organic compounds
rac-1,1,1,6,6,6-Hexachlorohex-3-yne-2,5-diol hemihydrate
aUniversity of Mainz, Institut of Organic Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de
The 6H4Cl6O2·0.5H2O, contains one molecule of 1,1,1,6,6,6-hexachlorohex-3-yne-2,5-diol and half a water molecule located on a twofold rotation axis. In the crystal, pairs of hexachlorohexynediol molecules form centrosymmetric dimers connected via pairwise O—H⋯O hydrogen bonds. These dimers are connected by water molecules, resulting in layers parallel to the ab plane.
of the title compound, CKeywords: crystal structure; centrosymmetric dimer; layer structure; organochlorine compound; alkyne.
CCDC reference: 1570830
Structure description
Highly chlorinated compounds are of current interest because they are intermediates in the formation of environmental pollutants (Taylor et al., 2000) and they are useful as chemical substrates (Rahimi et al., 2009; Schmidt et al., 2009). Furthermore, their rearrangements (McIntosh et al., 2014; Schollmeyer & Detert, 2017; Detert et al., 2009) are a topic in its own right. The monoclinic contains four centrosymmetric dimers composed of one molecule with an R,R-configuration, one with an S,S-configuration and four water molecules, the latter is located on a twofold rotation axis.
In the monoclinic crystal, the hexachlorohexynediol molecules adopt a gauche conformation [C1—C2⋯C5—C6 = 30.4 (2)°] with a nonperfect C2 symmetry (Fig. 1). The C—Cl bonds of the trichloromethyl groups vary between 1.756 (3) (C6—Cl4) and 1.776 (3) Å (C1—Cl2). With bond angles of 176.9 (3) and 175.8 (3)° and a torsion angle of 3 (10)°, the alkyne unit is not perfectly linear. An R,R- and an S,S-configured diole are connected via short hydrogen bonds [O1—H1O⋯O2ii = 2.725 (3) Å] to a centrosymmetric dimer (Table 1). A C—H⋯O hydrogen bond [C5—H5⋯O1i = 3.297 (4) Å] forms a chain parallel to the b axis. Hydrogen bonds between atoms O1 and O2 to the water molecule [O2—H2O⋯O3i = 2.773 (3) Å and O3—H3O⋯O1 = 2.999 (3) Å] connect these chains into layers in the ab plane (Fig. 2).
Synthesis and crystallization
The title compound was prepared from ethyl magnesium bromide, acetylene and chloral according to Gorgues et al. (1986) and Dupont (1910) followed by aqueous work-up. A mixture of three was obtained. Recrystallization from ethanol solution gave the title compound. 1H NMR: (CDCl3/DMSO-d6, 400 MHz): δ 7.05 (2H, OH), 4.79 (2H, CH, 1JCH = 154 Hz). Recrystallization from chloroform solution yielded colourless crystals (m.p. 408 K).
Refinement
Crystal data, data collection and structure . H atoms were located in difference Fourier maps and were refined with isotropic displacement parameters.
details are summarized in Table 2
|
Structural data
CCDC reference: 1570830
https://doi.org/10.1107/S2414314617012366/bt4062sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617012366/bt4062Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2006a); cell
X-AREA (Stoe & Cie, 2006a); data reduction: X-RED32 (Stoe & Cie, 2006b); program(s) used to solve structure: SIR2004 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).2C6H4Cl6O2·H2O | Dx = 1.833 Mg m−3 |
Mr = 659.60 | Melting point: 408 K |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
a = 19.8354 (11) Å | Cell parameters from 5782 reflections |
b = 5.8480 (2) Å | θ = 3.4–28.3° |
c = 21.7082 (13) Å | µ = 1.41 mm−1 |
β = 108.321 (4)° | T = 193 K |
V = 2390.5 (2) Å3 | Column, colourless |
Z = 4 | 0.39 × 0.07 × 0.06 mm |
F(000) = 1304 |
Stoe IPDS 2T diffractometer | 2965 independent reflections |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 2202 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.026 |
rotation method scans | θmax = 28.3°, θmin = 2.4° |
Absorption correction: integration (X-RED32; Stoe & Cie, 2006b) | h = −26→26 |
Tmin = 0.714, Tmax = 0.933 | k = −7→6 |
6305 measured reflections | l = −24→28 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | All H-atom parameters refined |
wR(F2) = 0.090 | w = 1/[σ2(Fo2) + (0.0295P)2 + 6.4827P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2965 reflections | Δρmax = 0.59 e Å−3 |
152 parameters | Δρmin = −0.57 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.58326 (13) | 0.4054 (5) | 0.37414 (13) | 0.0269 (5) | |
C2 | 0.56624 (13) | 0.4444 (5) | 0.43828 (13) | 0.0268 (5) | |
H2 | 0.5573 (14) | 0.608 (5) | 0.4386 (13) | 0.026 (7)* | |
C3 | 0.50278 (14) | 0.3142 (5) | 0.43757 (12) | 0.0296 (6) | |
C4 | 0.45026 (15) | 0.2097 (5) | 0.43394 (13) | 0.0314 (6) | |
C5 | 0.38356 (15) | 0.0835 (5) | 0.42428 (13) | 0.0303 (6) | |
H5 | 0.3951 (17) | −0.077 (6) | 0.4347 (16) | 0.046 (9)* | |
C6 | 0.34051 (13) | 0.0815 (5) | 0.35171 (13) | 0.0270 (5) | |
O1 | 0.62524 (11) | 0.3777 (4) | 0.49119 (10) | 0.0345 (5) | |
H1O | 0.637 (2) | 0.484 (7) | 0.5082 (19) | 0.051 (12)* | |
O2 | 0.34423 (13) | 0.1915 (5) | 0.46020 (11) | 0.0489 (7) | |
H2O | 0.319 (2) | 0.114 (7) | 0.4692 (19) | 0.059 (13)* | |
O3 | 0.7500 | 0.0752 (6) | 0.5000 | 0.0380 (7) | |
H3O | 0.717 (3) | 0.171 (10) | 0.475 (3) | 0.12 (2)* | |
Cl1 | 0.59756 (4) | 0.11144 (12) | 0.36352 (4) | 0.03662 (17) | |
Cl2 | 0.66181 (4) | 0.55802 (13) | 0.37759 (4) | 0.04003 (19) | |
Cl3 | 0.51257 (4) | 0.50491 (14) | 0.30818 (3) | 0.04010 (19) | |
Cl4 | 0.38978 (5) | −0.05417 (17) | 0.30774 (4) | 0.0551 (3) | |
Cl5 | 0.26084 (4) | −0.07339 (13) | 0.34107 (4) | 0.03746 (18) | |
Cl6 | 0.31978 (4) | 0.36244 (14) | 0.32294 (5) | 0.0547 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0242 (12) | 0.0244 (12) | 0.0341 (13) | 0.0017 (10) | 0.0119 (10) | 0.0002 (11) |
C2 | 0.0232 (12) | 0.0271 (14) | 0.0300 (13) | −0.0016 (10) | 0.0083 (10) | 0.0002 (11) |
C3 | 0.0268 (13) | 0.0357 (15) | 0.0257 (12) | −0.0011 (11) | 0.0075 (10) | 0.0015 (11) |
C4 | 0.0302 (14) | 0.0358 (15) | 0.0292 (13) | −0.0032 (12) | 0.0109 (11) | 0.0016 (12) |
C5 | 0.0311 (14) | 0.0315 (15) | 0.0312 (14) | −0.0084 (12) | 0.0138 (11) | −0.0003 (12) |
C6 | 0.0251 (12) | 0.0271 (13) | 0.0312 (13) | −0.0024 (10) | 0.0123 (10) | −0.0012 (11) |
O1 | 0.0297 (10) | 0.0338 (12) | 0.0349 (11) | −0.0043 (9) | 0.0028 (8) | −0.0005 (9) |
O2 | 0.0507 (14) | 0.0622 (16) | 0.0484 (13) | −0.0332 (13) | 0.0367 (11) | −0.0271 (12) |
O3 | 0.0278 (15) | 0.0455 (18) | 0.0381 (16) | 0.000 | 0.0066 (12) | 0.000 |
Cl1 | 0.0322 (3) | 0.0265 (3) | 0.0517 (4) | 0.0022 (3) | 0.0140 (3) | −0.0071 (3) |
Cl2 | 0.0346 (4) | 0.0347 (4) | 0.0601 (5) | −0.0071 (3) | 0.0282 (3) | −0.0022 (3) |
Cl3 | 0.0384 (4) | 0.0489 (4) | 0.0334 (3) | 0.0119 (3) | 0.0118 (3) | 0.0097 (3) |
Cl4 | 0.0544 (5) | 0.0652 (6) | 0.0615 (5) | −0.0178 (4) | 0.0408 (4) | −0.0298 (5) |
Cl5 | 0.0301 (3) | 0.0397 (4) | 0.0436 (4) | −0.0134 (3) | 0.0130 (3) | −0.0058 (3) |
Cl6 | 0.0418 (4) | 0.0358 (4) | 0.0742 (6) | −0.0033 (3) | 0.0004 (4) | 0.0202 (4) |
C1—C2 | 1.549 (4) | C5—O2 | 1.414 (3) |
C1—Cl3 | 1.758 (3) | C5—C6 | 1.538 (4) |
C1—Cl1 | 1.769 (3) | C5—H5 | 0.98 (4) |
C1—Cl2 | 1.776 (3) | C6—Cl4 | 1.756 (3) |
C2—O1 | 1.413 (3) | C6—Cl6 | 1.760 (3) |
C2—C3 | 1.467 (4) | C6—Cl5 | 1.772 (3) |
C2—H2 | 0.97 (3) | O1—H1O | 0.72 (4) |
C3—C4 | 1.189 (4) | O2—H2O | 0.75 (4) |
C4—C5 | 1.471 (4) | O3—H3O | 0.90 (5) |
C2—C1—Cl3 | 109.87 (17) | O2—C5—C4 | 108.9 (2) |
C2—C1—Cl1 | 110.43 (19) | O2—C5—C6 | 110.1 (2) |
Cl3—C1—Cl1 | 109.56 (15) | C4—C5—C6 | 109.5 (2) |
C2—C1—Cl2 | 108.92 (18) | O2—C5—H5 | 116 (2) |
Cl3—C1—Cl2 | 109.42 (14) | C4—C5—H5 | 108 (2) |
Cl1—C1—Cl2 | 108.62 (14) | C6—C5—H5 | 104 (2) |
O1—C2—C3 | 110.7 (2) | C5—C6—Cl4 | 109.60 (19) |
O1—C2—C1 | 109.4 (2) | C5—C6—Cl6 | 110.4 (2) |
C3—C2—C1 | 110.1 (2) | Cl4—C6—Cl6 | 109.69 (15) |
O1—C2—H2 | 111.8 (17) | C5—C6—Cl5 | 108.81 (18) |
C3—C2—H2 | 110.6 (17) | Cl4—C6—Cl5 | 108.90 (15) |
C1—C2—H2 | 104.0 (17) | Cl6—C6—Cl5 | 109.37 (14) |
C4—C3—C2 | 176.9 (3) | C2—O1—H1O | 104 (3) |
C3—C4—C5 | 175.8 (3) | C5—O2—H2O | 114 (3) |
Cl3—C1—C2—O1 | −176.19 (18) | O2—C5—C6—Cl4 | −179.75 (18) |
Cl1—C1—C2—O1 | 62.8 (2) | C4—C5—C6—Cl4 | 60.5 (3) |
Cl2—C1—C2—O1 | −56.3 (3) | O2—C5—C6—Cl6 | 59.3 (3) |
Cl3—C1—C2—C3 | 62.0 (3) | C4—C5—C6—Cl6 | −60.5 (3) |
Cl1—C1—C2—C3 | −59.0 (3) | O2—C5—C6—Cl5 | −60.8 (3) |
Cl2—C1—C2—C3 | −178.21 (19) | C4—C5—C6—Cl5 | 179.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O1i | 0.98 (4) | 2.50 (4) | 3.297 (4) | 139 (3) |
O1—H1O···O2ii | 0.72 (4) | 2.01 (4) | 2.725 (3) | 168 (4) |
O2—H2O···O3i | 0.75 (4) | 2.02 (4) | 2.773 (3) | 175 (4) |
O3—H3O···O1 | 0.90 (5) | 2.29 (5) | 2.999 (3) | 135 (5) |
O3—H3O···Cl1 | 0.90 (5) | 2.83 (5) | 3.5120 (8) | 134 (4) |
O3—H3O···Cl2 | 0.90 (5) | 3.06 (5) | 3.895 (3) | 155 (5) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
The authors are grateful to Anna Weber for the preparation of the title compound.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Detert, H., Lenoir, D. & Zipse, H. (2009). Eur. J. Org. Chem. pp. 1181–1190. Web of Science CSD CrossRef Google Scholar
Dupont, G. (1910). C. R. Acad. Sci. T150, 1121–1123. Google Scholar
Gorgues, A., Simon, A., Le Coq, A., Hercouet, A. & Corre, F. (1986). Tetrahedron, 42, 351–370. CrossRef CAS Google Scholar
McIntosh, G. J. & Russell, D. K. (2014). J. Phys. Chem. A, 118, 8644–8663. CrossRef CAS PubMed Google Scholar
Rahimi, A., Gjikai, M. & Schmidt, A. (2009). Synlett, pp. 2583–2588. Google Scholar
Schmidt, A., Rahimi, A. & Gjikai, M. (2009). Synlett, pp. 2371–2378. Google Scholar
Schollmeyer, D. & Detert, H. (2017). Tetrahedron Lett. 58, 843–846. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2006a). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Stoe & Cie (2006b). X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Taylor, P. H., Wehrmeier, A., Sidhu, S. S., Lenoir, D., Schramm, K. W. & Kettrup, A. (2000). Chemosphere, 40, 1297–1303. CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.