organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

rac-tert-But­yl{2-hy­dr­oxy-2-[4-hy­dr­oxy-3-(hy­dr­oxy­meth­yl)phen­yl]eth­yl}aza­nium acrylate

aSchool of Chemical Engineering and Environment, Henan University of Technology, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: wenjuliu@haut.edu.cn

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 4 August 2017; accepted 16 August 2017; online 21 August 2017)

The title salt, C13H22NO3+·C3H3O2, comprises one salbutamol cation and an acrylate anion. The acrylate anion is linked to the salbutamol cation via an O—H⋯O and an N—H⋯O hydrogen bond. The C=C group of the acrylate anion is disordered over two positions, with refined site occupancies of 0.812 (7) and 0.188 (7). The crystal structure is stabilized by N—H⋯O and O—H⋯O hydrogen-bonding inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Salbutamol is known as a short-action selective β2-adrenergic receptor agonist for the treatment of pulmonary diseases (Saleh et al., 2000[Saleh, M. I., Koh, Y. M., Tan, S. C. & Aishah, A. L. (2000). Analyst, 125, 1569-1572.]). However, due to its low dissolution in water, salbutamol is usually transformed into its salt form with some acids to improve its solubility. The title compound is a novel salt of salbutamol.

The asymmetric unit of the title compound is shown in Fig. 1[link]. The compound comprises a protonated salbutamol cation and a deprotonated acrylic acid anion which are linked via an O—H⋯O and an N—H⋯O hydrogen bond, forming an R22(9) motif (Table 1[link] and Fig. 1[link]). In the crystal, cations and anions are linked by O—H⋯(O,N) hydrogen bonds, forming a three-dimensional network (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.82 1.98 2.7817 (14) 166
O2—H2⋯O1ii 0.82 1.96 2.7816 (14) 174
O3—H3⋯O4 0.82 1.90 2.7194 (15) 179
N1—H1A⋯O4iii 0.89 1.92 2.8022 (16) 171
N1—H1B⋯O5 0.89 1.96 2.8292 (18) 166
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
Perspective view of the cation and anion of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The minor-occupied sites of the disordered atoms are not shown.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed perpendicular to the bc plane. N—H⋯O and O—H⋯O hydrogen bonds are shown as dashed lines. The minor-occupied sites of the disordered atoms are not shown.

Synthesis and crystallization

Salbutamol (0.479 g, 2 mmol) was reacted with acrylic acid (0.144 g, 2 mmol) in 10 ml methanol. The mixture was stirred and the methanol was evaporated at room temperature, yielding salbutamol acrylate. After recrystallization of the raw product from ethanol, the crystals were dissolved in ethanol and the solution was filtered. Finally, the solvent was evaporated slowly and single crystals suitable for the diffraction experiment were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C=C group of the acrylate anion is disordered over two positions, with refined site occupancies of 0.812 (7) and 0.188 (7). Bond lengths and angles involving the disordered atoms were restrained to be equal. H atoms were refined using a riding model, with aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å, methyl­ene C—H = 0.97 Å and tertiary C—H = 0.98 Å. Uiso(H) values were set at 1.5Ueq(C,O) for methyl and hy­droxy groups and at 1.2Ueq(C,N) for the remaining atoms. The torsion angles of the hy­droxy and methyl groups were allowed to refine.

Table 2
Experimental details

Crystal data
Chemical formula C13H22NO3+·C3H3O2
Mr 311.37
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 9.5304 (4), 11.9927 (5), 14.5120 (7)
β (°) 91.815 (2)
V3) 1657.82 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.4 × 0.3 × 0.2
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.719, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 39441, 3825, 3468
Rint 0.023
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.125, 1.04
No. of reflections 3825
No. of parameters 224
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.27
Computer programs: APEX2 (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2015[Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

rac-tert-Butyl{2-hydroxy-2-[4-hydroxy-3-(hydroxymethyl)phenyl]ethyl}azanium acrylate top
Crystal data top
C13H22NO3+·C3H3O2F(000) = 672
Mr = 311.37Dx = 1.248 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.5304 (4) ÅCell parameters from 9984 reflections
b = 11.9927 (5) Åθ = 2.7–27.5°
c = 14.5120 (7) ŵ = 0.09 mm1
β = 91.815 (2)°T = 295 K
V = 1657.82 (13) Å3Block, colourless
Z = 40.4 × 0.3 × 0.2 mm
Data collection top
CCD area detector
diffractometer
3468 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
phi and ω scansθmax = 27.6°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 1212
Tmin = 0.719, Tmax = 0.746k = 1515
39441 measured reflectionsl = 1818
3825 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.7417P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3825 reflectionsΔρmax = 0.39 e Å3
224 parametersΔρmin = 0.27 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.08955 (11)0.29361 (8)0.85654 (7)0.0385 (2)
H10.16030.28510.88940.058*
O20.03078 (10)0.00530 (8)0.73205 (7)0.0388 (2)
H20.04490.06300.70280.058*
O30.32888 (12)0.27262 (10)0.45673 (7)0.0466 (3)
H30.36380.32710.43210.070*
O40.44223 (13)0.45453 (9)0.37554 (8)0.0500 (3)
N10.60151 (11)0.33496 (9)0.54666 (7)0.0299 (2)
H1A0.57880.40200.56780.036*
H1B0.58990.33690.48560.036*
O50.61642 (17)0.33915 (13)0.35229 (10)0.0711 (4)
C30.06403 (12)0.05912 (10)0.68766 (8)0.0278 (3)
C70.19586 (13)0.22911 (11)0.68475 (9)0.0295 (3)
H70.22210.29640.71210.035*
C20.10425 (12)0.15933 (10)0.73002 (8)0.0268 (2)
C60.24953 (13)0.20124 (11)0.59972 (9)0.0299 (3)
C80.34961 (13)0.28039 (11)0.55336 (9)0.0322 (3)
H80.32880.35680.57270.039*
C40.11790 (14)0.02944 (11)0.60353 (9)0.0332 (3)
H40.09150.03770.57600.040*
C100.75646 (13)0.31554 (12)0.56937 (11)0.0372 (3)
C10.04384 (15)0.18869 (11)0.82191 (9)0.0336 (3)
H1C0.05780.18910.81550.040*
H1D0.07020.13130.86630.040*
C50.21116 (14)0.09956 (11)0.56033 (9)0.0342 (3)
H50.24840.07840.50450.041*
C140.54440 (18)0.42130 (13)0.32981 (10)0.0425 (3)
C90.49975 (14)0.25237 (12)0.58317 (10)0.0354 (3)
H9A0.50770.25140.65000.042*
H9B0.52300.17850.56110.042*
C130.83340 (17)0.41218 (16)0.52486 (14)0.0549 (4)
H13A0.81280.41240.45970.082*
H13B0.93270.40360.53580.082*
H13C0.80310.48130.55110.082*
C120.8007 (2)0.20572 (16)0.52759 (16)0.0609 (5)
H12A0.75790.14530.55980.091*
H12B0.90090.19880.53270.091*
H12C0.77110.20350.46380.091*
C110.78183 (17)0.31788 (17)0.67316 (12)0.0541 (4)
H11A0.74780.38700.69730.081*
H11B0.88060.31130.68720.081*
H11C0.73310.25680.70060.081*
C150.5977 (3)0.4841 (2)0.24830 (16)0.0471 (7)0.812 (7)
H150.69190.47720.23450.057*0.812 (7)
C160.5186 (4)0.5469 (3)0.19678 (19)0.0701 (9)0.812 (7)
H16A0.42410.55500.20930.084*0.812 (7)
H16B0.55610.58420.14700.084*0.812 (7)
C15A0.5151 (15)0.4941 (9)0.2405 (6)0.053 (3)0.188 (7)
H15A0.42540.51940.22430.064*0.188 (7)
C16A0.6210 (14)0.5165 (11)0.1918 (8)0.069 (4)0.188 (7)
H16C0.70950.49020.20960.083*0.188 (7)
H16D0.60940.55910.13850.083*0.188 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0476 (6)0.0325 (5)0.0349 (5)0.0089 (4)0.0042 (4)0.0048 (4)
O20.0392 (5)0.0306 (5)0.0473 (6)0.0095 (4)0.0115 (4)0.0010 (4)
O30.0444 (6)0.0602 (7)0.0349 (5)0.0197 (5)0.0041 (4)0.0119 (5)
O40.0610 (7)0.0387 (6)0.0514 (6)0.0049 (5)0.0162 (5)0.0048 (5)
N10.0262 (5)0.0284 (5)0.0351 (5)0.0015 (4)0.0023 (4)0.0035 (4)
O50.0847 (10)0.0674 (9)0.0627 (8)0.0246 (8)0.0264 (7)0.0068 (7)
C30.0244 (5)0.0245 (5)0.0345 (6)0.0000 (4)0.0020 (4)0.0036 (5)
C70.0291 (6)0.0276 (6)0.0317 (6)0.0040 (5)0.0005 (5)0.0014 (5)
C20.0255 (5)0.0270 (6)0.0280 (6)0.0019 (4)0.0003 (4)0.0017 (4)
C60.0255 (5)0.0315 (6)0.0328 (6)0.0028 (5)0.0015 (4)0.0029 (5)
C80.0300 (6)0.0328 (6)0.0338 (6)0.0043 (5)0.0027 (5)0.0038 (5)
C40.0361 (6)0.0258 (6)0.0378 (7)0.0017 (5)0.0033 (5)0.0043 (5)
C100.0246 (6)0.0370 (7)0.0503 (8)0.0012 (5)0.0041 (5)0.0020 (6)
C10.0387 (7)0.0324 (6)0.0299 (6)0.0015 (5)0.0039 (5)0.0014 (5)
C50.0359 (6)0.0347 (7)0.0322 (6)0.0006 (5)0.0069 (5)0.0035 (5)
C140.0602 (9)0.0360 (7)0.0318 (7)0.0045 (6)0.0101 (6)0.0046 (5)
C90.0301 (6)0.0338 (7)0.0421 (7)0.0056 (5)0.0003 (5)0.0092 (5)
C130.0365 (8)0.0535 (10)0.0755 (12)0.0114 (7)0.0156 (8)0.0007 (8)
C120.0475 (9)0.0467 (9)0.0888 (14)0.0142 (7)0.0091 (9)0.0114 (9)
C110.0361 (8)0.0702 (11)0.0554 (10)0.0000 (8)0.0105 (7)0.0037 (8)
C150.0484 (14)0.0491 (12)0.0446 (13)0.0059 (11)0.0156 (10)0.0001 (9)
C160.086 (2)0.0770 (18)0.0488 (14)0.0114 (15)0.0205 (13)0.0207 (14)
C15A0.067 (8)0.059 (6)0.034 (5)0.020 (5)0.023 (5)0.015 (4)
C16A0.078 (9)0.075 (8)0.055 (7)0.019 (7)0.009 (6)0.019 (6)
Geometric parameters (Å, º) top
O1—H10.8200C10—C111.518 (2)
O1—C11.4183 (16)C1—H1C0.9700
O2—H20.8200C1—H1D0.9700
O2—C31.3656 (14)C5—H50.9300
O3—H30.8200C14—C151.504 (3)
O3—C81.4130 (16)C14—C15A1.580 (10)
O4—C141.2602 (19)C9—H9A0.9700
N1—H1A0.8900C9—H9B0.9700
N1—H1B0.8900C13—H13A0.9600
N1—C101.5208 (16)C13—H13B0.9600
N1—C91.4950 (16)C13—H13C0.9600
O5—C141.238 (2)C12—H12A0.9600
C3—C21.3979 (17)C12—H12B0.9600
C3—C41.3858 (18)C12—H12C0.9600
C7—H70.9300C11—H11A0.9600
C7—C21.3895 (17)C11—H11B0.9600
C7—C61.3914 (18)C11—H11C0.9600
C2—C11.5108 (17)C15—H150.9300
C6—C81.5179 (17)C15—C161.288 (4)
C6—C51.3908 (18)C16—H16A0.9300
C8—H80.9800C16—H16B0.9300
C8—C91.5193 (18)C15A—H15A0.9300
C4—H40.9300C15A—C16A1.279 (14)
C4—C51.3876 (19)C16A—H16C0.9300
C10—C131.526 (2)C16A—H16D0.9300
C10—C121.515 (2)
C1—O1—H1109.5C4—C5—C6120.62 (12)
C3—O2—H2109.5C4—C5—H5119.7
C8—O3—H3109.5O4—C14—C15122.80 (17)
H1A—N1—H1B107.2O4—C14—C15A97.9 (4)
C10—N1—H1A108.0O5—C14—O4122.95 (14)
C10—N1—H1B108.0O5—C14—C15114.02 (17)
C9—N1—H1A108.0O5—C14—C15A137.5 (4)
C9—N1—H1B108.0N1—C9—C8111.61 (11)
C9—N1—C10117.27 (10)N1—C9—H9A109.3
O2—C3—C2117.08 (11)N1—C9—H9B109.3
O2—C3—C4122.65 (11)C8—C9—H9A109.3
C4—C3—C2120.27 (11)C8—C9—H9B109.3
C2—C7—H7119.0H9A—C9—H9B108.0
C2—C7—C6121.92 (11)C10—C13—H13A109.5
C6—C7—H7119.0C10—C13—H13B109.5
C3—C2—C1118.80 (11)C10—C13—H13C109.5
C7—C2—C3118.53 (11)H13A—C13—H13B109.5
C7—C2—C1122.66 (11)H13A—C13—H13C109.5
C7—C6—C8119.78 (11)H13B—C13—H13C109.5
C5—C6—C7118.42 (11)C10—C12—H12A109.5
C5—C6—C8121.79 (11)C10—C12—H12B109.5
O3—C8—C6109.18 (10)C10—C12—H12C109.5
O3—C8—H8108.8H12A—C12—H12B109.5
O3—C8—C9111.64 (11)H12A—C12—H12C109.5
C6—C8—H8108.8H12B—C12—H12C109.5
C6—C8—C9109.56 (11)C10—C11—H11A109.5
C9—C8—H8108.8C10—C11—H11B109.5
C3—C4—H4119.9C10—C11—H11C109.5
C3—C4—C5120.19 (12)H11A—C11—H11B109.5
C5—C4—H4119.9H11A—C11—H11C109.5
N1—C10—C13105.57 (12)H11B—C11—H11C109.5
C12—C10—N1109.07 (12)C14—C15—H15118.5
C12—C10—C13110.33 (14)C16—C15—C14122.9 (3)
C12—C10—C11112.05 (15)C16—C15—H15118.5
C11—C10—N1109.59 (11)C15—C16—H16A120.0
C11—C10—C13110.03 (14)C15—C16—H16B120.0
O1—C1—C2113.46 (11)H16A—C16—H16B120.0
O1—C1—H1C108.9C14—C15A—H15A121.7
O1—C1—H1D108.9C16A—C15A—C14116.6 (12)
C2—C1—H1C108.9C16A—C15A—H15A121.7
C2—C1—H1D108.9C15A—C16A—H16C120.0
H1C—C1—H1D107.7C15A—C16A—H16D120.0
C6—C5—H5119.7H16C—C16A—H16D120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.821.982.7817 (14)166
O2—H2···O1ii0.821.962.7816 (14)174
O3—H3···O40.821.902.7194 (15)179
N1—H1A···O4iii0.891.922.8022 (16)171
N1—H1B···O50.891.962.8292 (18)166
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+3/2; (iii) x+1, y+1, z+1.
 

Funding information

Funding for this research was provided by: National Nature and Science Foundation of China (award No. 21206032); Science Foundation Henan University of Technology (award Nos. 2017RCJH09, 2017QNJH29); Science Foundation of Henan Province (award No. 2015GGJS-039).

References

First citationBruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSaleh, M. I., Koh, Y. M., Tan, S. C. & Aishah, A. L. (2000). Analyst, 125, 1569–1572.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds