organic compounds
4-Methylbenzylammonium chloride hemihydrate
aDepartment of Physics, Government Arts College (Autonomous), Kumbakonam 612 002, Tamilnadu, India, and bKunthavai Naacchiyar Government Arts College for Women (Autonomous), Thanjavur 613 007, Tamilnadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com
In the title hydrated salt, C8H12N+·Cl−·0.5H2O, the water O atom lies on a crystallographic twofold axis. In the crystal, the cation, anion and water molecule are linked to one another via C—H⋯Cl, O—H⋯Cl, N—H⋯O and N—H⋯Cl hydrogen bonds. The is further stabilized by two weak C—H⋯π interactions involving the benzene ring to form a three-dimensional network.
Keywords: crystal structure; hydrated salt; hydrogen bonds; C—H⋯π interactions.
CCDC reference: 1570202
Structure description
We report here the growth and single-crystal X-ray structure of 4-methylbenzylammonium chloride hemihydrate, prepared by the slow evaporation method. Derivatives of benzylamine act as good inhibitors for proteolytic enzymes, such as trypsin, plasmin and thrombin (Markwardt et al., 2005). These derivatives are also used in the field of microelectronics (Sahbani et al., 2017).
In the title hydrated salt (Fig. 1), the water O atom lies on a crystallographic twofold axis. In the crystal, the cation, anion and water molecule are linked to one another via C8—H8B⋯Cl1i, O1—H1⋯Cl1i, N1—H1D⋯O1ii, N1—H1E⋯Cl1, N1—H1F⋯Cl1i and N1—H1F⋯Cl1ii hydrogen bonds (see Fig. 2 and Table 1), generating layers lying parallel to the bc plane. Furthermore, the is stabilized by C1—H1B⋯πiii and C8—H8A⋯πi weak interactions involving the C2–C7 benzene ring, to form a three-dimensional network (see Table 1).
Souissi et al. (2010) have reported the of (4-chlorophenyl)methanaminium chloride hemihydrate, in which the water O atom lies on a crystallographic twofold axis.
Synthesis and crystallization
A solution of 4-methylbenzylamine (2 mmol, 0.242 g) was dissolved in dilute HCl (10 ml, 1 mol) and CaCl2 (1 mmol, 0.147 g) was added. The resulting clear solution was stirred for 3 h and left to stand at room temperature. Colourless single crystals of the title compound were obtained after 15 d.
Refinement
Crystal data, data collection and structure . `DFIX 0.85 0.02 O1 H1' was used to fix the water O—H distance. `DFIX 0.90 0.02 N1 H1D N1 H1E N1 H1F' was used to fix the N—H distances in the –NH3 group. `DFIX 1.48 0.02 H1D H1E H1E H1F H1F H1D' was used to fix the three H⋯H distances in the –NH3 group. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 (aromatic), 0.97 (–CH2–) and 0.96 Å (–CH3), and with Uiso(H) = 1.2–1.5Ueq(C).
details are summarized in Table 2
|
Structural data
CCDC reference: 1570202
https://doi.org/10.1107/S2414314617012135/bv4010sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617012135/bv4010Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617012135/bv4010Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314617012135/bv4010Isup4.cml
Data collection: APEX2 (Bruker, 2004); cell
APEX2/SAINT (Bruker, 2004); data reduction: SAINT/XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2015); software used to prepare material for publication: SHELXL2017 (Sheldrick, 2015), PLATON (Spek, 2015) and publCIF (Westrip, 2010).C8H12N+·Cl−·0.5H2O | Dx = 1.260 Mg m−3 |
Mr = 166.65 | Melting point: 533(3) K |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 30.5325 (14) Å | Cell parameters from 3525 reflections |
b = 4.8966 (2) Å | θ = 2.7–27.2° |
c = 11.8973 (5) Å | µ = 0.37 mm−1 |
β = 99.067 (2)° | T = 296 K |
V = 1756.49 (13) Å3 | Block, colourless |
Z = 4 | 0.20 × 0.20 × 0.15 mm |
F(000) = 712 |
Bruker Kappa APEXII CCD diffractometer | 2985 independent reflections |
Radiation source: fine-focus sealed tube | 2030 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
ω and φ scan | θmax = 32.7°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −43→44 |
Tmin = 0.703, Tmax = 0.747 | k = −7→7 |
14479 measured reflections | l = −17→17 |
Refinement on F2 | 7 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.041 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.118 | w = 1/[σ2(Fo2) + (0.0474P)2 + 1.1506P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2985 reflections | Δρmax = 0.26 e Å−3 |
112 parameters | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.27846 (5) | 1.1363 (3) | 0.66526 (16) | 0.0457 (4) | |
H1A | 0.250753 | 1.104215 | 0.616561 | 0.069* | |
H1B | 0.289350 | 1.314261 | 0.650098 | 0.069* | |
H1C | 0.274153 | 1.126064 | 0.743349 | 0.069* | |
C2 | 0.31162 (5) | 0.9233 (3) | 0.64291 (13) | 0.0329 (3) | |
C3 | 0.34309 (5) | 0.8260 (3) | 0.73017 (13) | 0.0381 (3) | |
H3 | 0.343895 | 0.894951 | 0.803292 | 0.046* | |
C4 | 0.37344 (5) | 0.6277 (3) | 0.71083 (13) | 0.0370 (3) | |
H4 | 0.394078 | 0.564484 | 0.771108 | 0.044* | |
C5 | 0.37334 (4) | 0.5229 (3) | 0.60280 (12) | 0.0317 (3) | |
C6 | 0.34264 (5) | 0.6250 (3) | 0.51457 (13) | 0.0380 (3) | |
H6 | 0.342469 | 0.560761 | 0.440939 | 0.046* | |
C7 | 0.31220 (5) | 0.8218 (3) | 0.53477 (13) | 0.0385 (3) | |
H7 | 0.291774 | 0.886742 | 0.474401 | 0.046* | |
C8 | 0.40494 (5) | 0.2992 (3) | 0.58295 (16) | 0.0409 (4) | |
H8A | 0.406778 | 0.167653 | 0.644475 | 0.049* | |
H8B | 0.393489 | 0.205408 | 0.512626 | 0.049* | |
N1 | 0.44988 (4) | 0.4038 (3) | 0.57608 (13) | 0.0409 (3) | |
O1 | 0.500000 | 0.2659 (4) | 0.250000 | 0.0520 (4) | |
Cl1 | 0.45068 (2) | 0.86388 (8) | 0.39101 (4) | 0.04364 (13) | |
H1 | 0.4865 (6) | 0.151 (3) | 0.2865 (16) | 0.052* | |
H1D | 0.4625 (7) | 0.492 (4) | 0.6416 (12) | 0.066 (6)* | |
H1E | 0.4504 (7) | 0.535 (4) | 0.5197 (14) | 0.073 (7)* | |
H1F | 0.4686 (6) | 0.265 (3) | 0.5654 (16) | 0.071 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0397 (8) | 0.0368 (8) | 0.0643 (11) | 0.0070 (7) | 0.0201 (8) | 0.0028 (7) |
C2 | 0.0297 (6) | 0.0284 (6) | 0.0425 (8) | −0.0003 (5) | 0.0118 (6) | 0.0024 (6) |
C3 | 0.0424 (8) | 0.0394 (8) | 0.0335 (7) | 0.0055 (6) | 0.0094 (6) | −0.0025 (6) |
C4 | 0.0359 (7) | 0.0396 (8) | 0.0348 (7) | 0.0062 (6) | 0.0033 (6) | 0.0029 (6) |
C5 | 0.0282 (6) | 0.0269 (6) | 0.0413 (7) | −0.0016 (5) | 0.0102 (5) | −0.0008 (6) |
C6 | 0.0388 (8) | 0.0425 (8) | 0.0334 (7) | 0.0013 (6) | 0.0079 (6) | −0.0050 (6) |
C7 | 0.0339 (7) | 0.0425 (8) | 0.0379 (8) | 0.0057 (6) | 0.0022 (6) | 0.0041 (6) |
C8 | 0.0372 (8) | 0.0296 (7) | 0.0590 (10) | 0.0006 (6) | 0.0173 (7) | −0.0025 (7) |
N1 | 0.0312 (6) | 0.0389 (7) | 0.0543 (8) | 0.0075 (6) | 0.0117 (6) | 0.0026 (6) |
O1 | 0.0542 (11) | 0.0444 (10) | 0.0619 (11) | 0.000 | 0.0227 (9) | 0.000 |
Cl1 | 0.0389 (2) | 0.0404 (2) | 0.0523 (2) | 0.00223 (16) | 0.00932 (16) | 0.00296 (17) |
C1—C2 | 1.506 (2) | C6—C7 | 1.386 (2) |
C1—H1A | 0.9600 | C6—H6 | 0.9300 |
C1—H1B | 0.9600 | C7—H7 | 0.9300 |
C1—H1C | 0.9600 | C8—N1 | 1.479 (2) |
C2—C7 | 1.382 (2) | C8—H8A | 0.9700 |
C2—C3 | 1.383 (2) | C8—H8B | 0.9700 |
C3—C4 | 1.386 (2) | N1—H1D | 0.921 (13) |
C3—H3 | 0.9300 | N1—H1E | 0.931 (14) |
C4—C5 | 1.384 (2) | N1—H1F | 0.911 (14) |
C4—H4 | 0.9300 | O1—H1 | 0.855 (14) |
C5—C6 | 1.386 (2) | O1—H1i | 0.855 (14) |
C5—C8 | 1.503 (2) | ||
C2—C1—H1A | 109.5 | C7—C6—H6 | 119.6 |
C2—C1—H1B | 109.5 | C5—C6—H6 | 119.6 |
H1A—C1—H1B | 109.5 | C2—C7—C6 | 121.25 (14) |
C2—C1—H1C | 109.5 | C2—C7—H7 | 119.4 |
H1A—C1—H1C | 109.5 | C6—C7—H7 | 119.4 |
H1B—C1—H1C | 109.5 | N1—C8—C5 | 112.37 (12) |
C7—C2—C3 | 117.75 (13) | N1—C8—H8A | 109.1 |
C7—C2—C1 | 121.40 (14) | C5—C8—H8A | 109.1 |
C3—C2—C1 | 120.85 (14) | N1—C8—H8B | 109.1 |
C2—C3—C4 | 121.34 (14) | C5—C8—H8B | 109.1 |
C2—C3—H3 | 119.3 | H8A—C8—H8B | 107.9 |
C4—C3—H3 | 119.3 | C8—N1—H1D | 112.5 (13) |
C5—C4—C3 | 120.70 (14) | C8—N1—H1E | 113.5 (14) |
C5—C4—H4 | 119.7 | H1D—N1—H1E | 103.5 (16) |
C3—C4—H4 | 119.7 | C8—N1—H1F | 110.9 (13) |
C4—C5—C6 | 118.15 (13) | H1D—N1—H1F | 106.4 (15) |
C4—C5—C8 | 120.61 (14) | H1E—N1—H1F | 109.6 (16) |
C6—C5—C8 | 121.22 (14) | H1—O1—H1i | 98 (3) |
C7—C6—C5 | 120.77 (14) | ||
C7—C2—C3—C4 | −1.8 (2) | C8—C5—C6—C7 | 176.79 (14) |
C1—C2—C3—C4 | 179.25 (14) | C3—C2—C7—C6 | 1.3 (2) |
C2—C3—C4—C5 | 0.6 (2) | C1—C2—C7—C6 | −179.75 (15) |
C3—C4—C5—C6 | 1.1 (2) | C5—C6—C7—C2 | 0.4 (2) |
C3—C4—C5—C8 | −177.28 (14) | C4—C5—C8—N1 | −80.09 (18) |
C4—C5—C6—C7 | −1.6 (2) | C6—C5—C8—N1 | 101.57 (17) |
Symmetry code: (i) −x+1, y, −z+1/2. |
Cg1 is the centroid of the (C2-C7) benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8B···Cl1ii | 0.97 | 2.96 | 3.5656 (16) | 122 |
O1—H1···Cl1ii | 0.86 (1) | 2.27 (1) | 3.1231 (13) | 177 (2) |
N1—H1D···O1iii | 0.92 (1) | 1.98 (2) | 2.8707 (18) | 163 (2) |
N1—H1E···Cl1 | 0.93 (1) | 2.22 (1) | 3.1531 (15) | 177 (2) |
N1—H1F···Cl1ii | 0.91 (1) | 2.85 (2) | 3.4430 (15) | 124 (2) |
N1—H1F···Cl1iii | 0.91 (1) | 2.52 (2) | 3.2733 (13) | 141 (2) |
C1—H1B···Cg1iv | 0.96 | 2.64 | 3.5656 (16) | 162 |
C8—H8A···Cg1ii | 0.97 | 2.91 | 3.4693 (16) | 118 |
Symmetry codes: (ii) x, y−1, z; (iii) −x+1, −y+1, −z+1; (iv) x, y+1, z. |
Acknowledgements
The authors are thankful to the Sophisticated Analytical Instrument Facility (SAIF), IITM, Chennai, Tamilnadu, India, for the single-crystal X-ray diffraction data.
Funding information
Funding for this research was provided by: Council of Scientific and Industrial Research (CSIR), New Delhi, India (grant No. 03(1301)13/EMR II to CR).
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Markwardt, F., Landmann, H. & Walsmann, P. (2005). Eur. J. Biochem. 6, 502–506. CrossRef Web of Science Google Scholar
Sahbani, T., Dhieb, A. C., Smirani, W. S. & Rzaigui, M. (2017). Phase Transitions, 90, 557–568. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Souissi, S., Smirani Sta, W., Al-Deyab, S. S. & Rzaigui, M. (2010). Acta Cryst. E66, o1627. CrossRef IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.