organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-Methyl-4-(4-nitro­phen­yl)-N-nitroso-1,3-thia­zol-2-amine

aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
*Correspondence e-mail: bzarychta@uni.opole.pl

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 July 2017; accepted 30 July 2017; online 8 August 2017)

The title compound, C10H8N4O3S, is almost planar [dihedral angle between the rings = 2.2 (2)°; r.m.s. deviation for the non-H atoms = 0.050 Å]. In the crystal, C—H⋯O and C—H⋯N hydrogen bonds link the mol­ecules into (10-2) layers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The chemistry of N-nitro­samines is a subject of considerable inter­est with regard to their strong carcinogenic and mutagenic properties (Szyrszyng et al., 2001[Szyrszyng, M., Nowak, E., Gdaniec, M., Milewska, M. J., Herman, A. & Połoński, T. (2001). J. Org. Chem. 66, 7380-7384.]; Loeppky & Outram, 1994[Loeppky, R. N. & Outram, J. R. (1994). In N-Nitrosamines and Related N-Nitroso Compounds. Washington, DC: American Chemical Society.]; Loeppky et al., 1987[Loeppky, R. N., Tomasik, W. & Kerrick, B. E. (1987). Carcinogenesis, 8, 941-946.]). As part of our studies in this area, the synthesis and crystal structure of the title compound are now reported.

There is one independent mol­ecule in the asymmetric unit of the title compound (Fig. 1[link]). The mol­ecule is nearly planar: dihedral angle between the rings = 2.2 (2)°; r.m.s. deviation for the 18 non-hydrogen atoms = 0.050 Å.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

The crystal structure features four weak hydrogen bonds (Table 1[link], Fig. 2[link]), which link the mol­ecules into (10[\overline{2}]) layers. The layers inter­act only by weak van der Waals inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.66 3.182 (6) 117
C2—H2⋯N3i 0.93 2.48 3.280 (6) 144
C4—H4A⋯O2ii 0.96 2.60 3.525 (5) 163
C4—H4B⋯O3iii 0.96 2.52 3.065 (6) 116
Symmetry codes: (i) [x-1, -y+2, z-{\script{1\over 2}}]; (ii) [x+1, -y+1, z+{\script{1\over 2}}]; (iii) x+2, y, z+1.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the b-axis direction.

Synthesis and crystallization

N-methyl-4-(4-nitro­phen­yl)1,3-thia­zol-2-amine (2.0 g, 0.08 mol) was suspended in acetic acid (30 ml). Then, sodium nitrate was added dropwise (0.7 g). After 30 min. the crude yellow precipitate was separated and recrystallized from a solvent mixture of di­chloro­methane and petrol to yield irregular yellow crystals (0.95 g; melting point = 160–161°C).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C10H8N4O3S
Mr 264.26
Crystal system, space group Monoclinic, Pc
Temperature (K) 85
a, b, c (Å) 4.7729 (3), 13.7362 (8), 8.5391 (4)
β (°) 96.576 (5)
V3) 556.15 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.30
Crystal size (mm) 0.28 × 0.17 × 0.15
 
Data collection
Diffractometer Oxford Diffraction Xcalibur
No. of measured, independent and observed [I > 2σ(I)] reflections 2950, 1557, 1320
Rint 0.028
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.092, 1.01
No. of reflections 1557
No. of parameters 164
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.36
Computer programs: CrysAlis CCD (Oxford Diffraction Ltd, 2008[Oxford Diffraction Ltd. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction Ltd, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction Ltd, 2008); data reduction: CrysAlis CCD (Oxford Diffraction Ltd, 2008); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

N-Methyl-4-(4-nitrophenyl)-N-nitroso-1,3-thiazol-2-amine top
Crystal data top
C10H8N4O3SF(000) = 272
Mr = 264.26Dx = 1.578 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 4.7729 (3) ÅCell parameters from 2950 reflections
b = 13.7362 (8) Åθ = 3.8–25.9°
c = 8.5391 (4) ŵ = 0.30 mm1
β = 96.576 (5)°T = 85 K
V = 556.15 (5) Å3Irregular, yellow
Z = 20.28 × 0.17 × 0.15 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1320 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Detector resolution: 1024 x 1024 with blocks 2 x 2 pixels mm-1θmax = 25.9°, θmin = 3.8°
ω scanh = 55
2950 measured reflectionsk = 1516
1557 independent reflectionsl = 1010
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.061P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1557 reflectionsΔρmax = 0.29 e Å3
164 parametersΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were found in a difference map but set to idealized positions and treated as riding with CAr—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) and with C—H3 = 0.96 Å and Uiso(H) = 1.5Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.4840 (8)0.8638 (2)0.9230 (4)0.0325 (8)
O20.3222 (7)0.4737 (2)0.2371 (4)0.0354 (9)
O30.4836 (8)0.5884 (2)0.0786 (4)0.0351 (8)
N10.7254 (8)0.7692 (3)0.5950 (4)0.0224 (8)
N21.1208 (8)0.8118 (2)0.7699 (4)0.0232 (8)
N31.2871 (9)0.8869 (3)0.8228 (5)0.0292 (9)
N40.3161 (8)0.5566 (3)0.1862 (4)0.0264 (9)
S10.8523 (3)0.95119 (7)0.57753 (16)0.0281 (3)
C10.9010 (9)0.8347 (3)0.6527 (5)0.0234 (9)
C20.5680 (10)0.9071 (3)0.4564 (6)0.0259 (10)
H20.45320.94460.38450.031*
C30.5332 (9)0.8101 (3)0.4796 (5)0.0232 (10)
C41.1769 (10)0.7131 (3)0.8266 (6)0.0283 (11)
H4A1.02920.67070.78160.042*
H4B1.18440.71190.93940.042*
H4C1.35410.69140.79620.042*
C50.3134 (9)0.7463 (3)0.3993 (5)0.0226 (9)
C60.1112 (10)0.7803 (3)0.2801 (5)0.0245 (10)
H60.11610.84490.24790.029*
C70.0955 (10)0.7190 (3)0.2098 (5)0.0239 (10)
H70.23080.74170.13130.029*
C80.0967 (9)0.6235 (3)0.2586 (5)0.0239 (9)
C90.1000 (10)0.5865 (3)0.3759 (5)0.0251 (10)
H90.09330.52180.40710.030*
C100.3061 (10)0.6486 (3)0.4452 (5)0.0240 (10)
H100.44140.62520.52310.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.028 (2)0.0342 (18)0.0326 (18)0.0001 (15)0.0093 (15)0.0021 (13)
O20.035 (2)0.0262 (18)0.041 (2)0.0025 (15)0.0119 (17)0.0011 (14)
O30.031 (2)0.0381 (18)0.0320 (18)0.0002 (15)0.0151 (15)0.0006 (14)
N10.0174 (19)0.0251 (17)0.0237 (19)0.0004 (15)0.0017 (15)0.0020 (14)
N20.022 (2)0.0225 (18)0.0244 (19)0.0031 (15)0.0008 (16)0.0009 (15)
N30.028 (2)0.029 (2)0.0294 (19)0.0030 (18)0.0044 (18)0.0019 (16)
N40.021 (2)0.030 (2)0.028 (2)0.0011 (17)0.0035 (16)0.0048 (16)
S10.0237 (6)0.0235 (5)0.0356 (6)0.0012 (5)0.0033 (4)0.0000 (5)
C10.015 (2)0.024 (2)0.031 (2)0.0013 (18)0.0042 (18)0.0007 (18)
C20.017 (3)0.031 (2)0.029 (2)0.0019 (19)0.0001 (19)0.0019 (19)
C30.019 (3)0.024 (2)0.027 (2)0.0019 (18)0.0043 (19)0.0015 (18)
C40.027 (3)0.026 (2)0.031 (2)0.0021 (19)0.004 (2)0.0017 (19)
C50.016 (2)0.030 (2)0.021 (2)0.0036 (18)0.0023 (18)0.0014 (16)
C60.024 (2)0.023 (2)0.027 (2)0.0039 (18)0.0051 (19)0.0049 (18)
C70.021 (2)0.027 (2)0.023 (2)0.0029 (19)0.0018 (18)0.0015 (17)
C80.017 (2)0.030 (2)0.024 (2)0.0011 (18)0.0027 (18)0.0032 (18)
C90.028 (3)0.022 (2)0.025 (2)0.002 (2)0.0001 (19)0.0019 (17)
C100.019 (3)0.025 (2)0.026 (2)0.0030 (18)0.0040 (18)0.0016 (17)
Geometric parameters (Å, º) top
O1—N31.238 (5)C4—H4A0.9600
O2—N41.220 (4)C4—H4B0.9600
O3—N41.227 (5)C4—H4C0.9600
N1—C11.288 (6)C5—C101.399 (6)
N1—C31.386 (6)C5—C61.400 (6)
N2—N31.348 (5)C6—C71.381 (6)
N2—C11.401 (5)C6—H60.9300
N2—C41.454 (5)C7—C81.376 (6)
N4—C81.475 (5)C7—H70.9300
S1—C21.720 (5)C8—C91.388 (6)
S1—C11.730 (4)C9—C101.383 (6)
C2—C31.359 (6)C9—H90.9300
C2—H20.9300C10—H100.9300
C3—C51.475 (6)
C1—N1—C3109.7 (3)N2—C4—H4C109.5
N3—N2—C1115.6 (3)H4A—C4—H4C109.5
N3—N2—C4121.6 (4)H4B—C4—H4C109.5
C1—N2—C4122.8 (3)C10—C5—C6119.1 (4)
O1—N3—N2114.0 (3)C10—C5—C3118.6 (4)
O2—N4—O3124.0 (4)C6—C5—C3122.3 (4)
O2—N4—C8118.5 (4)C7—C6—C5120.7 (4)
O3—N4—C8117.5 (4)C7—C6—H6119.6
C2—S1—C187.7 (2)C5—C6—H6119.6
N1—C1—N2121.2 (4)C8—C7—C6118.5 (4)
N1—C1—S1116.8 (4)C8—C7—H7120.7
N2—C1—S1122.0 (3)C6—C7—H7120.7
C3—C2—S1111.0 (4)C7—C8—C9122.7 (4)
C3—C2—H2124.5C7—C8—N4119.6 (4)
S1—C2—H2124.5C9—C8—N4117.6 (4)
C2—C3—N1114.8 (4)C10—C9—C8118.2 (4)
C2—C3—C5127.4 (4)C10—C9—H9120.9
N1—C3—C5117.8 (3)C8—C9—H9120.9
N2—C4—H4A109.5C9—C10—C5120.7 (4)
N2—C4—H4B109.5C9—C10—H10119.6
H4A—C4—H4B109.5C5—C10—H10119.6
C1—N2—N3—O1178.1 (4)C2—C3—C5—C62.2 (6)
C4—N2—N3—O10.9 (6)N1—C3—C5—C6179.4 (4)
C3—N1—C1—N2178.9 (3)C10—C5—C6—C70.9 (6)
C3—N1—C1—S10.8 (5)C3—C5—C6—C7178.5 (4)
N3—N2—C1—N1178.8 (4)C5—C6—C7—C80.5 (6)
C4—N2—C1—N14.1 (6)C6—C7—C8—C90.4 (6)
N3—N2—C1—S11.6 (5)C6—C7—C8—N4179.6 (4)
C4—N2—C1—S1175.6 (4)O2—N4—C8—C7176.1 (4)
C2—S1—C1—N10.1 (4)O3—N4—C8—C73.3 (6)
C2—S1—C1—N2179.5 (4)O2—N4—C8—C93.2 (6)
C1—S1—C2—C30.6 (4)O3—N4—C8—C9177.4 (4)
S1—C2—C3—N11.2 (5)C7—C8—C9—C100.5 (6)
S1—C2—C3—C5179.7 (3)N4—C8—C9—C10179.8 (4)
C1—N1—C3—C21.3 (5)C8—C9—C10—C50.8 (6)
C1—N1—C3—C5179.9 (4)C6—C5—C10—C91.0 (6)
C2—C3—C5—C10177.2 (4)C3—C5—C10—C9178.4 (4)
N1—C3—C5—C101.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.663.182 (6)117
C2—H2···N3i0.932.483.280 (6)144
C4—H4A···O2ii0.962.603.525 (5)163
C4—H4B···O3iii0.962.523.065 (6)116
Symmetry codes: (i) x1, y+2, z1/2; (ii) x+1, y+1, z+1/2; (iii) x+2, y, z+1.
 

References

First citationLoeppky, R. N. & Outram, J. R. (1994). In N-Nitrosamines and Related N-Nitroso Compounds. Washington, DC: American Chemical Society.  Google Scholar
First citationLoeppky, R. N., Tomasik, W. & Kerrick, B. E. (1987). Carcinogenesis, 8, 941–946.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOxford Diffraction Ltd. (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSzyrszyng, M., Nowak, E., Gdaniec, M., Milewska, M. J., Herman, A. & Połoński, T. (2001). J. Org. Chem. 66, 7380–7384.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds