organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Methyl­benzyl­ammonium chloride hemihydrate

aDepartment of Physics, Government Arts College (Autonomous), Kumbakonam 612 002, Tamilnadu, India, and bKunthavai Naacchiyar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamilnadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com

Edited by R. J. Butcher, Howard University, USA (Received 10 August 2017; accepted 22 August 2017; online 25 August 2017)

In the title hydrated salt, C8H12N+·Cl·0.5H2O, the water O atom lies on a crystallographic twofold axis. In the crystal, the cation, anion and water mol­ecule are linked to one another via C—H⋯Cl, O—H⋯Cl, N—H⋯O and N—H⋯Cl hydrogen bonds. The crystal structure is further stabilized by two weak C—H⋯π inter­actions involving the benzene ring to form a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

We report here the growth and single-crystal X-ray structure of 4-methyl­benzyl­ammonium chloride hemihydrate, prepared by the slow evaporation method. Derivatives of benzyl­amine act as good inhibitors for proteolytic enzymes, such as trypsin, plasmin and thrombin (Markwardt et al., 2005[Markwardt, F., Landmann, H. & Walsmann, P. (2005). Eur. J. Biochem. 6, 502-506.]). These derivatives are also used in the field of microelectronics (Sahbani et al., 2017[Sahbani, T., Dhieb, A. C., Smirani, W. S. & Rzaigui, M. (2017). Phase Transitions, 90, 557-568.]).

In the title hydrated salt (Fig. 1[link]), the water O atom lies on a crystallographic twofold axis. In the crystal, the cation, anion and water mol­ecule are linked to one another via C8—H8B⋯Cl1i, O1—H1⋯Cl1i, N1—H1D⋯O1ii, N1—H1E⋯Cl1, N1—H1F⋯Cl1i and N1—H1F⋯Cl1ii hydrogen bonds (see Fig. 2[link] and Table 1[link]), generating layers lying parallel to the bc plane. Furthermore, the crystal structure is stabilized by C1—H1Bπiii and C8—H8Aπi weak inter­actions involving the C2–C7 benzene ring, to form a three-dimensional network (see Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8B⋯Cl1i 0.97 2.96 3.5656 (16) 122
O1—H1⋯Cl1i 0.86 (1) 2.27 (1) 3.1231 (13) 177 (2)
N1—H1D⋯O1ii 0.92 (1) 1.98 (2) 2.8707 (18) 163 (2)
N1—H1E⋯Cl1 0.93 (1) 2.22 (1) 3.1531 (15) 177 (2)
N1—H1F⋯Cl1i 0.91 (1) 2.85 (2) 3.4430 (15) 124 (2)
N1—H1F⋯Cl1ii 0.91 (1) 2.52 (2) 3.2733 (13) 141 (2)
C1—H1BCg1iii 0.96 2.64 3.5656 (16) 162
C8—H8ACg1i 0.97 2.91 3.4693 (16) 118
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z.
[Figure 1]
Figure 1
A view of the components of (I), with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dotted lines. [Symmetry code: (i) 1 − x, y, [{1\over 2}] − z.]
[Figure 2]
Figure 2
The crystal structure of (I), viewed down the b axis, showing the formation of hydrogen bonding. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

Souissi et al. (2010[Souissi, S., Smirani Sta, W., Al-Deyab, S. S. & Rzaigui, M. (2010). Acta Cryst. E66, o1627.]) have reported the crystal structure of (4-chloro­phen­yl)methanaminium chloride hemihydrate, in which the water O atom lies on a crystallographic twofold axis.

Synthesis and crystallization

A solution of 4-methyl­benzyl­amine (2 mmol, 0.242 g) was dissolved in dilute HCl (10 ml, 1 mol) and CaCl2 (1 mmol, 0.147 g) was added. The resulting clear solution was stirred for 3 h and left to stand at room temperature. Colourless single crystals of the title compound were obtained after 15 d.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. `DFIX 0.85 0.02 O1 H1' was used to fix the water O—H distance. `DFIX 0.90 0.02 N1 H1D N1 H1E N1 H1F' was used to fix the N—H distances in the –NH3 group. `DFIX 1.48 0.02 H1D H1E H1E H1F H1F H1D' was used to fix the three H⋯H distances in the –NH3 group. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 (aromatic), 0.97 (–CH2–) and 0.96 Å (–CH3), and with Uiso(H) = 1.2–1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C8H12N+·Cl·0.5H2O
Mr 166.65
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 30.5325 (14), 4.8966 (2), 11.8973 (5)
β (°) 99.067 (2)
V3) 1756.49 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.37
Crystal size (mm) 0.20 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.703, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 14479, 2985, 2030
Rint 0.029
(sin θ/λ)max−1) 0.761
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.118, 1.04
No. of reflections 2985
No. of parameters 112
No. of restraints 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.25
Computer programs: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2/SAINT (Bruker, 2004); data reduction: SAINT/XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2015); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015), PLATON (Spek, 2015) and publCIF (Westrip, 2010).

4-Methylbenzylammonium chloride hemihydrate top
Crystal data top
C8H12N+·Cl·0.5H2ODx = 1.260 Mg m3
Mr = 166.65Melting point: 533(3) K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 30.5325 (14) ÅCell parameters from 3525 reflections
b = 4.8966 (2) Åθ = 2.7–27.2°
c = 11.8973 (5) ŵ = 0.37 mm1
β = 99.067 (2)°T = 296 K
V = 1756.49 (13) Å3Block, colourless
Z = 40.20 × 0.20 × 0.15 mm
F(000) = 712
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2985 independent reflections
Radiation source: fine-focus sealed tube2030 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and φ scanθmax = 32.7°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 4344
Tmin = 0.703, Tmax = 0.747k = 77
14479 measured reflectionsl = 1717
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0474P)2 + 1.1506P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2985 reflectionsΔρmax = 0.26 e Å3
112 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.27846 (5)1.1363 (3)0.66526 (16)0.0457 (4)
H1A0.2507531.1042150.6165610.069*
H1B0.2893501.3142610.6500980.069*
H1C0.2741531.1260640.7433490.069*
C20.31162 (5)0.9233 (3)0.64291 (13)0.0329 (3)
C30.34309 (5)0.8260 (3)0.73017 (13)0.0381 (3)
H30.3438950.8949510.8032920.046*
C40.37344 (5)0.6277 (3)0.71083 (13)0.0370 (3)
H40.3940780.5644840.7711080.044*
C50.37334 (4)0.5229 (3)0.60280 (12)0.0317 (3)
C60.34264 (5)0.6250 (3)0.51457 (13)0.0380 (3)
H60.3424690.5607610.4409390.046*
C70.31220 (5)0.8218 (3)0.53477 (13)0.0385 (3)
H70.2917740.8867420.4744010.046*
C80.40494 (5)0.2992 (3)0.58295 (16)0.0409 (4)
H8A0.4067780.1676530.6444750.049*
H8B0.3934890.2054080.5126260.049*
N10.44988 (4)0.4038 (3)0.57608 (13)0.0409 (3)
O10.5000000.2659 (4)0.2500000.0520 (4)
Cl10.45068 (2)0.86388 (8)0.39101 (4)0.04364 (13)
H10.4865 (6)0.151 (3)0.2865 (16)0.052*
H1D0.4625 (7)0.492 (4)0.6416 (12)0.066 (6)*
H1E0.4504 (7)0.535 (4)0.5197 (14)0.073 (7)*
H1F0.4686 (6)0.265 (3)0.5654 (16)0.071 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0397 (8)0.0368 (8)0.0643 (11)0.0070 (7)0.0201 (8)0.0028 (7)
C20.0297 (6)0.0284 (6)0.0425 (8)0.0003 (5)0.0118 (6)0.0024 (6)
C30.0424 (8)0.0394 (8)0.0335 (7)0.0055 (6)0.0094 (6)0.0025 (6)
C40.0359 (7)0.0396 (8)0.0348 (7)0.0062 (6)0.0033 (6)0.0029 (6)
C50.0282 (6)0.0269 (6)0.0413 (7)0.0016 (5)0.0102 (5)0.0008 (6)
C60.0388 (8)0.0425 (8)0.0334 (7)0.0013 (6)0.0079 (6)0.0050 (6)
C70.0339 (7)0.0425 (8)0.0379 (8)0.0057 (6)0.0022 (6)0.0041 (6)
C80.0372 (8)0.0296 (7)0.0590 (10)0.0006 (6)0.0173 (7)0.0025 (7)
N10.0312 (6)0.0389 (7)0.0543 (8)0.0075 (6)0.0117 (6)0.0026 (6)
O10.0542 (11)0.0444 (10)0.0619 (11)0.0000.0227 (9)0.000
Cl10.0389 (2)0.0404 (2)0.0523 (2)0.00223 (16)0.00932 (16)0.00296 (17)
Geometric parameters (Å, º) top
C1—C21.506 (2)C6—C71.386 (2)
C1—H1A0.9600C6—H60.9300
C1—H1B0.9600C7—H70.9300
C1—H1C0.9600C8—N11.479 (2)
C2—C71.382 (2)C8—H8A0.9700
C2—C31.383 (2)C8—H8B0.9700
C3—C41.386 (2)N1—H1D0.921 (13)
C3—H30.9300N1—H1E0.931 (14)
C4—C51.384 (2)N1—H1F0.911 (14)
C4—H40.9300O1—H10.855 (14)
C5—C61.386 (2)O1—H1i0.855 (14)
C5—C81.503 (2)
C2—C1—H1A109.5C7—C6—H6119.6
C2—C1—H1B109.5C5—C6—H6119.6
H1A—C1—H1B109.5C2—C7—C6121.25 (14)
C2—C1—H1C109.5C2—C7—H7119.4
H1A—C1—H1C109.5C6—C7—H7119.4
H1B—C1—H1C109.5N1—C8—C5112.37 (12)
C7—C2—C3117.75 (13)N1—C8—H8A109.1
C7—C2—C1121.40 (14)C5—C8—H8A109.1
C3—C2—C1120.85 (14)N1—C8—H8B109.1
C2—C3—C4121.34 (14)C5—C8—H8B109.1
C2—C3—H3119.3H8A—C8—H8B107.9
C4—C3—H3119.3C8—N1—H1D112.5 (13)
C5—C4—C3120.70 (14)C8—N1—H1E113.5 (14)
C5—C4—H4119.7H1D—N1—H1E103.5 (16)
C3—C4—H4119.7C8—N1—H1F110.9 (13)
C4—C5—C6118.15 (13)H1D—N1—H1F106.4 (15)
C4—C5—C8120.61 (14)H1E—N1—H1F109.6 (16)
C6—C5—C8121.22 (14)H1—O1—H1i98 (3)
C7—C6—C5120.77 (14)
C7—C2—C3—C41.8 (2)C8—C5—C6—C7176.79 (14)
C1—C2—C3—C4179.25 (14)C3—C2—C7—C61.3 (2)
C2—C3—C4—C50.6 (2)C1—C2—C7—C6179.75 (15)
C3—C4—C5—C61.1 (2)C5—C6—C7—C20.4 (2)
C3—C4—C5—C8177.28 (14)C4—C5—C8—N180.09 (18)
C4—C5—C6—C71.6 (2)C6—C5—C8—N1101.57 (17)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the (C2-C7) benzene ring.
D—H···AD—HH···AD···AD—H···A
C8—H8B···Cl1ii0.972.963.5656 (16)122
O1—H1···Cl1ii0.86 (1)2.27 (1)3.1231 (13)177 (2)
N1—H1D···O1iii0.92 (1)1.98 (2)2.8707 (18)163 (2)
N1—H1E···Cl10.93 (1)2.22 (1)3.1531 (15)177 (2)
N1—H1F···Cl1ii0.91 (1)2.85 (2)3.4430 (15)124 (2)
N1—H1F···Cl1iii0.91 (1)2.52 (2)3.2733 (13)141 (2)
C1—H1B···Cg1iv0.962.643.5656 (16)162
C8—H8A···Cg1ii0.972.913.4693 (16)118
Symmetry codes: (ii) x, y1, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z.
 

Acknowledgements

The authors are thankful to the Sophisticated Analytical Instrument Facility (SAIF), IITM, Chennai, Tamilnadu, India, for the single-crystal X-ray diffraction data.

Funding information

Funding for this research was provided by: Council of Scientific and Industrial Research (CSIR), New Delhi, India (grant No. 03(1301)13/EMR II to CR).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarkwardt, F., Landmann, H. & Walsmann, P. (2005). Eur. J. Biochem. 6, 502–506.  CrossRef Web of Science Google Scholar
First citationSahbani, T., Dhieb, A. C., Smirani, W. S. & Rzaigui, M. (2017). Phase Transitions, 90, 557–568.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSouissi, S., Smirani Sta, W., Al-Deyab, S. S. & Rzaigui, M. (2010). Acta Cryst. E66, o1627.  CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds