organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­methyl (7-hy­dr­oxy-4-methyl-2-oxo-2H-chromen-3-yl)phospho­nate

CROSSMARK_Color_square_no_text.svg

aCollege of Chemistry and Chemical engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: lryang@haut.edu.cn

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 26 July 2017; accepted 30 July 2017; online 4 August 2017)

In the title compound, C12H13O6P, the coumarin ring system is essentially planar [dihedral angle between the rings = 1.32 (16)°] and the meth­oxy groups and double-bonded O atom of the phospho­nate group are disordered over two sets of sites [occupancy ratio 0.537 (2):0.463 (2)]. In the crystal, C—H⋯O hydrogen bonds involving the disordered phospho­nate O atom as acceptor occur, which generate [100] chains. Weak C—H⋯O and aromatic ππ stacking inter­actions [minimum centroid–centroid separation = 3.713 (2) Å] are also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Several 3-phospho­rated coumarins have been proved to exhibit cytotoxicity on some human leukemia cell lines as well as having high alkyl­ating activity (Budzisz et al., 2003[Budzisz, E., Brzezinska, E., Krajewska, U. & Rozalski, M. (2003). Eur. J. Med. Chem. 38, 597-603.]) and the selective synthesis of phospho­rated coumarins has been a quite active topic (Yuan et al., 2015[Yuan, J., Li, Y., Yang, L., Mai, W., Mao, P., Xiao, Y. & Qu, L. (2015). Tetrahedron, 71, 8178-8186.]; Mi et al., 2013[Mi, X., Huang, M., Zhang, J., Wang, C. & Wu, Y. (2013). Org. Lett. 15, 6266-6269.]). Our group has investigated the phospho­rylation of coumarins catalysed by chelating N-heterocyclic palladium complexes and obtained 3-phospho­rated coumarins selectively (Yang et al., 2016[Yang, L., Zhang, X., Yuan, J., Xiao, Y. & Mao, P. (2016). J. Organomet. Chem. 818, 179-184.]). The structure of one of these products, viz.: the title compound, was characterized unambiguously by single-crystal X-ray diffraction studies.

As shown in Fig. 1[link], the coumarin ring system is essentially planar [dihedral angle between the rings = 1.32 (16)°]. The methoxyl groups and the double-bonded oxygen atom of the phospho­nate group show disorder, with the major and minor components of the disorder having an occupancy factor of 0.537 (2) and 0.463 (2), respectively. In the crystal, O—H⋯O hydrogen bonds (Table 1[link]) involving the disordered phospho­nate group are observed, which generate [100] chains. Weak C—H⋯O and aromatic π-π stacking inter­actions [minimum centroid–centroid separation = 3.713 (2) Å] are also observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4i 0.82 1.78 2.562 (6) 159
O3—H3⋯O4Ai 0.82 2.01 2.812 (7) 168
C8—H8⋯O1ii 0.93 2.44 3.220 (4) 142
C10—H10B⋯O4 0.96 2.22 2.831 (6) 121
C12—H12A⋯O1 0.96 2.20 2.96 (5) 135
Symmetry codes: (i) x+1, y, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 50% probability displacement ellipsoids. Only the major disorder component is shown.

Synthesis and crystallization

The synthesis of the title compound is based on our reported literature procedure (Yang et al., 2016[Yang, L., Zhang, X., Yuan, J., Xiao, Y. & Mao, P. (2016). J. Organomet. Chem. 818, 179-184.]). A Schlenk tube charged with 7-hy­droxy-4-methyl coumarin (0.5 mmol, 88 mg), dimethyl phosphite (1.0 mmol, 110 mg), NHC palladium complex (0.05 mmol), AgNO3 (1.0 mmol, 170 mg) and CH3CN (2 ml) was heated at 80°C for 10 h. The mixture was then cooled, filtered and the filtrate was evaporated. Purification of the residue by column chromatography (silica, petroleum ether/ethyl acetate = 2/11/4, v/v) produced the pure products. Recrystallization of the product from CH2Cl2/diethyl ether (1/1, v/v) solution afforded the title compound as colourless prisms.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H13O6P
Mr 284.19
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 9.9684 (7), 7.8695 (6), 16.6927 (10)
β (°) 106.097 (7)
V3) 1258.13 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.25 × 0.12 × 0.1
 
Data collection
Diffractometer Agilent Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku OD (2011). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.007, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5507, 2572, 1364
Rint 0.043
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.173, 1.01
No. of reflections 2572
No. of parameters 194
No. of restraints 26
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.28
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2011). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Dimethyl (7-hydroxy-4-methyl-2-oxo-2H-chromen-3-yl)phosphonate top
Crystal data top
C12H13O6PF(000) = 592
Mr = 284.19Dx = 1.500 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.9684 (7) ÅCell parameters from 1046 reflections
b = 7.8695 (6) Åθ = 3.8–25.4°
c = 16.6927 (10) ŵ = 0.24 mm1
β = 106.097 (7)°T = 293 K
V = 1258.13 (16) Å3Prism, colourless
Z = 40.25 × 0.12 × 0.1 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
2572 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1364 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 16.2312 pixels mm-1θmax = 26.4°, θmin = 2.1°
ω scansh = 1211
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
k = 69
Tmin = 0.007, Tmax = 1.000l = 2020
5507 measured reflections
Refinement top
Refinement on F226 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.173 w = 1/[σ2(Fo2) + (0.0763P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2572 reflectionsΔρmax = 0.30 e Å3
194 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Aromatic H atoms were placed geometrically and refined as riding, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C). The H atoms associated to hydroxyl and methyl groups were refined as rotating groups, with Uiso(H) = 1.5 Ueq(C). The O5A—C11A and O6A—C12A bonds were refined with restrained distances of 1.55 (2) Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4062 (3)0.3873 (5)0.6581 (2)0.0552 (10)
C20.2791 (3)0.3234 (4)0.6012 (2)0.0468 (8)
C30.2797 (3)0.2579 (5)0.5251 (2)0.0486 (9)
C40.4104 (3)0.2502 (4)0.5029 (2)0.0451 (8)
C50.5316 (3)0.3061 (4)0.56004 (19)0.0450 (8)
C60.6615 (3)0.3005 (5)0.5456 (2)0.0547 (10)
H60.74040.33830.58580.066*
C70.6715 (4)0.2381 (5)0.4706 (2)0.0552 (10)
C80.5532 (4)0.1831 (5)0.4109 (2)0.0617 (10)
H80.56040.14210.36000.074*
C90.4261 (4)0.1891 (5)0.4269 (2)0.0562 (10)
H90.34760.15160.38620.067*
C100.1510 (3)0.1924 (6)0.4629 (2)0.0725 (12)
H10A0.09670.28630.43450.109*
H10B0.09650.12750.49120.109*
H10C0.17740.12130.42300.109*
C110.209 (3)0.077 (3)0.733 (2)0.086 (5)0.537 (2)
H11A0.14080.00930.69410.129*0.537 (2)
H11B0.21700.03820.78880.129*0.537 (2)
H11C0.29790.06520.72150.129*0.537 (2)
C11A0.209 (4)0.036 (4)0.723 (2)0.086 (5)0.463 (2)
H11D0.23580.05890.69470.129*0.463 (2)
H11E0.17070.00360.76600.129*0.463 (2)
H11F0.28930.10570.74660.129*0.463 (2)
C120.151 (5)0.598 (2)0.738 (2)0.085 (3)0.537 (2)
H12A0.25010.61230.74680.127*0.537 (2)
H12B0.13410.53090.78160.127*0.537 (2)
H12C0.10820.70760.73660.127*0.537 (2)
C12A0.153 (6)0.609 (3)0.727 (3)0.085 (3)0.463 (2)
H12D0.17670.65250.67930.127*0.463 (2)
H12E0.22020.64790.77700.127*0.463 (2)
H12F0.06180.64930.72720.127*0.463 (2)
O10.4182 (3)0.4547 (4)0.72427 (15)0.0756 (9)
O20.5290 (2)0.3705 (3)0.63588 (13)0.0581 (7)
O30.7946 (3)0.2292 (4)0.45079 (16)0.0806 (9)
H30.85800.26190.49050.121*
O40.0015 (5)0.2510 (8)0.5818 (3)0.0693 (13)0.537 (2)
O4A0.0032 (6)0.3910 (9)0.5761 (4)0.0693 (13)0.463 (2)
O50.1688 (5)0.2446 (7)0.7256 (3)0.0615 (10)0.537 (2)
O5A0.1013 (5)0.1394 (7)0.6613 (3)0.0615 (10)0.463 (2)
O60.0938 (5)0.5143 (6)0.6592 (3)0.0679 (11)0.537 (2)
O6A0.1527 (6)0.4150 (8)0.7252 (3)0.0679 (11)0.463 (2)
P10.12560 (9)0.32787 (13)0.63845 (6)0.0535 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0398 (19)0.077 (3)0.052 (2)0.0053 (19)0.0172 (17)0.003 (2)
C20.0335 (16)0.054 (2)0.0544 (19)0.0022 (16)0.0142 (15)0.0028 (18)
C30.0357 (18)0.050 (2)0.059 (2)0.0072 (16)0.0105 (16)0.0102 (18)
C40.0351 (17)0.051 (2)0.0491 (19)0.0040 (16)0.0114 (15)0.0039 (16)
C50.0386 (18)0.052 (2)0.0452 (18)0.0016 (16)0.0134 (15)0.0002 (16)
C60.0325 (17)0.076 (3)0.055 (2)0.0001 (17)0.0104 (16)0.0016 (19)
C70.0388 (19)0.076 (3)0.054 (2)0.0070 (19)0.0188 (17)0.0088 (19)
C80.052 (2)0.081 (3)0.055 (2)0.009 (2)0.0203 (19)0.002 (2)
C90.0441 (19)0.074 (3)0.0492 (19)0.0051 (19)0.0100 (16)0.0008 (18)
C100.038 (2)0.106 (4)0.070 (2)0.003 (2)0.0088 (18)0.015 (2)
C110.106 (4)0.060 (11)0.104 (5)0.016 (7)0.048 (5)0.017 (7)
C11A0.106 (4)0.060 (11)0.104 (5)0.016 (7)0.048 (5)0.017 (7)
C120.081 (4)0.076 (4)0.102 (8)0.012 (3)0.035 (5)0.012 (3)
C12A0.081 (4)0.076 (4)0.102 (8)0.012 (3)0.035 (5)0.012 (3)
O10.0553 (15)0.117 (3)0.0575 (15)0.0005 (16)0.0202 (13)0.0220 (16)
O20.0334 (12)0.088 (2)0.0542 (14)0.0038 (12)0.0136 (11)0.0117 (13)
O30.0454 (15)0.130 (3)0.0747 (17)0.0084 (18)0.0302 (14)0.0004 (18)
O40.0325 (15)0.106 (4)0.069 (2)0.003 (3)0.0146 (15)0.004 (3)
O4A0.0325 (15)0.106 (4)0.069 (2)0.003 (3)0.0146 (15)0.004 (3)
O50.059 (2)0.064 (3)0.069 (2)0.0066 (19)0.030 (2)0.0139 (18)
O5A0.059 (2)0.064 (3)0.069 (2)0.0066 (19)0.030 (2)0.0139 (18)
O60.069 (3)0.067 (3)0.076 (3)0.018 (2)0.033 (2)0.008 (2)
O6A0.069 (3)0.067 (3)0.076 (3)0.018 (2)0.033 (2)0.008 (2)
P10.0368 (5)0.0680 (7)0.0595 (6)0.0055 (5)0.0196 (4)0.0059 (5)
Geometric parameters (Å, º) top
C1—C21.446 (5)C11—H11B0.9600
C1—O11.200 (4)C11—H11C0.9600
C1—O21.381 (4)C11—O51.38 (2)
C2—C31.373 (4)C11A—H11D0.9600
C2—P11.805 (3)C11A—H11E0.9600
C3—C41.451 (4)C11A—H11F0.9600
C3—C101.501 (5)C11A—O5A1.499 (19)
C4—C51.387 (4)C12—H12A0.9600
C4—C91.405 (4)C12—H12B0.9600
C5—C61.382 (4)C12—H12C0.9600
C5—O21.370 (4)C12—O61.43 (4)
C6—H60.9300C12A—H12D0.9600
C6—C71.374 (5)C12A—H12E0.9600
C7—C81.385 (5)C12A—H12F0.9600
C7—O31.358 (4)C12A—O6A1.529 (19)
C8—H80.9300O3—H30.8200
C8—C91.366 (4)O4—P11.464 (5)
C9—H90.9300O4A—P11.454 (6)
C10—H10A0.9600O5—P11.543 (4)
C10—H10B0.9600O5A—P11.567 (5)
C10—H10C0.9600O6—P11.561 (5)
C11—H11A0.9600O6A—P11.556 (6)
O1—C1—C2127.1 (3)O5—C11—H11C109.5
O1—C1—O2114.8 (3)H11D—C11A—H11E109.5
O2—C1—C2118.0 (3)H11D—C11A—H11F109.5
C1—C2—P1116.0 (2)H11E—C11A—H11F109.5
C3—C2—C1120.7 (3)O5A—C11A—H11D109.5
C3—C2—P1123.2 (3)O5A—C11A—H11E109.5
C2—C3—C4119.1 (3)O5A—C11A—H11F109.5
C2—C3—C10123.2 (3)H12A—C12—H12B109.5
C4—C3—C10117.7 (3)H12A—C12—H12C109.5
C5—C4—C3118.9 (3)H12B—C12—H12C109.5
C5—C4—C9115.9 (3)O6—C12—H12A109.5
C9—C4—C3125.2 (3)O6—C12—H12B109.5
C6—C5—C4123.3 (3)O6—C12—H12C109.5
O2—C5—C4121.1 (3)H12D—C12A—H12E109.5
O2—C5—C6115.5 (3)H12D—C12A—H12F109.5
C5—C6—H6120.7H12E—C12A—H12F109.5
C7—C6—C5118.6 (3)O6A—C12A—H12D109.5
C7—C6—H6120.7O6A—C12A—H12E109.5
C6—C7—C8120.3 (3)O6A—C12A—H12F109.5
O3—C7—C6122.6 (3)C5—O2—C1121.9 (3)
O3—C7—C8117.1 (3)C7—O3—H3109.5
C7—C8—H8120.0C11—O5—P1119.4 (15)
C9—C8—C7120.0 (3)C11A—O5A—P1123.3 (17)
C9—C8—H8120.0C12—O6—P1125.5 (12)
C4—C9—H9119.0C12A—O6A—P1117.5 (19)
C8—C9—C4121.9 (3)O4—P1—C2114.5 (2)
C8—C9—H9119.0O4—P1—O5113.5 (3)
C3—C10—H10A109.5O4—P1—O6110.2 (3)
C3—C10—H10B109.5O4A—P1—C2112.6 (2)
C3—C10—H10C109.5O4A—P1—O5A110.0 (3)
H10A—C10—H10B109.5O4A—P1—O6A114.2 (3)
H10A—C10—H10C109.5O5—P1—C2105.91 (19)
H10B—C10—H10C109.5O5—P1—O6102.1 (3)
H11A—C11—H11B109.5O5A—P1—C2105.6 (2)
H11A—C11—H11C109.5O6—P1—C2109.8 (2)
H11B—C11—H11C109.5O6A—P1—C2112.6 (2)
O5—C11—H11A109.5O6A—P1—O5A100.9 (3)
O5—C11—H11B109.5
C1—C2—C3—C41.3 (5)C7—C8—C9—C40.0 (6)
C1—C2—C3—C10179.0 (3)C9—C4—C5—C61.2 (5)
C1—C2—P1—O4175.7 (4)C9—C4—C5—O2179.1 (3)
C1—C2—P1—O4A135.4 (4)C10—C3—C4—C5178.5 (3)
C1—C2—P1—O549.9 (4)C10—C3—C4—C91.3 (5)
C1—C2—P1—O5A104.6 (3)C11—O5—P1—C263.3 (18)
C1—C2—P1—O659.7 (3)C11—O5—P1—O463.1 (18)
C1—C2—P1—O6A4.6 (4)C11—O5—P1—O6178.3 (18)
C2—C1—O2—C54.3 (5)C11A—O5A—P1—C257 (2)
C2—C3—C4—C51.3 (5)C11A—O5A—P1—O4A179 (2)
C2—C3—C4—C9178.9 (3)C11A—O5A—P1—O6A60 (2)
C3—C2—P1—O41.8 (4)C12—O6—P1—C287 (2)
C3—C2—P1—O4A47.0 (4)C12—O6—P1—O4146 (2)
C3—C2—P1—O5127.6 (3)C12—O6—P1—O525 (2)
C3—C2—P1—O5A73.0 (4)C12A—O6A—P1—C280 (2)
C3—C2—P1—O6122.8 (3)C12A—O6A—P1—O4A50 (2)
C3—C2—P1—O6A177.9 (3)C12A—O6A—P1—O5A168 (2)
C3—C4—C5—C6178.6 (3)O1—C1—C2—C3176.1 (4)
C3—C4—C5—O21.1 (5)O1—C1—C2—P16.3 (5)
C3—C4—C9—C8178.9 (4)O1—C1—O2—C5175.8 (3)
C4—C5—C6—C70.6 (6)O2—C1—C2—C34.1 (5)
C4—C5—O2—C11.8 (5)O2—C1—C2—P1173.5 (2)
C5—C4—C9—C80.9 (5)O2—C5—C6—C7179.7 (3)
C5—C6—C7—C80.4 (6)O3—C7—C8—C9179.9 (4)
C5—C6—C7—O3179.5 (3)P1—C2—C3—C4176.1 (2)
C6—C5—O2—C1178.5 (3)P1—C2—C3—C103.6 (5)
C6—C7—C8—C90.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.821.782.562 (6)159
O3—H3···O4Ai0.822.012.812 (7)168
C8—H8···O1ii0.932.443.220 (4)142
C10—H10B···O40.962.222.831 (6)121
C12—H12A···O10.962.202.96 (5)135
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank Ms Y. Zhu for technical assistance.

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (grant No. 21172055); Foundation of Henan Education Committee (grant No. 18A150004); the Program for Innovative Research Team from Zhengzhou (grant No. 131PCXTD605); Natural Science Foundation of Henan University of Technology (grant No. 2017RCJH08).

References

First citationBudzisz, E., Brzezinska, E., Krajewska, U. & Rozalski, M. (2003). Eur. J. Med. Chem. 38, 597–603.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMi, X., Huang, M., Zhang, J., Wang, C. & Wu, Y. (2013). Org. Lett. 15, 6266–6269.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2011). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYang, L., Zhang, X., Yuan, J., Xiao, Y. & Mao, P. (2016). J. Organomet. Chem. 818, 179–184.  Web of Science CSD CrossRef CAS Google Scholar
First citationYuan, J., Li, Y., Yang, L., Mai, W., Mao, P., Xiao, Y. & Qu, L. (2015). Tetrahedron, 71, 8178–8186.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds