organic compounds
4-Methoxybenzylammonium nitrate
aDepartment of Physics, Government Arts College (Autonomous), Kumbakonam 612 002, Tamilnadu, India, and bPrincipal Government College for Women (Autonomous), Kumbakonam 612 001, Tamilnadu, India
*Correspondence e-mail: thiruvalluvar.a@gmail.com
In the title salt, C8H12NO+·NO3−, the 4-methoxybenzylammonium cation lies in the mirror plane m of Pnma and is thus planar by symmetry. The nitrate anion is also planar by symmetry, with an N O group in the mirror plane and one O atom in a general position. The dihedral angle between the benzene ring and the planar nitrate anion is constrained to be exactly 90°, because of the relative special positions for both ions. In the crystal, the cations are connected to the anions by C—H⋯O, C—H⋯N, N—H⋯N and N—H⋯O hydrogen bonds. Further, the also features two C—H⋯π interactions involving the benzene ring of the cation, forming a three-dimensional network.
Keywords: crystal structure; salt; hydrogen bond; C—H⋯π interactions.
CCDC reference: 1565296
Structure description
Single crystals play an important role in non-linear optics. Non-linear optical materials have been of great interest among researchers in various applications such as laser frequency conversion, optical communication and optical data storage over the past few decades (Liu et al., 2015). Organic crystals possess greater non-linear susceptibility and fast response time, while inorganic crystals exhibit high mechanical and thermal properties (Vigneshwaran et al., 2017). Semi-organic crystals are expected to have the combined advantages of both organic and inorganic crystals. 4-Methoxybenzylamine based derivatives exhibit second order non-linear optical properties (Mahbouli Rhouma et al., 2016). These materials also possess antimicrobial activity (Joshi et al., 2014).
In the title salt, C8H12NO+·NO3− (Fig. 1), the 4-methoxybenzylammonium cation lies in the mirror m plane of Pnma (with some exceptions for H atoms bonded to tetrahedral sites: H1B, H1D and H8, which are in general positions). The cation is thus planar by symmetry. The nitrate anion is also planar, with atoms N2 and O3 placed in the mirror plane m. The dihedral angle between the benzene ring and the planar nitrate group is constrained to be exactly 90° by symmetry.
In the crystal, analysis of potential hydrogen bonds shows that the cations are connected to the nitrate anions by C7—H7⋯O3, C1—H1C⋯N2, N1—H1A⋯N2, N1—H1A⋯O2, N1—H1A⋯O2, N1—H1B⋯N2, and N1—H1B⋯O2 hydrogen bonds (Fig. 2 and Table 1). Further, the features two C1—H1D⋯π interactions involving the benzene (C2–C7) ring, leading to the formation of a three-dimensional network (Table 1).
The P21/c (Gatfaoui et al., 2013): in that case, both the cation and anion are placed in general positions, and the N atom of the 4-methylbenzylammonium cation is displaced by 1.366 (2) Å from the mean plane of the other atoms.
of 4-methylbenzylammonium nitrate, closely related to the title compound, has been reported inSynthesis and crystallization
4-Methoxybenzylammonium nitrate crystals were synthesized by mixing 4-methoxybenzylamine (2 mmol, 0.274 g), dilute nitric acid (2 ml, 1 mol) and nickel nitrate (1 mmol, 0.291 g) in doubly distilled water. This solution was stirred continuously for about 3 h using a magnetic stirrer and then allowed to evaporate slowly at room temperature. Colourless crystals of the title compound suitable for single-crystal X-ray analysis were obtained after two weeks.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1565296
https://doi.org/10.1107/S2414314617011142/bh4027sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617011142/bh4027Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617011142/bh4027Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314617011142/bh4027Isup4.cml
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2015); software used to prepare material for publication: publCIF (Westrip, 2010).C8H12NO+·NO3− | Dx = 1.413 Mg m−3 |
Mr = 200.20 | Melting point: 375 K |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
a = 15.8203 (17) Å | Cell parameters from 4546 reflections |
b = 6.8156 (7) Å | θ = 2.6–29.6° |
c = 8.7275 (8) Å | µ = 0.11 mm−1 |
V = 941.04 (16) Å3 | T = 296 K |
Z = 4 | Block, colourless |
F(000) = 424 | 0.25 × 0.20 × 0.20 mm |
Bruker Kappa APEXII CCD diffractometer | 1126 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.038 |
ω and φ scan | θmax = 31.7°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −23→23 |
Tmin = 0.696, Tmax = 0.746 | k = −9→9 |
18099 measured reflections | l = −12→12 |
1663 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.040 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.131 | w = 1/[σ2(Fo2) + (0.0547P)2 + 0.2894P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
1663 reflections | Δρmax = 0.30 e Å−3 |
101 parameters | Δρmin = −0.19 e Å−3 |
0 restraints | Extinction correction: SHELXL2017 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 constraints | Extinction coefficient: 0.021 (3) |
Primary atom site location: structure-invariant direct methods |
Refinement. The N-bound H atoms, CH2 H atoms and CH3 H atoms were located in a difference Fourier map and refined freely; N1—H1A = 0.92 (3) and N1—H1B = 0.96 (2) Å, C8—H8 = 0.971 (18), C1—H1C = 0.98 (3) and C1—H1D = 0.978 (19) Å. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å (aromatic); Uiso(H) = 1.2Ueq(C). |
x | y | z | Uiso*/Ueq | ||
C1 | 0.45170 (15) | 0.250000 | 0.6753 (2) | 0.0419 (5) | |
C2 | 0.47135 (11) | 0.250000 | 0.4038 (2) | 0.0305 (4) | |
C3 | 0.55852 (11) | 0.250000 | 0.4177 (2) | 0.0341 (4) | |
H3 | 0.583441 | 0.250000 | 0.514185 | 0.041* | |
C4 | 0.60883 (11) | 0.250000 | 0.2864 (2) | 0.0334 (4) | |
H4 | 0.667343 | 0.250000 | 0.296668 | 0.040* | |
C5 | 0.57361 (11) | 0.250000 | 0.14141 (19) | 0.0291 (4) | |
C6 | 0.48549 (11) | 0.250000 | 0.1299 (2) | 0.0353 (4) | |
H6 | 0.460461 | 0.250000 | 0.033433 | 0.042* | |
C7 | 0.43498 (11) | 0.250000 | 0.2584 (2) | 0.0373 (4) | |
H7 | 0.376470 | 0.250000 | 0.248118 | 0.045* | |
C8 | 0.62382 (12) | 0.250000 | −0.0055 (2) | 0.0388 (4) | |
N1 | 0.71654 (11) | 0.250000 | 0.0170 (2) | 0.0377 (4) | |
N2 | 0.74586 (10) | 0.750000 | 0.12747 (17) | 0.0354 (4) | |
O1 | 0.41614 (8) | 0.250000 | 0.52492 (15) | 0.0414 (4) | |
O2 | 0.76246 (8) | 0.59369 (17) | 0.19519 (14) | 0.0569 (4) | |
O3 | 0.71238 (11) | 0.750000 | 0.00086 (18) | 0.0616 (5) | |
H1A | 0.7431 (17) | 0.250000 | −0.076 (4) | 0.059 (7)* | |
H1B | 0.7340 (13) | 0.134 (3) | 0.071 (3) | 0.077 (6)* | |
H1C | 0.404 (2) | 0.250000 | 0.747 (4) | 0.077 (9)* | |
H1D | 0.4873 (11) | 0.135 (3) | 0.692 (2) | 0.058 (5)* | |
H8 | 0.6126 (11) | 0.135 (3) | −0.067 (2) | 0.061 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0487 (12) | 0.0453 (12) | 0.0317 (9) | 0.000 | 0.0074 (8) | 0.000 |
C2 | 0.0310 (8) | 0.0295 (8) | 0.0312 (8) | 0.000 | 0.0025 (6) | 0.000 |
C3 | 0.0326 (9) | 0.0433 (10) | 0.0264 (8) | 0.000 | −0.0036 (7) | 0.000 |
C4 | 0.0255 (8) | 0.0442 (10) | 0.0306 (8) | 0.000 | −0.0017 (6) | 0.000 |
C5 | 0.0291 (8) | 0.0301 (8) | 0.0280 (8) | 0.000 | −0.0007 (6) | 0.000 |
C6 | 0.0338 (9) | 0.0435 (10) | 0.0287 (8) | 0.000 | −0.0067 (7) | 0.000 |
C7 | 0.0257 (8) | 0.0485 (11) | 0.0377 (9) | 0.000 | −0.0045 (7) | 0.000 |
C8 | 0.0352 (9) | 0.0529 (13) | 0.0284 (8) | 0.000 | −0.0003 (7) | 0.000 |
N1 | 0.0357 (8) | 0.0455 (10) | 0.0319 (8) | 0.000 | 0.0053 (6) | 0.000 |
N2 | 0.0278 (7) | 0.0464 (9) | 0.0319 (7) | 0.000 | 0.0016 (6) | 0.000 |
O1 | 0.0337 (7) | 0.0559 (9) | 0.0347 (7) | 0.000 | 0.0057 (5) | 0.000 |
O2 | 0.0783 (8) | 0.0383 (6) | 0.0541 (7) | −0.0045 (5) | −0.0173 (6) | 0.0043 (5) |
O3 | 0.0567 (10) | 0.0924 (14) | 0.0357 (8) | 0.000 | −0.0140 (7) | 0.000 |
C1—O1 | 1.428 (2) | C5—C8 | 1.508 (2) |
C1—H1C | 0.98 (3) | C6—C7 | 1.377 (3) |
C1—H1D | 0.978 (19) | C6—H6 | 0.9300 |
C1—H1Di | 0.978 (19) | C7—H7 | 0.9300 |
C2—O1 | 1.371 (2) | C8—N1 | 1.480 (3) |
C2—C3 | 1.384 (2) | C8—H8 | 0.971 (18) |
C2—C7 | 1.393 (2) | C8—H8i | 0.971 (18) |
C3—C4 | 1.395 (2) | N1—H1A | 0.92 (3) |
C3—H3 | 0.9300 | N1—H1B | 0.96 (2) |
C4—C5 | 1.383 (2) | N2—O3 | 1.225 (2) |
C4—H4 | 0.9300 | N2—O2ii | 1.2463 (14) |
C5—C6 | 1.398 (2) | N2—O2 | 1.2463 (14) |
O1—C1—H1C | 106.1 (18) | C7—C6—H6 | 119.3 |
O1—C1—H1D | 111.3 (11) | C5—C6—H6 | 119.3 |
H1C—C1—H1D | 110.5 (14) | C6—C7—C2 | 120.15 (16) |
O1—C1—H1Di | 111.3 (11) | C6—C7—H7 | 119.9 |
H1C—C1—H1Di | 110.5 (14) | C2—C7—H7 | 119.9 |
H1D—C1—H1Di | 107 (2) | N1—C8—C5 | 114.15 (15) |
O1—C2—C3 | 124.53 (15) | N1—C8—H8 | 104.8 (10) |
O1—C2—C7 | 116.05 (15) | C5—C8—H8 | 112.1 (11) |
C3—C2—C7 | 119.43 (16) | N1—C8—H8i | 104.8 (10) |
C2—C3—C4 | 119.76 (16) | C5—C8—H8i | 112.1 (11) |
C2—C3—H3 | 120.1 | H8—C8—H8i | 108 (2) |
C4—C3—H3 | 120.1 | C8—N1—H1A | 109.6 (17) |
C5—C4—C3 | 121.44 (15) | C8—N1—H1B | 110.5 (12) |
C5—C4—H4 | 119.3 | H1A—N1—H1B | 107.8 (15) |
C3—C4—H4 | 119.3 | O3—N2—O2ii | 121.25 (8) |
C4—C5—C6 | 117.90 (15) | O3—N2—O2 | 121.25 (8) |
C4—C5—C8 | 124.46 (15) | O2ii—N2—O2 | 117.48 (16) |
C6—C5—C8 | 117.64 (15) | C2—O1—C1 | 117.24 (14) |
C7—C6—C5 | 121.32 (16) | ||
O1—C2—C3—C4 | 180.000 (1) | C5—C6—C7—C2 | 0.000 (1) |
C7—C2—C3—C4 | 0.000 (1) | O1—C2—C7—C6 | 180.000 (1) |
C2—C3—C4—C5 | 0.000 (1) | C3—C2—C7—C6 | 0.000 (1) |
C3—C4—C5—C6 | 0.000 (1) | C4—C5—C8—N1 | 0.0 |
C3—C4—C5—C8 | 180.000 (1) | C6—C5—C8—N1 | 180.0 |
C4—C5—C6—C7 | 0.000 (1) | C3—C2—O1—C1 | 0.000 (1) |
C8—C5—C6—C7 | 180.000 (1) | C7—C2—O1—C1 | 180.000 (1) |
Symmetry codes: (i) x, −y+1/2, z; (ii) x, −y+3/2, z. |
Cg1 is the centroid of the C2–C7 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O3iii | 0.93 | 2.59 | 3.249 (2) | 128 |
C1—H1C···N2iv | 0.98 (3) | 2.61 (3) | 3.568 (3) | 166 (3) |
N1—H1A···N2v | 0.92 (3) | 2.59 (3) | 3.452 (2) | 157 (2) |
N1—H1A···O2v | 0.92 (3) | 2.26 (3) | 3.022 (2) | 140 (2) |
N1—H1A···O2vi | 0.92 (3) | 2.26 (3) | 3.022 (2) | 140 (2) |
N1—H1B···N2vii | 0.96 (2) | 2.67 (2) | 3.5717 (8) | 156.4 (18) |
N1—H1B···O2i | 0.96 (2) | 1.94 (2) | 2.9039 (16) | 175.0 (19) |
C1—H1D···Cg1viii | 0.978 (19) | 2.65 (2) | 3.4625 (5) | 141.4 (14) |
C1—H1D···Cg1ix | 0.978 (19) | 2.65 (2) | 3.4625 (5) | 141.4 (14) |
Symmetry codes: (i) x, −y+1/2, z; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+1, −z+1; (v) −x+3/2, −y+1, z−1/2; (vi) −x+3/2, y−1/2, z−1/2; (vii) x, y−1, z; (viii) x+3/2, −y−1/2, −z+3/2; (ix) −x+1, −y, −z+1. |
Acknowledgements
The authors are thankful to the Sophisticated Analytical Instrument Facility (SAIF), IITM, Chennai 600 036, Tamilnadu, India for the single-crystal X-ray diffraction data.
Funding information
Funding for this research was provided by: Council of Scientific and Industrial Research (CSIR), New Delhi, India (grant No. 03(1301)13/EMR II to CR).
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gatfaoui, S., Marouani, H. & Rzaigui, M. (2013). Acta Cryst. E69, o1453. CSD CrossRef IUCr Journals Google Scholar
Joshi, K. R., Rojivadiya, A. J. & Pandya, J. H. (2014). Int. J. Inorg. Chem. pp. 1–8. Google Scholar
Liu, G., Liu, J., Zheng, X., Liu, Y., Yuan, D., Zhang, X., Gao, Z. & Tao, X. (2015). CrystEngComm, 17, 2569–2574. Web of Science CSD CrossRef CAS Google Scholar
Mahbouli Rhouma, N., Rayes, A., Mezzadri, F., Calestani, G. & Loukil, M. (2016). Acta Cryst. E72, 1050–1053. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Vigneshwaran, A. N., Umarani, P. & Ramachandra Raja, C. (2017). J. Mater. Sci. Mater. Electron. 28, 11430–11438. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.