organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-[2-(5-Oxo-4,4-di­phenyl-2-sulfanylideneimidazolidin-1-yl)eth­yl]-1,3-oxazolidin-2-one

aLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Mohammed V University Rabat, Morocco, bNational Center of Energy Sciences and Nuclear Techniques, Rabat, Morocco, cLaboratoire de Chimie Organique Hétérocyclique URAC 21, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: ahmed_moussaif@yahoo.com

Edited by O. Blacque, University of Zürich, Switzerland (Received 3 July 2017; accepted 13 July 2017; online 18 July 2017)

In the title compound, C20H19N3O3S, the conformation of the oxazolidine ring is characterized as twisted on the C—C bond. In the crystal, zigzag chains parallel to [101] are formed by N—H⋯O hydrogen bonds and are connected by C—H⋯O and C—H⋯π(ring) inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The imidazolidine-2,4-dione ring system is a core structure in various synthetic pharmaceutical agents, displaying a broad spectrum of biological activities, such as anti­convulsant (Weichet, 1974[Weichet, B. L. (1974). J. Czech. Patent, 151, 744-747.]) anti­arrhythmic (Havera et al., 1976[Havera, H. J. & Strycker, W. G. (1976). US Patent 3 904 909.]), fungicidal (Thenmozhiyal et al., 2004[Thenmozhiyal, J. C., Wong, P. T. H. & Chui, W.-K. (2004). J. Med. Chem. 47, 1527-1535.]), anti­carcinogen (Lamothe et al., 2002[Lamothe, M., Lannuzel, M. & Perez, M. (2002). J. Comb. Chem. 4, 73-78.]), anti­viral (El-Barbary et al., 1994[El-Barbary, A. A., Khodair, A. I., Pedersen, E. B. & Nielsen, C. (1994). J. Med. Chem. 37, 73-77.]) and anti-HIV (Khodair et al., 1997[Khodair, A. I., el-Subbagh, H. I. & el-Emam, A. A. (1997). Boll. Chim. Farm. 136, 561-567.]). As a continuation of our research into hydantoin derivatives (Ramli et al., 2017[Ramli, Y., Akrad, R., Guerrab, W., Taoufik, J., Ansar, M. & Mague, J. T. (2017). IUCrData, 2, x170098.]; Akrad et al., 2017[Akrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). IUCrData, 2, x170033.]), the title compound, 3-[2-(5-oxo-4,4-diphenyl-2-sulfanylideneimidazolidin-1-yl)eth­yl]-1,3-oxazolidin-2-one (Fig. 1[link]), was prepared and its crystal structure is reported here. The pendant oxazolidine ring has a conformation described as twisted on the C19—C20 bond, with puckering parameters Q(2) = 0.199 (2) Å and φ(2) = 118.1 (5)°. The dihedral angle between the N1/C1/N2/C2/C3 and C4–C9 rings is 68.43 (8)°, while that between the former ring and the C10–C15 ring is 77.94 (9)°.

[Figure 1]
Figure 1
The title mol­ecule, with the atom-labelling scheme and 25% probability displacement ellipsoids.

In the crystal, N2—H2⋯O3i hydrogen bonds form zigzag chains parallel to the [101] direction. These are associated into a three-dimensional network by a combination of C17—H17B⋯O1ii hydrogen bonds and C19—H19ACg1iii (Cg1 is the centroid of the C4–C9 ring) inter­actions (Figs. 2[link] and 3[link], and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.82 (2) 2.03 (2) 2.8214 (16) 161.9 (18)
C17—H17B⋯O1ii 0.949 (17) 2.606 (17) 3.4068 (16) 142.3 (13)
C20—H20A⋯S1 1.01 (2) 2.95 (2) 3.8441 (16) 147.5 (16)
C19—H19ACg1iii 1.01 (2) 2.58 (2) 3.563 (2) 163 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) x-1, y, z.
[Figure 2]
Figure 2
Detail of the N—H⋯O (blue dotted lines), C—H⋯O (black dotted lines) and C—H⋯S (purple dotted lines) hydrogen bonds, and the C—H⋯π(ring) (orange dotted line) inter­action [symmetry codes: (i) −1 + x, y, z; (ii) 1 − x, 1 − y, 1 − z; (iii) [{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z; Cg1 is the centroid of the C4–C9 ring].
[Figure 3]
Figure 3
Packing viewed along the a axis, with N—H⋯O and C—H⋯O hydrogen bonds shown, respectively, as blue and black dotted lines.

Synthesis and crystallization

To a solution of 5,5-diphenyl-2-thioxoimidazolidin-4-one (1 g, 3.43 mmol), potassium carbonate (0.51 g, 3.73 mmol) and a catalytic amount of tetra-n-butyl­ammonium bromide in di­methyl­formamide (DMF, 40 ml) was added bis­(2-chloro­eth­yl)amine hydro­chloride (1.1 g, 6.87 mmol). The mixture was heated for 48 h. After completion of the reaction (as monitored by thin-layer chromatography), the inorganic material salt was filtered off and the solvent was removed under reduced pressure. The solid product was purified by recrystallization from ethanol solution to afford colourless block-like crystals of the title compound (yield 47%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H19N3O3S
Mr 381.44
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 9.1211 (6), 14.6521 (9), 14.2448 (9)
β (°) 104.037 (1)
V3) 1846.9 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.45 × 0.37 × 0.21
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.85, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 34714, 4785, 3727
Rint 0.034
(sin θ/λ)max−1) 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.136, 1.07
No. of reflections 4785
No. of parameters 320
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.33, −0.20
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Bruker, 2016).

3-[2-(5-Oxo-4,4-diphenyl-2-sulfanylideneimidazolidin-1-yl)ethyl]-1,3-oxazolidin-2-one top
Crystal data top
C20H19N3O3SF(000) = 800
Mr = 381.44Dx = 1.372 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.1211 (6) ÅCell parameters from 9929 reflections
b = 14.6521 (9) Åθ = 2.4–28.3°
c = 14.2448 (9) ŵ = 0.20 mm1
β = 104.037 (1)°T = 296 K
V = 1846.9 (2) Å3Thick plate, colourless
Z = 40.45 × 0.37 × 0.21 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4785 independent reflections
Radiation source: fine-focus sealed tube3727 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 8.3333 pixels mm-1θmax = 28.7°, θmin = 2.0°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1919
Tmin = 0.85, Tmax = 0.96l = 1819
34714 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: difference Fourier map
wR(F2) = 0.136All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0813P)2 + 0.1546P]
where P = (Fo2 + 2Fc2)/3
4785 reflections(Δ/σ)max = 0.001
320 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 25 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.45439 (5)0.10546 (3)0.87115 (3)0.06097 (15)
O10.63811 (14)0.15767 (8)0.57384 (8)0.0606 (3)
O20.00162 (13)0.11450 (8)0.54050 (8)0.0589 (3)
O30.16876 (15)0.13993 (9)0.45325 (8)0.0675 (3)
N10.54332 (13)0.11617 (7)0.70320 (8)0.0415 (2)
N20.59571 (14)0.23714 (8)0.79636 (8)0.0447 (3)
H20.597 (2)0.2712 (13)0.8418 (14)0.060 (5)*
N30.22929 (13)0.05952 (7)0.59525 (8)0.0414 (2)
C10.53205 (14)0.15481 (9)0.79080 (9)0.0418 (3)
C20.61106 (15)0.17427 (9)0.65130 (10)0.0434 (3)
C30.64881 (14)0.26288 (9)0.71114 (9)0.0393 (3)
C40.81901 (15)0.27814 (8)0.73146 (9)0.0406 (3)
C50.91493 (17)0.26267 (10)0.82159 (11)0.0498 (3)
H50.872 (2)0.2470 (12)0.8716 (13)0.056 (5)*
C61.0705 (2)0.27260 (12)0.83439 (15)0.0630 (4)
H61.124 (3)0.2629 (14)0.8880 (16)0.071 (6)*
C71.1302 (2)0.29717 (12)0.75892 (16)0.0667 (5)
H71.240 (3)0.2999 (15)0.7689 (15)0.082 (6)*
C81.0357 (2)0.31437 (12)0.66945 (15)0.0629 (4)
H81.079 (3)0.3304 (16)0.6178 (17)0.088 (7)*
C90.88057 (18)0.30484 (10)0.65535 (12)0.0523 (3)
H90.817 (2)0.3165 (13)0.5906 (15)0.066 (5)*
C100.55634 (15)0.34371 (10)0.66023 (10)0.0435 (3)
C110.41904 (19)0.33094 (15)0.59418 (13)0.0652 (5)
H110.381 (3)0.2707 (17)0.5755 (17)0.091 (7)*
C120.3337 (2)0.4056 (2)0.55374 (17)0.0836 (7)
H120.245 (4)0.4032 (18)0.515 (2)0.123 (10)*
C130.3834 (3)0.49273 (18)0.57794 (15)0.0789 (6)
H130.318 (3)0.544 (2)0.550 (2)0.114 (9)*
C140.5185 (3)0.50596 (14)0.64244 (15)0.0750 (6)
H140.556 (3)0.566 (2)0.655 (2)0.118 (9)*
C150.6050 (2)0.43190 (11)0.68405 (13)0.0600 (4)
H150.696 (3)0.4400 (16)0.7277 (16)0.083 (6)*
C160.49753 (17)0.02326 (9)0.67036 (11)0.0463 (3)
H16A0.586 (2)0.0054 (12)0.6560 (13)0.059 (5)*
H16B0.4752 (18)0.0049 (11)0.7244 (12)0.043 (4)*
C170.36826 (16)0.02046 (9)0.58082 (10)0.0439 (3)
H17A0.3944 (17)0.0557 (11)0.5276 (11)0.045 (4)*
H17B0.3498 (19)0.0416 (12)0.5627 (12)0.049 (4)*
C180.13715 (17)0.10721 (9)0.52403 (10)0.0458 (3)
C190.0003 (2)0.07352 (12)0.63277 (12)0.0556 (4)
H19A0.003 (2)0.1271 (15)0.6781 (15)0.080 (6)*
H19B0.098 (2)0.0367 (13)0.6248 (13)0.063 (5)*
C200.14379 (17)0.01694 (11)0.65766 (11)0.0494 (3)
H20A0.198 (3)0.0250 (14)0.7283 (16)0.078 (6)*
H20B0.1247 (19)0.0493 (12)0.6376 (12)0.053 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0601 (3)0.0785 (3)0.0440 (2)0.02252 (19)0.01207 (18)0.00519 (17)
O10.0711 (7)0.0666 (7)0.0509 (6)0.0187 (5)0.0277 (5)0.0241 (5)
O20.0521 (6)0.0678 (7)0.0522 (6)0.0130 (5)0.0041 (5)0.0052 (5)
O30.0776 (8)0.0713 (7)0.0518 (6)0.0059 (6)0.0125 (6)0.0246 (5)
N10.0420 (6)0.0413 (5)0.0390 (6)0.0072 (4)0.0054 (4)0.0053 (4)
N20.0511 (7)0.0499 (6)0.0348 (6)0.0119 (5)0.0138 (5)0.0093 (5)
N30.0423 (6)0.0431 (6)0.0363 (5)0.0022 (4)0.0045 (4)0.0027 (4)
C10.0352 (6)0.0503 (7)0.0361 (6)0.0043 (5)0.0016 (5)0.0014 (5)
C20.0415 (7)0.0475 (7)0.0410 (7)0.0077 (5)0.0098 (5)0.0100 (5)
C30.0415 (7)0.0429 (6)0.0342 (6)0.0068 (5)0.0106 (5)0.0069 (5)
C40.0408 (7)0.0351 (6)0.0455 (7)0.0033 (5)0.0100 (5)0.0064 (5)
C50.0504 (8)0.0471 (7)0.0480 (8)0.0012 (6)0.0045 (6)0.0073 (6)
C60.0499 (9)0.0580 (9)0.0697 (11)0.0060 (7)0.0075 (8)0.0144 (8)
C70.0422 (8)0.0567 (9)0.1011 (15)0.0057 (7)0.0173 (9)0.0207 (9)
C80.0525 (9)0.0592 (9)0.0836 (13)0.0075 (7)0.0291 (9)0.0047 (8)
C90.0494 (8)0.0529 (8)0.0568 (9)0.0033 (6)0.0171 (7)0.0011 (6)
C100.0404 (7)0.0533 (7)0.0385 (6)0.0005 (5)0.0128 (5)0.0020 (5)
C110.0432 (8)0.0866 (13)0.0617 (10)0.0084 (8)0.0047 (7)0.0113 (9)
C120.0456 (10)0.131 (2)0.0721 (13)0.0138 (11)0.0098 (9)0.0341 (12)
C130.0784 (13)0.0989 (16)0.0692 (12)0.0434 (12)0.0373 (11)0.0306 (11)
C140.1022 (16)0.0598 (11)0.0675 (11)0.0271 (10)0.0293 (11)0.0034 (8)
C150.0664 (10)0.0513 (8)0.0577 (9)0.0088 (7)0.0062 (8)0.0104 (7)
C160.0460 (8)0.0371 (6)0.0502 (8)0.0001 (5)0.0010 (6)0.0022 (5)
C170.0453 (7)0.0411 (7)0.0428 (7)0.0034 (5)0.0060 (6)0.0072 (5)
C180.0524 (8)0.0398 (6)0.0406 (7)0.0001 (5)0.0024 (6)0.0020 (5)
C190.0539 (9)0.0592 (9)0.0546 (9)0.0008 (7)0.0152 (7)0.0053 (7)
C200.0475 (8)0.0569 (8)0.0416 (7)0.0054 (6)0.0067 (6)0.0063 (6)
Geometric parameters (Å, º) top
S1—C11.6516 (14)C8—C91.387 (2)
O1—C21.2122 (17)C8—H80.95 (2)
O2—C181.346 (2)C9—H90.98 (2)
O2—C191.442 (2)C10—C151.382 (2)
O3—C181.2127 (18)C10—C111.385 (2)
N1—C21.3693 (17)C11—C121.385 (3)
N1—C11.3965 (17)C11—H110.96 (2)
N1—C161.4669 (16)C12—C131.370 (4)
N2—C11.3328 (18)C12—H120.86 (3)
N2—C31.4614 (16)C13—C141.361 (4)
N2—H20.82 (2)C13—H130.98 (3)
N3—C181.3454 (17)C14—C151.387 (3)
N3—C171.4502 (18)C14—H140.95 (3)
N3—C201.4575 (18)C15—H150.92 (2)
C2—C31.5454 (17)C16—C171.5130 (19)
C3—C41.5251 (18)C16—H16A0.98 (2)
C3—C101.5308 (19)C16—H16B0.939 (16)
C4—C51.386 (2)C17—H17A0.994 (16)
C4—C91.393 (2)C17—H17B0.949 (17)
C5—C61.394 (2)C19—C201.521 (2)
C5—H50.923 (18)C19—H19A1.01 (2)
C6—C71.366 (3)C19—H19B1.02 (2)
C6—H60.81 (2)C20—H20A1.01 (2)
C7—C81.378 (3)C20—H20B1.015 (18)
C7—H70.98 (2)
C18—O2—C19108.98 (12)C10—C11—C12120.0 (2)
C2—N1—C1111.79 (10)C10—C11—H11121.3 (14)
C2—N1—C16122.39 (11)C12—C11—H11118.6 (14)
C1—N1—C16125.74 (11)C13—C12—C11120.9 (2)
C1—N2—C3114.30 (11)C13—C12—H12113.6 (19)
C1—N2—H2121.5 (13)C11—C12—H12125.4 (19)
C3—N2—H2123.9 (13)C14—C13—C12119.50 (19)
C18—N3—C17120.38 (12)C14—C13—H13121.6 (17)
C18—N3—C20110.70 (12)C12—C13—H13118.8 (17)
C17—N3—C20122.20 (11)C13—C14—C15120.3 (2)
N2—C1—N1107.13 (11)C13—C14—H14119.5 (19)
N2—C1—S1127.51 (10)C15—C14—H14120.1 (19)
N1—C1—S1125.35 (10)C10—C15—C14120.76 (19)
O1—C2—N1125.79 (12)C10—C15—H15118.2 (14)
O1—C2—C3127.12 (12)C14—C15—H15121.1 (15)
N1—C2—C3107.08 (10)N1—C16—C17113.42 (11)
N2—C3—C4114.04 (11)N1—C16—H16A106.2 (11)
N2—C3—C10109.73 (10)C17—C16—H16A109.1 (11)
C4—C3—C10113.27 (10)N1—C16—H16B104.3 (9)
N2—C3—C299.62 (10)C17—C16—H16B113.6 (10)
C4—C3—C2107.95 (10)H16A—C16—H16B109.9 (14)
C10—C3—C2111.42 (11)N3—C17—C16113.52 (11)
C5—C4—C9118.95 (14)N3—C17—H17A106.5 (9)
C5—C4—C3122.46 (12)C16—C17—H17A110.3 (9)
C9—C4—C3118.53 (12)N3—C17—H17B108.3 (10)
C4—C5—C6119.87 (16)C16—C17—H17B107.8 (10)
C4—C5—H5117.6 (12)H17A—C17—H17B110.5 (13)
C6—C5—H5122.5 (12)O3—C18—N3126.96 (15)
C7—C6—C5120.80 (17)O3—C18—O2122.46 (13)
C7—C6—H6121.6 (15)N3—C18—O2110.58 (12)
C5—C6—H6117.6 (15)O2—C19—C20104.79 (12)
C6—C7—C8119.81 (16)O2—C19—H19A104.5 (12)
C6—C7—H7119.1 (13)C20—C19—H19A112.8 (12)
C8—C7—H7121.1 (13)O2—C19—H19B107.7 (11)
C7—C8—C9120.19 (17)C20—C19—H19B114.6 (11)
C7—C8—H8118.5 (15)H19A—C19—H19B111.5 (16)
C9—C8—H8121.2 (15)N3—C20—C19100.62 (12)
C8—C9—C4120.35 (16)N3—C20—H20A110.7 (13)
C8—C9—H9118.0 (12)C19—C20—H20A110.5 (12)
C4—C9—H9121.6 (12)N3—C20—H20B108.6 (10)
C15—C10—C11118.48 (15)C19—C20—H20B112.1 (10)
C15—C10—C3120.01 (13)H20A—C20—H20B113.5 (15)
C11—C10—C3121.40 (14)
C3—N2—C1—N12.78 (16)C5—C4—C9—C81.0 (2)
C3—N2—C1—S1177.54 (10)C3—C4—C9—C8176.30 (13)
C2—N1—C1—N21.37 (15)N2—C3—C10—C1591.40 (15)
C16—N1—C1—N2175.39 (12)C4—C3—C10—C1537.31 (17)
C2—N1—C1—S1178.93 (10)C2—C3—C10—C15159.25 (13)
C16—N1—C1—S14.31 (19)N2—C3—C10—C1184.74 (16)
C1—N1—C2—O1178.35 (15)C4—C3—C10—C11146.55 (14)
C16—N1—C2—O11.5 (2)C2—C3—C10—C1124.61 (18)
C1—N1—C2—C30.42 (15)C15—C10—C11—C120.1 (3)
C16—N1—C2—C3177.31 (11)C3—C10—C11—C12176.09 (16)
C1—N2—C3—C4117.55 (12)C10—C11—C12—C130.2 (3)
C1—N2—C3—C10114.16 (13)C11—C12—C13—C140.1 (3)
C1—N2—C3—C22.86 (15)C12—C13—C14—C150.5 (3)
O1—C2—C3—N2176.91 (15)C11—C10—C15—C140.3 (3)
N1—C2—C3—N21.84 (13)C3—C10—C15—C14176.51 (16)
O1—C2—C3—C457.62 (19)C13—C14—C15—C100.6 (3)
N1—C2—C3—C4121.13 (12)C2—N1—C16—C1768.04 (18)
O1—C2—C3—C1067.35 (18)C1—N1—C16—C17115.52 (15)
N1—C2—C3—C10113.91 (12)C18—N3—C17—C16143.55 (13)
N2—C3—C4—C54.19 (18)C20—N3—C17—C1667.86 (16)
C10—C3—C4—C5130.65 (13)N1—C16—C17—N363.23 (17)
C2—C3—C4—C5105.49 (14)C17—N3—C18—O317.3 (2)
N2—C3—C4—C9178.64 (12)C20—N3—C18—O3169.18 (15)
C10—C3—C4—C952.18 (16)C17—N3—C18—O2162.26 (12)
C2—C3—C4—C971.68 (15)C20—N3—C18—O210.39 (16)
C9—C4—C5—C61.0 (2)C19—O2—C18—O3176.59 (14)
C3—C4—C5—C6176.19 (13)C19—O2—C18—N33.82 (16)
C4—C5—C6—C70.2 (2)C18—O2—C19—C2015.49 (16)
C5—C6—C7—C81.4 (3)C18—N3—C20—C1918.81 (15)
C6—C7—C8—C91.4 (3)C17—N3—C20—C19170.09 (12)
C7—C8—C9—C40.2 (2)O2—C19—C20—N319.90 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.82 (2)2.03 (2)2.8214 (16)161.9 (18)
C17—H17B···O1ii0.949 (17)2.606 (17)3.4068 (16)142.3 (13)
C20—H20A···S11.01 (2)2.95 (2)3.8441 (16)147.5 (16)
C19—H19A···Cg1iii1.01 (2)2.58 (2)3.563 (2)163 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x1, y, z.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAkrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). IUCrData, 2, x170033.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Barbary, A. A., Khodair, A. I., Pedersen, E. B. & Nielsen, C. (1994). J. Med. Chem. 37, 73–77.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHavera, H. J. & Strycker, W. G. (1976). US Patent 3 904 909.  Google Scholar
First citationKhodair, A. I., el-Subbagh, H. I. & el-Emam, A. A. (1997). Boll. Chim. Farm. 136, 561–567.  CAS PubMed Google Scholar
First citationLamothe, M., Lannuzel, M. & Perez, M. (2002). J. Comb. Chem. 4, 73–78.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRamli, Y., Akrad, R., Guerrab, W., Taoufik, J., Ansar, M. & Mague, J. T. (2017). IUCrData, 2, x170098.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThenmozhiyal, J. C., Wong, P. T. H. & Chui, W.-K. (2004). J. Med. Chem. 47, 1527–1535.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWeichet, B. L. (1974). J. Czech. Patent, 151, 744–747.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds