organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Amino-N-(furan-2-ylmeth­yl)-5,6-di­hydro-4H-cyclo­penta­[b]thio­phene-3-carboxamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Engineering Physics, HKBK College of Engineering, Bengaluru 560 045, India, bDepartment of Physics, RV College of Engineering, Bengaluru 560 059, India, and cDepartment of Physics, The National Institute of Engineering (NIE), Mysore 570 008, India
*Correspondence e-mail: mychandru.10@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 August 2017; accepted 22 August 2017; online 30 August 2017)

In the title compound, C13H14N2O2S, the dihedral angle between the furan and cyclo­penta­thio­phene groups is 89.88 (14)°. The carboximidamide unit is in an anti­clinal conformation with respect to the cyclo­hepta­thio­phene moiety and an intra­molecular N—H⋯O hydrogen bond closes an S(6) ring. In the crystal, N—H⋯O hydogen bonds link the mol­ecules into [010] C(6) chains and a very weak C—H⋯O inter­action is also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Tetra­hydro­thieno derivatives are studied extensively in medicinal chemistry due to their various biological activities (Lopez-Rodriguez et al., 2001[Lopez-Rodriguez, M. L., Murcia, M., Benhamu, B., Viso, A., Campillo, M. & Pardo, L. (2001). Bioorg. Med. Chem. Lett. 11, 2807-2811.]). As part of our inter­est in these compounds, we have synthesized the title compound (Fig. 1[link]) and determined its crystal structure.

[Figure 1]
Figure 1
The mol­ecular structure of (I), shown with 50% probability displacement ellipsoids.

The mean plane of the furan moiety (O1/C10–C13) is oriented at a dihedral angle of 89.88 (14)° with respect to the plane of the almost planar (r.m.s. deviation = 0.014 Å) cyclo­penta­thio­phene ring (S1–C7). The carboximidamide unit is in an anti­periplanar conformation with respect to the cyclo­hepta­thio­phene moiety, as indicated by the torsion angle of 177.07 (18)° for N2—C8—C7—C6. An intra­molecular N1—H1A⋯O2 hydrogen bond (Table 1[link]) closes an S(6) ring.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.86 2.15 2.738 (3) 125
N1—H1B⋯O2i 0.86 2.06 2.902 (3) 167
C9—H9B⋯O1ii 0.97 2.59 3.224 (4) 123
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y, -z+{\script{1\over 2}}].

In the crystal, N1—H1B⋯O2i hydrogen bonds link the mol­ecules into C(6) chains propagating in the [010] direction (Fig. 2[link]). A very weak C—H⋯O inter­action is also observed. The amide N2—H1N group does not participate in hydrogen bonding, perhaps due to steric crowding.

[Figure 2]
Figure 2
Packing diagram viewed down [010].

Synthesis and crystallization

Cyclo­penta­none (0.8 equivalents), di­ethyl­amine (0.9 equivalents) and N-(2-meth­oxy­phen­yl)acetamide (1.2 equivalents) were taken in 15 ml ethanol and mixed thoroughly in a microwave tube. The tube was sealed and irradiated at 325 K for 15 min. After cooling, ethyl acetate was added to the reaction mixture and the solid residue was removed by filtration. The reaction mixture was poured into ice-cold water, and the separated solid was filtered off and recrystallized from ethyl alcohol solution to give pale-yellow blocks of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were positioned geometrically and allowed to ride on their parent atom, with N—H = 0.86 Å and C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2–1.5Ueq(carrier) for all H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C13H14N2O2S
Mr 262.32
Crystal system, space group Monoclinic, C2/c
Temperature (K) 273
a, b, c (Å) 21.694 (2), 9.8547 (11), 15.1162 (16)
β (°) 131.661 (2)
V3) 2414.3 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.28 × 0.25 × 0.22
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 9118, 2375, 1950
Rint 0.026
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.120, 0.94
No. of reflections 2375
No. of parameters 167
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.27
Computer programs: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

2-Amino-N-(furan-2-ylmethyl)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxamide top
Crystal data top
C13H14N2O2SF(000) = 1104
Mr = 262.32Dx = 1.443 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2375 reflections
a = 21.694 (2) Åθ = 2.4–26.0°
b = 9.8547 (11) ŵ = 0.26 mm1
c = 15.1162 (16) ÅT = 273 K
β = 131.661 (2)°Block, pale yellow
V = 2414.3 (4) Å30.28 × 0.25 × 0.22 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.026
Detector resolution: 18.4 pixels mm-1θmax = 26.0°, θmin = 2.4°
ω and φ scansh = 2526
9118 measured reflectionsk = 1112
2375 independent reflectionsl = 1818
1950 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120 W = 1/[Σ2(FO2) + (0.0768P)2 + 1.5332P] WHERE P = (FO2 + 2FC2)/3
S = 0.94(Δ/σ)max < 0.001
2375 reflectionsΔρmax = 0.25 e Å3
167 parametersΔρmin = 0.27 e Å3
0 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20078 (3)0.46023 (5)0.33918 (5)0.0417 (2)
O10.01010 (9)1.03238 (16)0.12373 (13)0.0494 (5)
O20.20894 (9)0.91283 (14)0.28657 (13)0.0419 (5)
N10.24893 (11)0.65497 (18)0.27274 (16)0.0460 (6)
N20.13634 (11)0.94561 (16)0.34213 (16)0.0369 (6)
C10.09466 (13)0.6855 (2)0.42005 (18)0.0387 (6)
C20.13894 (11)0.64691 (19)0.37874 (15)0.0315 (5)
C30.07541 (17)0.5480 (2)0.4461 (3)0.0579 (9)
C40.11271 (15)0.4340 (2)0.4249 (2)0.0481 (8)
C50.14820 (12)0.5112 (2)0.38300 (17)0.0374 (6)
C60.20996 (11)0.62804 (19)0.31246 (16)0.0323 (6)
C70.17454 (11)0.71866 (18)0.33821 (15)0.0296 (5)
C80.17492 (11)0.86383 (19)0.32061 (15)0.0307 (5)
C90.12394 (12)1.08935 (19)0.31397 (17)0.0357 (6)
C100.05629 (11)1.11794 (19)0.18473 (17)0.0341 (6)
C110.04371 (14)1.2137 (2)0.11172 (19)0.0488 (7)
C120.03482 (14)1.1888 (2)0.00186 (19)0.0520 (8)
C130.06404 (14)1.0795 (3)0.0094 (2)0.0530 (8)
H1A0.254260.737470.260200.0550*
H1B0.268420.589630.259950.0550*
H1D0.044310.734780.358980.0460*
H1E0.129450.741050.490840.0460*
H1N0.1123 (15)0.914 (2)0.359 (2)0.047 (7)*
H3A0.098910.545700.527550.0700*
H3B0.016190.535910.394580.0700*
H4A0.155130.384890.497350.0580*
H4B0.070680.370720.365160.0580*
H9A0.174931.127980.340370.0430*
H9B0.111151.133910.357310.0430*
H110.079681.283740.131500.0590*
H120.060401.239420.070330.0620*
H130.114551.039620.052000.0640*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0525 (3)0.0264 (3)0.0565 (4)0.0005 (2)0.0405 (3)0.0038 (2)
O10.0473 (9)0.0544 (10)0.0507 (9)0.0160 (7)0.0344 (8)0.0103 (7)
O20.0565 (9)0.0323 (7)0.0596 (9)0.0007 (6)0.0481 (8)0.0022 (6)
N10.0646 (12)0.0324 (9)0.0711 (12)0.0011 (8)0.0578 (11)0.0032 (8)
N20.0517 (10)0.0271 (9)0.0492 (10)0.0024 (7)0.0408 (9)0.0029 (7)
C10.0446 (11)0.0370 (11)0.0448 (11)0.0010 (9)0.0340 (10)0.0001 (9)
C20.0326 (9)0.0309 (10)0.0309 (9)0.0025 (7)0.0211 (8)0.0023 (7)
C30.0780 (17)0.0436 (14)0.0860 (18)0.0057 (11)0.0687 (16)0.0008 (12)
C40.0580 (13)0.0365 (12)0.0608 (14)0.0056 (10)0.0441 (12)0.0013 (10)
C50.0424 (11)0.0311 (10)0.0430 (11)0.0037 (8)0.0302 (10)0.0023 (8)
C60.0346 (10)0.0287 (10)0.0345 (9)0.0025 (7)0.0234 (8)0.0038 (7)
C70.0314 (9)0.0283 (10)0.0306 (9)0.0017 (7)0.0213 (8)0.0022 (7)
C80.0324 (9)0.0300 (10)0.0297 (9)0.0003 (7)0.0207 (8)0.0014 (7)
C90.0449 (11)0.0256 (10)0.0430 (11)0.0003 (8)0.0319 (10)0.0029 (8)
C100.0374 (10)0.0280 (9)0.0438 (11)0.0017 (8)0.0299 (9)0.0061 (8)
C110.0503 (13)0.0365 (12)0.0469 (12)0.0049 (10)0.0270 (11)0.0013 (9)
C120.0537 (14)0.0502 (14)0.0418 (12)0.0107 (11)0.0274 (11)0.0032 (10)
C130.0396 (12)0.0718 (17)0.0449 (13)0.0038 (11)0.0269 (11)0.0131 (11)
Geometric parameters (Å, º) top
S1—C51.731 (3)C6—C71.392 (3)
S1—C61.745 (2)C7—C81.456 (3)
O1—C101.368 (3)C9—C101.496 (3)
O1—C131.372 (3)C10—C111.335 (3)
O2—C81.244 (3)C11—C121.422 (3)
N1—C61.349 (4)C12—C131.317 (4)
N2—C81.348 (4)C1—H1D0.9700
N2—C91.452 (2)C1—H1E0.9700
C1—C21.502 (4)C3—H3A0.9700
C1—C31.544 (4)C3—H3B0.9700
N1—H1A0.8600C4—H4A0.9700
N1—H1B0.8600C4—H4B0.9700
N2—H1N0.78 (4)C9—H9A0.9700
C2—C51.348 (3)C9—H9B0.9700
C2—C71.449 (4)C11—H110.9300
C3—C41.538 (5)C12—H120.9300
C4—C51.490 (4)C13—H130.9300
C5—S1—C691.10 (12)C10—C11—C12107.4 (2)
C10—O1—C13106.0 (2)C11—C12—C13106.2 (2)
C8—N2—C9122.4 (2)O1—C13—C12111.0 (2)
C2—C1—C3103.9 (2)C2—C1—H1D111.00
C6—N1—H1B120.00C2—C1—H1E111.00
H1A—N1—H1B120.00C3—C1—H1D111.00
C6—N1—H1A120.00C3—C1—H1E111.00
C1—C2—C5110.4 (2)H1D—C1—H1E109.00
C1—C2—C7136.07 (18)C1—C3—H3A110.00
C8—N2—H1N119.8 (18)C1—C3—H3B110.00
C9—N2—H1N116.8 (19)C4—C3—H3A110.00
C5—C2—C7113.6 (2)C4—C3—H3B110.00
C1—C3—C4108.6 (3)H3A—C3—H3B108.00
C3—C4—C5102.0 (2)C3—C4—H4A111.00
C2—C5—C4115.1 (2)C3—C4—H4B111.00
S1—C5—C2112.6 (2)C5—C4—H4A111.00
S1—C5—C4132.26 (17)C5—C4—H4B111.00
S1—C6—N1119.41 (17)H4A—C4—H4B109.00
S1—C6—C7111.98 (19)N2—C9—H9A109.00
N1—C6—C7128.61 (19)N2—C9—H9B109.00
C2—C7—C6110.71 (17)C10—C9—H9A109.00
C6—C7—C8120.5 (2)C10—C9—H9B109.00
C2—C7—C8128.7 (2)H9A—C9—H9B108.00
O2—C8—C7122.3 (2)C10—C11—H11126.00
N2—C8—C7117.6 (2)C12—C11—H11126.00
O2—C8—N2120.13 (18)C11—C12—H12127.00
N2—C9—C10113.35 (16)C13—C12—H12127.00
O1—C10—C9116.34 (18)O1—C13—H13125.00
O1—C10—C11109.48 (19)C12—C13—H13124.00
C9—C10—C11134.2 (2)
C6—S1—C5—C20.58 (17)C1—C2—C7—C6179.0 (2)
C6—S1—C5—C4179.9 (2)C1—C2—C7—C82.5 (4)
C5—S1—C6—N1179.91 (18)C1—C3—C4—C52.3 (3)
C5—S1—C6—C70.76 (16)C3—C4—C5—S1179.6 (2)
C13—O1—C10—C9178.8 (2)C3—C4—C5—C21.1 (3)
C13—O1—C10—C110.3 (3)S1—C6—C7—C20.7 (2)
C10—O1—C13—C120.8 (3)N1—C6—C7—C81.4 (3)
C9—N2—C8—O27.5 (3)S1—C6—C7—C8179.33 (14)
C9—N2—C8—C7172.27 (18)N1—C6—C7—C2180.0 (2)
C8—N2—C9—C1076.0 (3)C2—C7—C8—O2179.03 (19)
C2—C1—C3—C42.7 (3)C2—C7—C8—N21.2 (3)
C3—C1—C2—C52.1 (3)C6—C7—C8—O22.7 (3)
C3—C1—C2—C7179.2 (2)C6—C7—C8—N2177.07 (18)
C1—C2—C5—S1178.78 (14)N2—C9—C10—O135.1 (4)
C1—C2—C5—C40.7 (3)N2—C9—C10—C11147.0 (3)
C7—C2—C5—S10.3 (2)O1—C10—C11—C120.2 (3)
C7—C2—C5—C4179.70 (18)C9—C10—C11—C12177.8 (3)
C5—C2—C7—C8178.76 (19)C10—C11—C12—C130.7 (4)
C5—C2—C7—C60.3 (2)C11—C12—C13—O10.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.862.152.738 (3)125
N1—H1B···O2i0.862.062.902 (3)167
C9—H9B···O1ii0.972.593.224 (4)123
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y, z+1/2.
 

Acknowledgements

The authors thank HKBK College of Engineering, Bengaluru, R. V. College of Engineering, Bengaluru, and The National Institute of Engineering (NIE), Mysuru, for support.

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLopez-Rodriguez, M. L., Murcia, M., Benhamu, B., Viso, A., Campillo, M. & Pardo, L. (2001). Bioorg. Med. Chem. Lett. 11, 2807–2811.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds