7—C8—C9—C100.4 (2)C12—C13—C22—C17179.89 (11)
C8—C9—C10—C110.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···N31.00 (2)1.64 (2)2.5502 (14)150 (2)
C4—H4B···O1i0.982.553.5049 (18)166
C5—H5A···O2ii0.982.523.3923 (17)148
C12—H12···O10.952.322.9978 (16)128
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAnupama, B., Padmaja, M. & Kumari, C. G. (2012). E-J. Chem. 9, 389–400.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKumar, L., Thakur, C. & Sharma, V. (2012). Int. J. Res. Pharm. Sci. 2, 13–22.  CAS Google Scholar
First citationLiang, Q. & Wang, Q. (2010). Acta Cryst. E66, o1968–o1969.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Albayati, M. R., Abd Allah, O. A. & El-Saghier, A. M. M. (2015). Int. J. Pharm. Sci. Rev. Res. 31, 232–242.  CAS Google Scholar
First citationShakru, R. (2015). Int. J. Conceptions Comput. Information Technol. 3, 52–56.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds