metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Aqua­bis­­[3,6-bis­­(pyridin-2-yl)pyridazine-κ2N1,N6]copper(II) bis­­(tri­fluoro­methane­sulfonate)

CROSSMARK_Color_square_no_text.svg

aResearch and Development Centre, Bharathiar University, Coimbatore 641 046, India, bDepartment of Physics, Rajeswari Vedachalam Government Arts College, Chengalpattu 603 001, India, cDepartment of Physics, Abraham Panampara Research Centre, Sacred Heart College, Tirupattur Vellore 635 601, India, and dDepartment of Physics, University College of Engineering Nagercoil, Anna University, Nagercoil 629 004, India
*Correspondence e-mail: athi81s@yahoo.co.in

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 20 July 2017; accepted 2 August 2017; online 15 August 2017)

The title salt, [Cu(C14H10N4)2(H2O)](CF3SO3)2, contains a Cu2+ cation coordinated by two bidentate 3,6-bis­(pyridin-2-yl)pyridazine ligands and one water mol­ecule. The charge is balanced by two disordered tri­fluoro­methane­sulfonate anions. The asymmetric unit contains half of a cation (point group symmetry 2) and one anion. The coordinating water mol­ecule is engaged in inter­molecular O—H⋯O hydrogen bonds, which connect the cation to the anion. C—H⋯X (X = N, O, F) inter­actions stabilize the crystal structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The coordination chemistry of aromatic diazine and related ligands has gained immense popularity (Xu & Thompson, 2004[Xu, Z. & Thompson, L. K. (2004). Comprehensive Coordination Chemistry II, pp. 63-95. Oxford: Elsevier.]). 3,6-Bis(pyridin-2-yl)pyridazine is a potential candidate for forming a grid-type architecture because of the multiple binding sites, which can permit coordination of one or two metal atoms depending on the cis–cis or trans–trans configuration it can adopt (Yuste et al., 2007[Yuste, C., Bentama, A., Stiriba, S. E., Armentano, D., De Munno, G., Lloret, F. & Julve, M. (2007). Dalton Trans. pp. 5190-5200.]; Schottel et al., 2006[Schottel, B. L., Chifotides, H. T., Shatruk, M., Chouai, A., Pérez, L. M., Bacsa, J. & Dunbar, K. R. (2006). J. Am. Chem. Soc. 128, 5895-5912.]). Understanding the properties and structures of smaller building units with a similar ligand structure will help us to understand the chemistry of larger arrays and synergistic effects in supra­molecular frameworks containing the secondary building units (SBU). A large number of transition-metal complexes with a grid-type architecture in two-dimensional arrays, inter­connected by the above ligand are known (Constable et al., 2008[Constable, E. C., Housecroft, C. E., Neuburger, M., Reymann, S. & Schaffner, S. (2008). Eur. J. Inorg. Chem. 2008, 3540-3548.]; Alam et al., 2005[Alam, M. S., Strömsdörfer, S., Dremov, V., Müller, P., Kortus, J., Ruben, M. & Lehn, J. M. (2005). Angew. Chem. Int. Ed. 44, 7896-7900.]; Grove et al., 2001[Grove, H., Julve, M., Lloret, F., Kruger, P. E., Törnroos, K. W. & Sletten, J. (2001). Inorg. Chim. Acta, 325, 115-124.]). Furthermore, copper complexes with these ligands can accommodate different oxidation states as bi­pyridine is an ambivalent ligand (Desbouis et al., 2012[Desbouis, D., Troitsky, I. P., Belousoff, M. J., Spiccia, L. & Graham, B. (2012). Coord. Chem. Rev. 256, 897-937.]). Since the redox potentials of several copper complexes are appropriate for carrying out catalytic redox functions, they are important in technological and biological applications (Farver & Pecht, 1989[Farver, O. & Pecht, I. (1989). Coord. Chem. Rev. 94, 17-45.]).

The title compound crystallizes in a monoclinic C-centered lattice with four mol­ecules per unit cell. The asymmetric unit contains half of a cation and one anion (Fig. 1[link]). In the anion, except for one of the O atoms (O1) and one of the F atoms (F1), all the atoms are disordered over two positions with major and minor site occupancies of 0.82 and 0.18, respectively. The copper atom is coordinated by nitro­gen atoms of the pyridazine and pyridine rings. Hence, the metal coordin­ation, with four Cu—N bonds and one Cu—O(water) bond, adopts a pyramidal geometry with the N atoms forming the base and the O atom at the top of the pyramid. The Cu—N distances are 1.984 (3) and 2.013 (3) Å, while the Cu—O1W distance amounts to 2.128 (6) Å. The ligands are inclined at an angle of 49.58 (2)° to each other.

[Figure 1]
Figure 1
The atom-numbering scheme and 50% probability displacement ellipsoids of the copper complex cation and the anion. The tri­fluoro­methane­sulfonate anion shows disorder over two positions with 0.82 and 0.18 site occupancies.

The coordinating water mol­ecule is engaged in inter­molecular O—H⋯O hydrogen bonds, which connects the cation with two anions. Further, the crystal structure is stabil­ized by C—H⋯X (X = N, O, F) inter­molecular inter­actions (Fig. 2[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N3i 0.93 2.63 3.104 (5) 112
C2—H2⋯O3ii 0.93 2.55 3.376 (6) 149
C11—H11⋯F1iii 0.93 2.55 3.334 (7) 142
C12—H12⋯O2iv 0.93 2.59 3.443 (8) 152
O1W—H1W⋯O2i 0.83 (1) 1.91 (3) 2.710 (6) 161 (7)
C1—H1⋯N3i 0.93 2.63 3.104 (5) 112
C2—H2⋯O3ii 0.93 2.55 3.376 (6) 149
C11—H11⋯F1iii 0.93 2.55 3.334 (7) 142
C12—H12⋯O2iv 0.93 2.59 3.443 (8) 152
O1W—H1W⋯O2i 0.83 (1) 1.91 (3) 2.710 (6) 161 (7)
Symmetry codes: (i) [-x+2, y, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+2, -y, -z+2; (iv) [x, -y, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing diagram of the title compound viewed down the b axis. Hydrogen bonds are shown as dashed lines. The minor component of the disordered tri­fluoro­methane­sulfonate anion has been omitted for clarity.

Synthesis and crystallization

Two moles of 3,6-bis­(pyridin-2-yl)pyridazine (bppz) and one mole of Cu(CF3SO3)2 were dissolved in dry benzene (10 ml) separately and stirred for 2 h at 323 K. The bppz solution was then added dropwise to the Cu(CF3SO3)2 solution and stirred well. The colour of the solution slowly turned to a light blue and a precipitate of the same colour was formed. It was filtered off and washed with benzene. Good quality needle-shaped crystals were obtained from methanol by the solvent evaporation method.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C14H10N4)2H2O](CF3O3S)2
Mr 848.21
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 20.7092 (13), 8.7911 (8), 21.1274 (14)
β (°) 116.292 (9)
V3) 3448.5 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.85
Crystal size (mm) 0.22 × 0.14 × 0.12
 
Data collection
Diffractometer Bruker SMART APEX CCD area-detector
No. of measured, independent and observed [I > 2σ(I)] reflections 3562, 3038, 1662
Rint 0.036
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.136, 1.03
No. of reflections 3038
No. of parameters 273
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.28
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELX2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

Aquabis[3,6-bis(pyridin-2-yl)pyridazine-κ2N1,N6]copper(II) bis(trifluoromethanesulfonate) top
Crystal data top
[Cu(C14H10N4)2H2O](CF3O3S)2F(000) = 1716
Mr = 848.21Dx = 1.634 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.7092 (13) ÅCell parameters from 2463 reflections
b = 8.7911 (8) Åθ = 2.4–24.5°
c = 21.1274 (14) ŵ = 0.85 mm1
β = 116.292 (9)°T = 293 K
V = 3448.5 (5) Å3Needle, light blue
Z = 40.22 × 0.14 × 0.12 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
Rint = 0.036
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.2°
ω scansh = 024
3562 measured reflectionsk = 110
3038 independent reflectionsl = 2522
1662 reflections with I > 2σ(I)
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0652P)2 + 1.9713P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3038 reflectionsΔρmax = 0.41 e Å3
273 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All the H atoms, except water hydrogen atoms, were constrained and refined in the riding atom approximation with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(parent carbon atom). The water hydrogen atoms were located from difference Fourier map and refined isotropically with the O—H distance restrained to 0.84 (1) Å. All the atoms in the anion, except O1 and F1, are disordered over two positions with major and minor site occupancies of 0.82 and 0.18, respectively. The minor occupied atoms were isotropically refined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.8715 (2)0.0852 (5)0.6131 (2)0.0585 (12)
H10.90390.11370.59570.070*
C20.7985 (3)0.0927 (5)0.5689 (2)0.0644 (13)
H20.78200.12420.52230.077*
C30.7508 (3)0.0527 (6)0.5951 (3)0.0699 (14)
H30.70150.05640.56620.084*
C40.7765 (2)0.0071 (5)0.6644 (2)0.0622 (13)
H40.74490.01790.68320.075*
C50.8502 (2)0.0009 (5)0.7056 (2)0.0509 (11)
C60.8834 (2)0.0565 (5)0.7791 (2)0.0482 (10)
C70.8475 (2)0.1223 (5)0.8134 (2)0.0614 (12)
H70.79770.13340.79090.074*
C80.8861 (2)0.1704 (6)0.8804 (2)0.0627 (12)
H80.86320.21330.90540.075*
C90.9612 (2)0.1545 (5)0.9117 (2)0.0492 (10)
C101.0075 (2)0.2088 (5)0.9842 (2)0.0539 (11)
C111.0151 (3)0.3321 (8)1.0818 (3)0.0950 (19)
H110.99250.38331.10490.114*
C121.0885 (3)0.3126 (7)1.1172 (3)0.0819 (16)
H121.11460.35051.16270.098*
C131.1217 (3)0.2369 (6)1.0843 (3)0.0729 (14)
H131.17120.22081.10680.088*
C141.0811 (2)0.1837 (6)1.0166 (2)0.0653 (13)
H141.10290.13150.99290.078*
N10.89698 (18)0.0381 (4)0.68029 (17)0.0502 (8)
N20.9741 (2)0.2823 (6)1.0161 (2)0.0796 (13)
N30.99497 (17)0.0912 (4)0.87806 (16)0.0492 (9)
N40.95559 (17)0.0410 (4)0.81159 (16)0.0492 (8)
Cu11.00000.03557 (9)0.75000.0529 (3)
O1W1.00000.2776 (6)0.75000.0893 (16)
C151.1403 (6)0.6066 (12)0.8757 (5)0.092 (3)0.82
S11.18594 (9)0.50258 (19)0.83360 (9)0.0587 (4)0.82
O21.1340 (4)0.3927 (7)0.7914 (3)0.0942 (18)0.82
O31.2477 (2)0.4436 (6)0.8942 (2)0.0850 (13)0.82
F21.1834 (4)0.7126 (7)0.9176 (3)0.124 (2)0.82
F31.0797 (3)0.6670 (7)0.8270 (4)0.153 (2)0.82
O11.2036 (2)0.6180 (4)0.79347 (19)0.0887 (11)
F11.1262 (2)0.5086 (5)0.9157 (2)0.1269 (15)
C15'1.169 (2)0.560 (5)0.877 (2)0.075 (12)*0.18
S1'1.1532 (6)0.5444 (11)0.7986 (5)0.072 (2)*0.18
O2'1.0868 (19)0.578 (4)0.7664 (17)0.155 (11)*0.18
O3'1.169 (2)0.381 (6)0.799 (2)0.139 (17)*0.18
F2'1.1434 (16)0.715 (4)0.8872 (16)0.107 (9)*0.18
F3'1.237 (2)0.560 (4)0.9289 (19)0.183 (11)*0.18
H1W0.964 (2)0.332 (6)0.741 (4)0.13 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.055 (3)0.063 (3)0.052 (3)0.009 (2)0.019 (2)0.004 (2)
C20.059 (3)0.063 (3)0.054 (3)0.014 (2)0.009 (2)0.002 (2)
C30.048 (3)0.073 (3)0.069 (3)0.011 (3)0.008 (2)0.006 (3)
C40.044 (2)0.074 (4)0.062 (3)0.001 (2)0.017 (2)0.007 (2)
C50.045 (2)0.053 (3)0.049 (2)0.002 (2)0.016 (2)0.0096 (19)
C60.041 (2)0.055 (3)0.049 (2)0.000 (2)0.0199 (19)0.009 (2)
C70.041 (2)0.085 (4)0.057 (3)0.008 (2)0.021 (2)0.011 (2)
C80.052 (3)0.080 (3)0.059 (3)0.015 (3)0.027 (2)0.006 (3)
C90.045 (2)0.058 (3)0.047 (2)0.002 (2)0.023 (2)0.006 (2)
C100.052 (3)0.061 (3)0.051 (3)0.002 (2)0.025 (2)0.001 (2)
C110.087 (4)0.134 (6)0.077 (4)0.002 (4)0.048 (3)0.032 (4)
C120.082 (4)0.101 (4)0.059 (3)0.010 (3)0.027 (3)0.016 (3)
C130.060 (3)0.083 (4)0.069 (3)0.003 (3)0.022 (3)0.010 (3)
C140.056 (3)0.079 (3)0.058 (3)0.009 (3)0.023 (2)0.007 (3)
N10.0452 (19)0.054 (2)0.0465 (19)0.0034 (17)0.0153 (17)0.0025 (18)
N20.066 (3)0.110 (4)0.069 (3)0.008 (3)0.036 (2)0.020 (2)
N30.0422 (19)0.062 (2)0.0424 (19)0.0037 (17)0.0178 (17)0.0025 (17)
N40.0427 (19)0.060 (2)0.0421 (18)0.0029 (18)0.0161 (16)0.0047 (17)
Cu10.0402 (4)0.0692 (6)0.0453 (4)0.0000.0154 (3)0.000
O1W0.060 (4)0.056 (3)0.132 (5)0.0000.025 (4)0.000
C150.106 (8)0.063 (6)0.138 (8)0.008 (6)0.082 (7)0.012 (5)
S10.0556 (9)0.0612 (10)0.0614 (9)0.0086 (8)0.0277 (9)0.0031 (8)
O20.089 (4)0.094 (4)0.095 (4)0.035 (4)0.036 (4)0.039 (3)
O30.061 (3)0.098 (3)0.091 (3)0.023 (3)0.029 (2)0.039 (3)
F20.163 (6)0.098 (4)0.121 (4)0.050 (4)0.072 (4)0.059 (3)
F30.085 (3)0.141 (5)0.214 (6)0.045 (3)0.049 (4)0.005 (4)
O10.089 (3)0.096 (3)0.090 (3)0.010 (2)0.047 (2)0.024 (2)
F10.153 (4)0.133 (3)0.138 (3)0.039 (3)0.104 (3)0.010 (2)
Geometric parameters (Å, º) top
C1—N11.343 (5)C12—H120.9300
C1—C21.381 (6)C13—C141.381 (6)
C1—H10.9300C13—H130.9300
C2—C31.375 (6)C14—H140.9300
C2—H20.9300N1—Cu11.984 (3)
C3—C41.377 (7)N3—N41.348 (4)
C3—H30.9300N4—Cu12.013 (3)
C4—C51.384 (6)Cu1—N1i1.984 (3)
C4—H40.9300Cu1—N4i2.013 (3)
C5—N11.342 (5)Cu1—O1W2.128 (6)
C5—C61.475 (6)O1W—H1W0.834 (10)
C6—N41.347 (5)C15—F21.323 (10)
C6—C71.376 (6)C15—F11.327 (9)
C7—C81.349 (6)C15—F31.330 (12)
C7—H70.9300C15—S11.808 (10)
C8—C91.402 (6)S1—O21.426 (6)
C8—H80.9300S1—O31.447 (4)
C9—N31.321 (5)S1—O11.469 (4)
C9—C101.480 (6)O1—S1'1.273 (9)
C10—N21.327 (5)F1—C15'1.52 (4)
C10—C141.385 (6)C15'—F3'1.34 (4)
C11—N21.340 (6)C15'—F2'1.51 (5)
C11—C121.375 (7)C15'—S1'1.54 (4)
C11—H110.9300S1'—O2'1.27 (3)
C12—C131.351 (7)S1'—O3'1.47 (5)
N1—C1—C2121.9 (4)C5—N1—Cu1115.5 (3)
N1—C1—H1119.0C1—N1—Cu1125.3 (3)
C2—C1—H1119.0C10—N2—C11116.8 (4)
C3—C2—C1118.8 (4)C9—N3—N4118.6 (3)
C3—C2—H2120.6C6—N4—N3121.4 (3)
C1—C2—H2120.6C6—N4—Cu1115.2 (3)
C2—C3—C4119.7 (4)N3—N4—Cu1123.0 (2)
C2—C3—H3120.2N1i—Cu1—N1178.7 (2)
C4—C3—H3120.2N1i—Cu1—N4i80.48 (13)
C3—C4—C5118.8 (4)N1—Cu1—N4i99.95 (13)
C3—C4—H4120.6N1i—Cu1—N499.94 (13)
C5—C4—H4120.6N1—Cu1—N480.48 (13)
N1—C5—C4121.8 (4)N4i—Cu1—N4140.9 (2)
N1—C5—C6114.9 (4)N1i—Cu1—O1W89.37 (10)
C4—C5—C6123.3 (4)N1—Cu1—O1W89.37 (11)
N4—C6—C7120.7 (4)N4i—Cu1—O1W109.53 (10)
N4—C6—C5113.5 (3)N4—Cu1—O1W109.53 (10)
C7—C6—C5125.8 (4)Cu1—O1W—H1W125 (5)
C8—C7—C6118.6 (4)F2—C15—F1107.7 (8)
C8—C7—H7120.7F2—C15—F3111.3 (10)
C6—C7—H7120.7F1—C15—F3110.8 (8)
C7—C8—C9118.7 (4)F2—C15—S1109.9 (7)
C7—C8—H8120.6F1—C15—S1107.2 (7)
C9—C8—H8120.6F3—C15—S1109.9 (7)
N3—C9—C8122.0 (4)O2—S1—O3115.9 (4)
N3—C9—C10116.0 (3)O2—S1—O1114.8 (3)
C8—C9—C10122.0 (4)O3—S1—O1114.2 (2)
N2—C10—C14122.3 (4)O2—S1—C15103.7 (4)
N2—C10—C9116.0 (4)O3—S1—C15101.3 (4)
C14—C10—C9121.7 (4)O1—S1—C15104.6 (4)
N2—C11—C12124.4 (5)F3'—C15'—F2'101 (3)
N2—C11—H11117.8F3'—C15'—F1102 (3)
C12—C11—H11117.8F2'—C15'—F182 (3)
C13—C12—C11118.2 (5)F3'—C15'—S1'122 (3)
C13—C12—H12120.9F2'—C15'—S1'108 (3)
C11—C12—H12120.9F1—C15'—S1'131 (3)
C12—C13—C14119.0 (5)O2'—S1'—O1124.7 (18)
C12—C13—H13120.5O2'—S1'—O3'115 (2)
C14—C13—H13120.5O1—S1'—O3'107.6 (16)
C13—C14—C10119.3 (4)O2'—S1'—C15'103 (2)
C13—C14—H14120.3O1—S1'—C15'104.6 (17)
C10—C14—H14120.3O3'—S1'—C15'99 (2)
C5—N1—C1119.0 (4)
N1—C1—C2—C31.0 (7)C5—C6—N4—N3177.4 (3)
C1—C2—C3—C40.3 (7)C7—C6—N4—Cu1173.3 (3)
C2—C3—C4—C51.6 (7)C5—C6—N4—Cu15.2 (4)
C3—C4—C5—N11.7 (7)C9—N3—N4—C61.1 (6)
C3—C4—C5—C6176.4 (4)C9—N3—N4—Cu1172.8 (3)
N1—C5—C6—N47.8 (5)F2—C15—S1—O2179.3 (8)
C4—C5—C6—N4173.9 (4)F1—C15—S1—O262.5 (8)
N1—C5—C6—C7170.5 (4)F3—C15—S1—O258.0 (7)
C4—C5—C6—C77.7 (7)F2—C15—S1—O358.8 (9)
N4—C6—C7—C80.3 (7)F1—C15—S1—O357.9 (7)
C5—C6—C7—C8178.5 (4)F3—C15—S1—O3178.4 (6)
C6—C7—C8—C91.4 (7)F2—C15—S1—O160.1 (9)
C7—C8—C9—N31.4 (7)F1—C15—S1—O1176.9 (6)
C7—C8—C9—C10178.1 (4)F3—C15—S1—O162.6 (7)
N3—C9—C10—N2175.2 (4)O2—S1—O1—S1'44.7 (8)
C8—C9—C10—N24.3 (6)O3—S1—O1—S1'178.1 (8)
N3—C9—C10—C144.9 (6)C15—S1—O1—S1'68.2 (8)
C8—C9—C10—C14175.6 (4)F2—C15—F1—C15'95 (4)
N2—C11—C12—C130.7 (10)F3—C15—F1—C15'143 (4)
C11—C12—C13—C140.6 (8)S1—C15—F1—C15'23 (4)
C12—C13—C14—C100.2 (8)C15—F1—C15'—F3'124 (6)
N2—C10—C14—C130.2 (7)C15—F1—C15'—F2'25 (3)
C9—C10—C14—C13180.0 (4)C15—F1—C15'—S1'83 (4)
C4—C5—N1—C10.4 (6)S1—O1—S1'—O2'166 (3)
C6—C5—N1—C1177.9 (4)S1—O1—S1'—O3'54.9 (19)
C4—C5—N1—Cu1174.9 (3)S1—O1—S1'—C15'49.2 (18)
C6—C5—N1—Cu16.8 (5)F3'—C15'—S1'—O2'168 (4)
C2—C1—N1—C51.0 (6)F2'—C15'—S1'—O2'52 (3)
C2—C1—N1—Cu1175.8 (3)F1—C15'—S1'—O2'44 (4)
C14—C10—N2—C110.1 (8)F3'—C15'—S1'—O137 (4)
C9—C10—N2—C11179.9 (5)F2'—C15'—S1'—O179 (3)
C12—C11—N2—C100.4 (9)F1—C15'—S1'—O1175 (3)
C8—C9—N3—N40.1 (6)F3'—C15'—S1'—O3'74 (4)
C10—C9—N3—N4179.4 (4)F2'—C15'—S1'—O3'170 (3)
C7—C6—N4—N31.1 (6)F1—C15'—S1'—O3'74 (4)
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N3i0.932.633.104 (5)112
C2—H2···O3ii0.932.553.376 (6)149
C11—H11···F1iii0.932.553.334 (7)142
C12—H12···O2iv0.932.593.443 (8)152
O1W—H1W···O2i0.83 (1)1.91 (3)2.710 (6)161 (7)
C1—H1···N3i0.932.633.104 (5)112
C2—H2···O3ii0.932.553.376 (6)149
C11—H11···F1iii0.932.553.334 (7)142
C12—H12···O2iv0.932.593.443 (8)152
O1W—H1W···O2i0.83 (1)1.91 (3)2.710 (6)161 (7)
Symmetry codes: (i) x+2, y, z+3/2; (ii) x1/2, y+1/2, z1/2; (iii) x+2, y, z+2; (iv) x, y, z+1/2.
 

References

First citationAlam, M. S., Strömsdörfer, S., Dremov, V., Müller, P., Kortus, J., Ruben, M. & Lehn, J. M. (2005). Angew. Chem. Int. Ed. 44, 7896–7900.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConstable, E. C., Housecroft, C. E., Neuburger, M., Reymann, S. & Schaffner, S. (2008). Eur. J. Inorg. Chem. 2008, 3540–3548.  Web of Science CSD CrossRef Google Scholar
First citationDesbouis, D., Troitsky, I. P., Belousoff, M. J., Spiccia, L. & Graham, B. (2012). Coord. Chem. Rev. 256, 897–937.  Web of Science CrossRef CAS Google Scholar
First citationFarver, O. & Pecht, I. (1989). Coord. Chem. Rev. 94, 17–45.  CrossRef CAS Web of Science Google Scholar
First citationGrove, H., Julve, M., Lloret, F., Kruger, P. E., Törnroos, K. W. & Sletten, J. (2001). Inorg. Chim. Acta, 325, 115–124.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchottel, B. L., Chifotides, H. T., Shatruk, M., Chouai, A., Pérez, L. M., Bacsa, J. & Dunbar, K. R. (2006). J. Am. Chem. Soc. 128, 5895–5912.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Z. & Thompson, L. K. (2004). Comprehensive Coordination Chemistry II, pp. 63–95. Oxford: Elsevier.  Google Scholar
First citationYuste, C., Bentama, A., Stiriba, S. E., Armentano, D., De Munno, G., Lloret, F. & Julve, M. (2007). Dalton Trans. pp. 5190–5200.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds