organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Meth­­oxy­benzyl­ammonium nitrate

aDepartment of Physics, Government Arts College (Autonomous), Kumbakonam 612 002, Tamilnadu, India, and bPrincipal Government College for Women (Autonomous), Kumbakonam 612 001, Tamilnadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 24 July 2017; accepted 27 July 2017; online 1 August 2017)

In the title salt, C8H12NO+·NO3, the 4-meth­oxy­benzyl­ammonium cation lies in the mirror plane m of space group Pnma and is thus planar by symmetry. The nitrate anion is also planar by symmetry, with an N O group in the mirror plane and one O atom in a general position. The dihedral angle between the benzene ring and the planar nitrate anion is constrained to be exactly 90°, because of the relative special positions for both ions. In the crystal, the cations are connected to the anions by C—H⋯O, C—H⋯N, N—H⋯N and N—H⋯O hydrogen bonds. Further, the crystal structure also features two C—H⋯π inter­actions involving the benzene ring of the cation, forming a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Single crystals play an important role in non-linear optics. Non-linear optical materials have been of great inter­est among researchers in various applications such as laser frequency conversion, optical communication and optical data storage over the past few decades (Liu et al., 2015[Liu, G., Liu, J., Zheng, X., Liu, Y., Yuan, D., Zhang, X., Gao, Z. & Tao, X. (2015). CrystEngComm, 17, 2569-2574.]). Organic crystals possess greater non-linear susceptibility and fast response time, while inorganic crystals exhibit high mechanical and thermal properties (Vigneshwaran et al., 2017[Vigneshwaran, A. N., Umarani, P. & Ramachandra Raja, C. (2017). J. Mater. Sci. Mater. Electron. 28, 11430-11438.]). Semi-organic crystals are expected to have the combined advantages of both organic and inorganic crystals. 4-Meth­oxy­benzyl­amine based derivatives exhibit second order non-linear optical properties (Mahbouli Rhouma et al., 2016[Mahbouli Rhouma, N., Rayes, A., Mezzadri, F., Calestani, G. & Loukil, M. (2016). Acta Cryst. E72, 1050-1053.]). These materials also possess anti­microbial activity (Joshi et al., 2014[Joshi, K. R., Rojivadiya, A. J. & Pandya, J. H. (2014). Int. J. Inorg. Chem. pp. 1-8.]).

In the title salt, C8H12NO+·NO3 (Fig. 1[link]), the 4-meth­oxy­benzyl­ammonium cation lies in the mirror m plane of space group Pnma (with some exceptions for H atoms bonded to tetra­hedral sites: H1B, H1D and H8, which are in general positions). The cation is thus planar by symmetry. The nitrate anion is also planar, with atoms N2 and O3 placed in the mirror plane m. The dihedral angle between the benzene ring and the planar nitrate group is constrained to be exactly 90° by symmetry.

[Figure 1]
Figure 1
An ORTEP view of the title salt, with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dotted lines. [Symmetry codes: (i) x, [{1\over 2}] − y, z; (ii) x, [{3\over 2}] − y, z.]

In the crystal, analysis of potential hydrogen bonds shows that the cations are connected to the nitrate anions by C7—H7⋯O3, C1—H1C⋯N2, N1—H1A⋯N2, N1—H1A⋯O2, N1—H1A⋯O2, N1—H1B⋯N2, and N1—H1B⋯O2 hydrogen bonds (Fig. 2[link] and Table 1[link]). Further, the crystal structure features two C1—H1Dπ inter­actions involving the benzene (C2–C7) ring, leading to the formation of a three-dimensional network (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O3i 0.93 2.59 3.249 (2) 128
C1—H1C⋯N2ii 0.98 (3) 2.61 (3) 3.568 (3) 166 (3)
N1—H1A⋯N2iii 0.92 (3) 2.59 (3) 3.452 (2) 157 (2)
N1—H1A⋯O2iii 0.92 (3) 2.26 (3) 3.022 (2) 140 (2)
N1—H1A⋯O2iv 0.92 (3) 2.26 (3) 3.022 (2) 140 (2)
N1—H1B⋯N2v 0.96 (2) 2.67 (2) 3.5717 (8) 156.4 (18)
N1—H1B⋯O2vi 0.96 (2) 1.94 (2) 2.9039 (16) 175.0 (19)
C1—H1DCg1vii 0.978 (19) 2.65 (2) 3.4625 (5) 141.4 (14)
C1—H1DCg1viii 0.978 (19) 2.65 (2) 3.4625 (5) 141.4 (14)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) x, y-1, z; (vi) [x, -y+{\script{1\over 2}}, z]; (vii) [x+{\script{3\over 2}}, -y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (viii) -x+1, -y, -z+1.
[Figure 2]
Figure 2
The crystal structure of the title salt, viewed along the b axis, showing the formation of hydrogen bonding. Dashed lines indicate hydrogen bonds and H atoms not involved in hydrogen bonds have been omitted.

The crystal structure of 4-methyl­benzyl­ammonium nitrate, closely related to the title compound, has been reported in space group P21/c (Gatfaoui et al., 2013[Gatfaoui, S., Marouani, H. & Rzaigui, M. (2013). Acta Cryst. E69, o1453.]): in that case, both the cation and anion are placed in general positions, and the N atom of the 4-methyl­benzyl­ammonium cation is displaced by 1.366 (2) Å from the mean plane of the other atoms.

Synthesis and crystallization

4-Meth­oxy­benzyl­ammonium nitrate crystals were synthesized by mixing 4-meth­oxy­benzyl­amine (2 mmol, 0.274 g), dilute nitric acid (2 ml, 1 mol) and nickel nitrate (1 mmol, 0.291 g) in doubly distilled water. This solution was stirred continuously for about 3 h using a magnetic stirrer and then allowed to evaporate slowly at room temperature. Colourless crystals of the title compound suitable for single-crystal X-ray analysis were obtained after two weeks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H12NO+·NO3
Mr 200.20
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 296
a, b, c (Å) 15.8203 (17), 6.8156 (7), 8.7275 (8)
V3) 941.04 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.25 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.696, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 18099, 1663, 1126
Rint 0.038
(sin θ/λ)max−1) 0.740
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.131, 1.06
No. of reflections 1663
No. of parameters 101
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2015); software used to prepare material for publication: publCIF (Westrip, 2010).

4-Methoxybenzylammonium nitrate top
Crystal data top
C8H12NO+·NO3Dx = 1.413 Mg m3
Mr = 200.20Melting point: 375 K
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
a = 15.8203 (17) ÅCell parameters from 4546 reflections
b = 6.8156 (7) Åθ = 2.6–29.6°
c = 8.7275 (8) ŵ = 0.11 mm1
V = 941.04 (16) Å3T = 296 K
Z = 4Block, colourless
F(000) = 4240.25 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1126 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
ω and φ scanθmax = 31.7°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2323
Tmin = 0.696, Tmax = 0.746k = 99
18099 measured reflectionsl = 1212
1663 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.2894P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1663 reflectionsΔρmax = 0.30 e Å3
101 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL2017 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.021 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Refinement. The N-bound H atoms, CH2 H atoms and CH3 H atoms were located in a difference Fourier map and refined freely; N1—H1A = 0.92 (3) and N1—H1B = 0.96 (2) Å, C8—H8 = 0.971 (18), C1—H1C = 0.98 (3) and C1—H1D = 0.978 (19) Å. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å (aromatic); Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.45170 (15)0.2500000.6753 (2)0.0419 (5)
C20.47135 (11)0.2500000.4038 (2)0.0305 (4)
C30.55852 (11)0.2500000.4177 (2)0.0341 (4)
H30.5834410.2500000.5141850.041*
C40.60883 (11)0.2500000.2864 (2)0.0334 (4)
H40.6673430.2500000.2966680.040*
C50.57361 (11)0.2500000.14141 (19)0.0291 (4)
C60.48549 (11)0.2500000.1299 (2)0.0353 (4)
H60.4604610.2500000.0334330.042*
C70.43498 (11)0.2500000.2584 (2)0.0373 (4)
H70.3764700.2500000.2481180.045*
C80.62382 (12)0.2500000.0055 (2)0.0388 (4)
N10.71654 (11)0.2500000.0170 (2)0.0377 (4)
N20.74586 (10)0.7500000.12747 (17)0.0354 (4)
O10.41614 (8)0.2500000.52492 (15)0.0414 (4)
O20.76246 (8)0.59369 (17)0.19519 (14)0.0569 (4)
O30.71238 (11)0.7500000.00086 (18)0.0616 (5)
H1A0.7431 (17)0.2500000.076 (4)0.059 (7)*
H1B0.7340 (13)0.134 (3)0.071 (3)0.077 (6)*
H1C0.404 (2)0.2500000.747 (4)0.077 (9)*
H1D0.4873 (11)0.135 (3)0.692 (2)0.058 (5)*
H80.6126 (11)0.135 (3)0.067 (2)0.061 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0487 (12)0.0453 (12)0.0317 (9)0.0000.0074 (8)0.000
C20.0310 (8)0.0295 (8)0.0312 (8)0.0000.0025 (6)0.000
C30.0326 (9)0.0433 (10)0.0264 (8)0.0000.0036 (7)0.000
C40.0255 (8)0.0442 (10)0.0306 (8)0.0000.0017 (6)0.000
C50.0291 (8)0.0301 (8)0.0280 (8)0.0000.0007 (6)0.000
C60.0338 (9)0.0435 (10)0.0287 (8)0.0000.0067 (7)0.000
C70.0257 (8)0.0485 (11)0.0377 (9)0.0000.0045 (7)0.000
C80.0352 (9)0.0529 (13)0.0284 (8)0.0000.0003 (7)0.000
N10.0357 (8)0.0455 (10)0.0319 (8)0.0000.0053 (6)0.000
N20.0278 (7)0.0464 (9)0.0319 (7)0.0000.0016 (6)0.000
O10.0337 (7)0.0559 (9)0.0347 (7)0.0000.0057 (5)0.000
O20.0783 (8)0.0383 (6)0.0541 (7)0.0045 (5)0.0173 (6)0.0043 (5)
O30.0567 (10)0.0924 (14)0.0357 (8)0.0000.0140 (7)0.000
Geometric parameters (Å, º) top
C1—O11.428 (2)C5—C81.508 (2)
C1—H1C0.98 (3)C6—C71.377 (3)
C1—H1D0.978 (19)C6—H60.9300
C1—H1Di0.978 (19)C7—H70.9300
C2—O11.371 (2)C8—N11.480 (3)
C2—C31.384 (2)C8—H80.971 (18)
C2—C71.393 (2)C8—H8i0.971 (18)
C3—C41.395 (2)N1—H1A0.92 (3)
C3—H30.9300N1—H1B0.96 (2)
C4—C51.383 (2)N2—O31.225 (2)
C4—H40.9300N2—O2ii1.2463 (14)
C5—C61.398 (2)N2—O21.2463 (14)
O1—C1—H1C106.1 (18)C7—C6—H6119.3
O1—C1—H1D111.3 (11)C5—C6—H6119.3
H1C—C1—H1D110.5 (14)C6—C7—C2120.15 (16)
O1—C1—H1Di111.3 (11)C6—C7—H7119.9
H1C—C1—H1Di110.5 (14)C2—C7—H7119.9
H1D—C1—H1Di107 (2)N1—C8—C5114.15 (15)
O1—C2—C3124.53 (15)N1—C8—H8104.8 (10)
O1—C2—C7116.05 (15)C5—C8—H8112.1 (11)
C3—C2—C7119.43 (16)N1—C8—H8i104.8 (10)
C2—C3—C4119.76 (16)C5—C8—H8i112.1 (11)
C2—C3—H3120.1H8—C8—H8i108 (2)
C4—C3—H3120.1C8—N1—H1A109.6 (17)
C5—C4—C3121.44 (15)C8—N1—H1B110.5 (12)
C5—C4—H4119.3H1A—N1—H1B107.8 (15)
C3—C4—H4119.3O3—N2—O2ii121.25 (8)
C4—C5—C6117.90 (15)O3—N2—O2121.25 (8)
C4—C5—C8124.46 (15)O2ii—N2—O2117.48 (16)
C6—C5—C8117.64 (15)C2—O1—C1117.24 (14)
C7—C6—C5121.32 (16)
O1—C2—C3—C4180.000 (1)C5—C6—C7—C20.000 (1)
C7—C2—C3—C40.000 (1)O1—C2—C7—C6180.000 (1)
C2—C3—C4—C50.000 (1)C3—C2—C7—C60.000 (1)
C3—C4—C5—C60.000 (1)C4—C5—C8—N10.0
C3—C4—C5—C8180.000 (1)C6—C5—C8—N1180.0
C4—C5—C6—C70.000 (1)C3—C2—O1—C10.000 (1)
C8—C5—C6—C7180.000 (1)C7—C2—O1—C1180.000 (1)
Symmetry codes: (i) x, y+1/2, z; (ii) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O3iii0.932.593.249 (2)128
C1—H1C···N2iv0.98 (3)2.61 (3)3.568 (3)166 (3)
N1—H1A···N2v0.92 (3)2.59 (3)3.452 (2)157 (2)
N1—H1A···O2v0.92 (3)2.26 (3)3.022 (2)140 (2)
N1—H1A···O2vi0.92 (3)2.26 (3)3.022 (2)140 (2)
N1—H1B···N2vii0.96 (2)2.67 (2)3.5717 (8)156.4 (18)
N1—H1B···O2i0.96 (2)1.94 (2)2.9039 (16)175.0 (19)
C1—H1D···Cg1viii0.978 (19)2.65 (2)3.4625 (5)141.4 (14)
C1—H1D···Cg1ix0.978 (19)2.65 (2)3.4625 (5)141.4 (14)
Symmetry codes: (i) x, y+1/2, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1; (v) x+3/2, y+1, z1/2; (vi) x+3/2, y1/2, z1/2; (vii) x, y1, z; (viii) x+3/2, y1/2, z+3/2; (ix) x+1, y, z+1.
 

Acknowledgements

The authors are thankful to the Sophisticated Analytical Instrument Facility (SAIF), IITM, Chennai 600 036, Tamilnadu, India for the single-crystal X-ray diffraction data.

Funding information

Funding for this research was provided by: Council of Scientific and Industrial Research (CSIR), New Delhi, India (grant No. 03(1301)13/EMR II to CR).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGatfaoui, S., Marouani, H. & Rzaigui, M. (2013). Acta Cryst. E69, o1453.  CSD CrossRef IUCr Journals Google Scholar
First citationJoshi, K. R., Rojivadiya, A. J. & Pandya, J. H. (2014). Int. J. Inorg. Chem. pp. 1–8.  Google Scholar
First citationLiu, G., Liu, J., Zheng, X., Liu, Y., Yuan, D., Zhang, X., Gao, Z. & Tao, X. (2015). CrystEngComm, 17, 2569–2574.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahbouli Rhouma, N., Rayes, A., Mezzadri, F., Calestani, G. & Loukil, M. (2016). Acta Cryst. E72, 1050–1053.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVigneshwaran, A. N., Umarani, P. & Ramachandra Raja, C. (2017). J. Mater. Sci. Mater. Electron. 28, 11430–11438.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds