organic compounds
6-[(R)-(2-Hydroxy-1-phenylethyl)aminomethylidene]-4-(2-phenyldiazen-1-yl)cyclohexa-2,4-dien-1-one
aDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
*Correspondence e-mail: akitsu@rs.kagu.tus.ac.jp
The title chiral photochromic Schiff base compound, C21H19N3O2, was synthesized from (R)-(−)-2-phenylglycinol and salicylaldehyde of azobenzene derivative. The molecule exhibits the keto–amine tautomeric form and displays characteristic features of azobenzene derivatives. The diazenyl group adopts a trans (E) conformation, with N=N bond length of 1.260 (2) Å. The hydroxy group is involved in an intermolecular O—H⋯O hydrogen bond.
Keywords: crystal structure; Schiff base; azobenzene; photochromic.
CCDC reference: 1559822
Structure description
et al., 2009; Aritake et al., 2010; Moriwaki & Akitsu, 2015). Schiff base ligands are known to perform as photochromic, thermochromic, or fluorescent substances (Akitsu et al., 2004; Hadjoudis & Mavridis, 2004; Moustakali-Mavridis et al., 1978; Akitsu & Einaga, 2006b). Schiff base complexes have also been investigated regarding changes of chiral conformation in solutions induced by photochromic solutes (Akitsu & Einaga, 2005a,b, 2006a; Akitsu, 2007) and their optical anisotropy as a composite in polymer films has been also reported (Labarthet et al., 1999). Here we report the of the title compound (Fig. 1), a new chiral photochromic dye of a keto–amine tautomer.
with an azobenzene moiety are well known in the literature (Miuraet al., 2000; Ünver et al., 2002), while the phenol–imine tautomer is found in salicylaldimine (Elerman et al., 1998; Dey et al., 2001; Yang & Vittal, 2003). The title molecule (Fig. 1) has a chiral C atom (C9) with an R configuration. The C17=O2, C8—N3 and C7—C8 bond lengths of 1.285 (2), 1.299 (2) and 1.420 Å, respectively, are in good agreement with the corresponding distances observed in 4-[(3-chlorophenyl)diazenyl]-2-{[tris(hydroxymethyl)methyl]aminomethylene}cyclohexa-3,5-dien-1(2H)-one [1.285 (3), 1.414 (2) and 1.411 (3) Å, respectively; Odabasoglu et al., 2003]. The π-conjugated system around the imine group is substantially planar as shown by the C7—C8—N3—C9 torsion angle of 172.05 (15)°. The N=N double bond is 1.260 (2) Å and adopts an E conformation. All of the geometrical parameters agree with those in related compounds adopting the phenol-imine form, for example the corresponding torsion angle C4—N1—N2—C5 of 176.27 (16)° (Moriwaki & Akitsu, 2015).
display two possible tautomeric forms, namely, phenol–imine and keto–amine. In the solid state, the keto–amine tautomer has been found in naphthaldimine (HökelekIn the crystal, the molecules are connected through intermolecular hydrogen bonds (O1—H8⋯O2), forming a sheet arrangement (Table 1, Fig. 2). In addition, weak supramolecular C—H⋯π interactions such as C8—H12⋯Cg1, C3—H18⋯Cg1, C14—H15⋯Cg2 and C20—H16⋯Cg2 are also found in the (Table 1, Fig. 3).
Synthesis and crystallization
Treatment of aniline (0.951 g, 10.0 mmol) in 15 ml of 6 M HCl and NaNO2 (0.690 g, 10 mmol) in 15 ml of H2O for 30 min at 278 K gave rise to a yellow precursor. Treatment of the precursor and salicylaldehyde (1.22 g 10.0 mmol) in 30 ml of 10% NaOH aqueous solution for 1 h at 278 K gave an orange precipitate, which was filtrated and washed with water and ethanol, and dried in a desiccator for several days. Treatment of the brown precipitate (0.678 g, 3.00 mmol) and (R)-(-)-2-phenylgycinol (0.4116 g, 3.00 mmol) in 30 ml of toluene for 5 h at 393 K gave rise to an orange compound after evaporation (yield 0.9243 g, 89%). This crude orange compound was filtered and recrystallized by slow evaporation of an acetone solution to give orange prismatic single crystals. IR (KBr, cm−1): 1405 (N=N), 1635 (C=N), 3445 (O—H). 1H NMR (300 MHz, DMSO) δ (p.p.m.): 3.70 (m, 2H), 4.61 (m, 1H), 5.26 (t, 1H), 7.02 (d, 1H), 7.41 (m, 9H), 7.83 (d, 2H), 7.96 (dd, 1H), 8.14 (d, 1H), 8.83 (s, 1H).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1559822
https://doi.org/10.1107/S2414314617009798/zq4021sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617009798/zq4021Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617009798/zq4021Isup3.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C21H19N3O2 | F(000) = 364 |
Mr = 345.39 | Dx = 1.330 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.0503 (7) Å | Cell parameters from 3069 reflections |
b = 5.9762 (5) Å | θ = 2.3–27.7° |
c = 16.3508 (12) Å | µ = 0.09 mm−1 |
β = 102.732 (1)° | T = 103 K |
V = 862.61 (12) Å3 | Prism, orange |
Z = 2 | 0.15 × 0.09 × 0.08 mm |
Bruker APEXII diffractometer | 3542 independent reflections |
Radiation source: fine-focus sealed tube | 3408 reflections with I > 2σ(I) |
Detector resolution: 8.3333 pixels mm-1 | Rint = 0.014 |
φ and ω scans | θmax = 27.7°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −6→11 |
Tmin = 0.987, Tmax = 0.993 | k = −7→7 |
4779 measured reflections | l = −20→13 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.031 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.074 | w = 1/[σ2(Fo2) + (0.0306P)2 + 0.2577P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
3542 reflections | Δρmax = 0.24 e Å−3 |
238 parameters | Δρmin = −0.20 e Å−3 |
1 restraint | Absolute structure: Flack parameter not reliable here |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All H atoms were located on difference Fourier maps but C-bound and N-bound H atoms were constrained using a riding model [C—H = 0.93 Å andUiso(H) = 1.2Ueq(C) for aromatic H atoms, C—H = 0.98 Å andUiso(H) = 1.2Ueq(C) for the methine H atom, and N—H = 0.86 Å andUiso(H) = 1.2Ueq(N)]. The coordinates of the hydroxy H atom were freely refined but its isotropic displacement parameter was considered as 1.5Ueq(O). |
x | y | z | Uiso*/Ueq | ||
O1 | 0.52800 (14) | −0.2877 (3) | 0.43795 (9) | 0.0208 (3) | |
H8 | 0.522 (3) | −0.406 (5) | 0.4000 (16) | 0.031* | |
O2 | 0.47218 (16) | 0.3639 (2) | 0.32957 (8) | 0.0208 (3) | |
N1 | 0.74880 (17) | 0.2803 (3) | 0.01627 (9) | 0.0173 (3) | |
N2 | 0.66505 (18) | 0.1391 (3) | 0.04115 (9) | 0.0184 (3) | |
N3 | 0.34194 (17) | −0.0234 (3) | 0.32052 (9) | 0.0158 (3) | |
H3 | 0.3524 | 0.1072 | 0.3431 | 0.019* | |
C1 | 0.9597 (2) | 0.0884 (4) | −0.17739 (12) | 0.0210 (4) | |
H1 | 1.01 | 0.048 | −0.219 | 0.025* | |
C2 | 0.9847 (2) | 0.2973 (4) | −0.13999 (12) | 0.0218 (4) | |
H19 | 1.0508 | 0.3976 | −0.1568 | 0.026* | |
C3 | 0.9102 (2) | 0.3558 (3) | −0.07716 (11) | 0.0183 (4) | |
H18 | 0.9263 | 0.4958 | −0.0519 | 0.022* | |
C4 | 0.81138 (19) | 0.2051 (3) | −0.05196 (11) | 0.0163 (4) | |
C5 | 0.6113 (2) | 0.2097 (3) | 0.11202 (11) | 0.0170 (4) | |
C6 | 0.5257 (2) | 0.0588 (3) | 0.14488 (11) | 0.0166 (4) | |
H15 | 0.5008 | −0.0779 | 0.1182 | 0.02* | |
C7 | 0.4750 (2) | 0.1084 (3) | 0.21870 (11) | 0.0158 (4) | |
C8 | 0.3900 (2) | −0.0539 (3) | 0.25210 (11) | 0.0161 (4) | |
H12 | 0.3677 | −0.1886 | 0.2236 | 0.019* | |
C9 | 0.27104 (19) | −0.1981 (3) | 0.36140 (11) | 0.0150 (4) | |
H11 | 0.2624 | −0.3331 | 0.3266 | 0.018* | |
C10 | 0.1132 (2) | −0.1343 (3) | 0.37080 (11) | 0.0166 (4) | |
C11 | 0.0294 (2) | −0.2918 (4) | 0.40452 (12) | 0.0210 (4) | |
H7 | 0.0719 | −0.4302 | 0.422 | 0.025* | |
C12 | −0.1174 (2) | −0.2432 (4) | 0.41213 (12) | 0.0235 (4) | |
H6 | −0.1721 | −0.3486 | 0.4351 | 0.028* | |
C13 | −0.1823 (2) | −0.0378 (4) | 0.38554 (12) | 0.0238 (4) | |
H2 | −0.281 | −0.0063 | 0.3897 | 0.029* | |
C14 | −0.0994 (2) | 0.1195 (4) | 0.35286 (13) | 0.0245 (4) | |
H5 | −0.1423 | 0.2578 | 0.3355 | 0.029* | |
C15 | 0.0482 (2) | 0.0720 (4) | 0.34567 (12) | 0.0210 (4) | |
H4 | 0.1034 | 0.1792 | 0.3239 | 0.025* | |
C16 | 0.3771 (2) | −0.2510 (3) | 0.44649 (11) | 0.0187 (4) | |
H9 | 0.3756 | −0.1272 | 0.4847 | 0.022* | |
H10 | 0.3409 | −0.3832 | 0.4703 | 0.022* | |
C17 | 0.5143 (2) | 0.3177 (3) | 0.26138 (11) | 0.0164 (4) | |
C18 | 0.6022 (2) | 0.4711 (3) | 0.22420 (11) | 0.0182 (4) | |
H14 | 0.6292 | 0.6084 | 0.2499 | 0.022* | |
C19 | 0.6472 (2) | 0.4208 (3) | 0.15215 (11) | 0.0174 (4) | |
H13 | 0.702 | 0.5254 | 0.1289 | 0.021* | |
C20 | 0.7848 (2) | −0.0038 (3) | −0.09025 (11) | 0.0180 (4) | |
H16 | 0.7177 | −0.1037 | −0.0741 | 0.022* | |
C21 | 0.8596 (2) | −0.0612 (3) | −0.15289 (11) | 0.0203 (4) | |
H17 | 0.8428 | −0.2005 | −0.1786 | 0.024* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0164 (6) | 0.0203 (7) | 0.0247 (7) | 0.0002 (6) | 0.0027 (5) | −0.0014 (6) |
O2 | 0.0251 (7) | 0.0181 (7) | 0.0216 (7) | −0.0001 (6) | 0.0100 (6) | −0.0037 (5) |
N1 | 0.0174 (7) | 0.0173 (8) | 0.0167 (7) | 0.0003 (7) | 0.0028 (6) | 0.0009 (6) |
N2 | 0.0185 (7) | 0.0203 (9) | 0.0166 (7) | 0.0007 (7) | 0.0041 (6) | 0.0013 (6) |
N3 | 0.0159 (7) | 0.0126 (8) | 0.0198 (7) | −0.0002 (6) | 0.0056 (6) | −0.0016 (6) |
C1 | 0.0166 (9) | 0.0301 (11) | 0.0164 (8) | 0.0030 (8) | 0.0040 (7) | 0.0016 (8) |
C2 | 0.0176 (9) | 0.0277 (11) | 0.0201 (9) | −0.0037 (8) | 0.0040 (7) | 0.0038 (8) |
C3 | 0.0173 (9) | 0.0175 (10) | 0.0186 (9) | −0.0024 (8) | 0.0004 (7) | 0.0011 (7) |
C4 | 0.0136 (8) | 0.0190 (9) | 0.0152 (8) | 0.0015 (7) | 0.0008 (7) | 0.0023 (7) |
C5 | 0.0154 (8) | 0.0179 (9) | 0.0171 (8) | 0.0020 (8) | 0.0022 (7) | 0.0001 (7) |
C6 | 0.0162 (8) | 0.0160 (9) | 0.0171 (8) | 0.0002 (7) | 0.0022 (7) | −0.0010 (7) |
C7 | 0.0140 (8) | 0.0157 (9) | 0.0169 (8) | 0.0019 (7) | 0.0020 (7) | 0.0015 (7) |
C8 | 0.0136 (8) | 0.0173 (9) | 0.0164 (8) | 0.0024 (7) | 0.0012 (6) | −0.0007 (7) |
C9 | 0.0158 (8) | 0.0133 (9) | 0.0170 (8) | −0.0002 (7) | 0.0060 (7) | −0.0003 (7) |
C10 | 0.0159 (8) | 0.0205 (9) | 0.0138 (8) | −0.0008 (7) | 0.0041 (7) | −0.0029 (7) |
C11 | 0.0219 (9) | 0.0193 (9) | 0.0221 (9) | −0.0006 (8) | 0.0055 (7) | 0.0009 (8) |
C12 | 0.0220 (9) | 0.0276 (12) | 0.0229 (10) | −0.0067 (9) | 0.0090 (8) | 0.0000 (8) |
C13 | 0.0155 (9) | 0.0345 (12) | 0.0216 (9) | 0.0011 (9) | 0.0050 (7) | −0.0042 (9) |
C14 | 0.0208 (9) | 0.0248 (11) | 0.0278 (10) | 0.0053 (9) | 0.0055 (8) | 0.0006 (9) |
C15 | 0.0204 (9) | 0.0211 (10) | 0.0222 (9) | 0.0007 (8) | 0.0064 (7) | 0.0020 (8) |
C16 | 0.0175 (8) | 0.0205 (10) | 0.0179 (9) | 0.0005 (8) | 0.0038 (7) | −0.0013 (7) |
C17 | 0.0133 (8) | 0.0170 (10) | 0.0184 (8) | 0.0039 (7) | 0.0026 (7) | 0.0012 (7) |
C18 | 0.0173 (9) | 0.0135 (9) | 0.0228 (9) | 0.0005 (8) | 0.0025 (7) | −0.0015 (8) |
C19 | 0.0155 (8) | 0.0157 (9) | 0.0208 (9) | −0.0004 (7) | 0.0037 (7) | 0.0029 (7) |
C20 | 0.0165 (9) | 0.0195 (10) | 0.0176 (8) | −0.0008 (8) | 0.0029 (7) | 0.0028 (7) |
C21 | 0.0212 (9) | 0.0201 (10) | 0.0184 (9) | 0.0020 (8) | 0.0016 (7) | −0.0001 (8) |
O1—C16 | 1.420 (2) | C9—C10 | 1.519 (2) |
O1—H8 | 0.93 (3) | C9—C16 | 1.539 (2) |
O2—C17 | 1.285 (2) | C9—H11 | 0.98 |
N1—N2 | 1.260 (2) | C10—C15 | 1.388 (3) |
N1—C4 | 1.430 (2) | C10—C11 | 1.397 (3) |
N2—C5 | 1.416 (2) | C11—C12 | 1.392 (3) |
N3—C8 | 1.299 (2) | C11—H7 | 0.93 |
N3—C9 | 1.462 (2) | C12—C13 | 1.389 (3) |
N3—H3 | 0.86 | C12—H6 | 0.93 |
C1—C2 | 1.387 (3) | C13—C14 | 1.381 (3) |
C1—C21 | 1.393 (3) | C13—H2 | 0.93 |
C1—H1 | 0.93 | C14—C15 | 1.396 (3) |
C2—C3 | 1.392 (3) | C14—H5 | 0.93 |
C2—H19 | 0.93 | C15—H4 | 0.93 |
C3—C4 | 1.394 (3) | C16—H9 | 0.97 |
C3—H18 | 0.93 | C16—H10 | 0.97 |
C4—C20 | 1.394 (3) | C17—C18 | 1.434 (3) |
C5—C6 | 1.373 (3) | C18—C19 | 1.362 (3) |
C5—C19 | 1.426 (3) | C18—H14 | 0.93 |
C6—C7 | 1.414 (2) | C19—H13 | 0.93 |
C6—H15 | 0.93 | C20—C21 | 1.390 (3) |
C7—C8 | 1.420 (3) | C20—H16 | 0.93 |
C7—C17 | 1.438 (3) | C21—H17 | 0.93 |
C8—H12 | 0.93 | ||
C16—O1—H8 | 105.7 (16) | C11—C10—C9 | 118.38 (17) |
N2—N1—C4 | 114.28 (15) | C12—C11—C10 | 120.44 (19) |
N1—N2—C5 | 113.82 (15) | C12—C11—H7 | 119.8 |
C8—N3—C9 | 123.89 (16) | C10—C11—H7 | 119.8 |
C8—N3—H3 | 118.1 | C13—C12—C11 | 120.19 (19) |
C9—N3—H3 | 118.1 | C13—C12—H6 | 119.9 |
C2—C1—C21 | 120.29 (18) | C11—C12—H6 | 119.9 |
C2—C1—H1 | 119.9 | C14—C13—C12 | 119.62 (18) |
C21—C1—H1 | 119.9 | C14—C13—H2 | 120.2 |
C1—C2—C3 | 119.54 (19) | C12—C13—H2 | 120.2 |
C1—C2—H19 | 120.2 | C13—C14—C15 | 120.4 (2) |
C3—C2—H19 | 120.2 | C13—C14—H5 | 119.8 |
C2—C3—C4 | 120.17 (19) | C15—C14—H5 | 119.8 |
C2—C3—H18 | 119.9 | C10—C15—C14 | 120.42 (19) |
C4—C3—H18 | 119.9 | C10—C15—H4 | 119.8 |
C3—C4—C20 | 120.31 (17) | C14—C15—H4 | 119.8 |
C3—C4—N1 | 114.70 (17) | O1—C16—C9 | 111.39 (14) |
C20—C4—N1 | 124.95 (16) | O1—C16—H9 | 109.4 |
C6—C5—N2 | 116.70 (17) | C9—C16—H9 | 109.4 |
C6—C5—C19 | 119.47 (17) | O1—C16—H10 | 109.4 |
N2—C5—C19 | 123.76 (17) | C9—C16—H10 | 109.4 |
C5—C6—C7 | 120.89 (18) | H9—C16—H10 | 108.0 |
C5—C6—H15 | 119.6 | O2—C17—C18 | 121.93 (17) |
C7—C6—H15 | 119.6 | O2—C17—C7 | 121.24 (17) |
C6—C7—C8 | 119.36 (17) | C18—C17—C7 | 116.84 (16) |
C6—C7—C17 | 120.28 (17) | C19—C18—C17 | 121.69 (18) |
C8—C7—C17 | 120.31 (16) | C19—C18—H14 | 119.2 |
N3—C8—C7 | 123.23 (18) | C17—C18—H14 | 119.2 |
N3—C8—H12 | 118.4 | C18—C19—C5 | 120.78 (17) |
C7—C8—H12 | 118.4 | C18—C19—H13 | 119.6 |
N3—C9—C10 | 112.59 (15) | C5—C19—H13 | 119.6 |
N3—C9—C16 | 108.09 (14) | C21—C20—C4 | 119.22 (18) |
C10—C9—C16 | 111.93 (14) | C21—C20—H16 | 120.4 |
N3—C9—H11 | 108.0 | C4—C20—H16 | 120.4 |
C10—C9—H11 | 108.0 | C20—C21—C1 | 120.47 (19) |
C16—C9—H11 | 108.0 | C20—C21—H17 | 119.8 |
C15—C10—C11 | 118.95 (17) | C1—C21—H17 | 119.8 |
C15—C10—C9 | 122.66 (17) | ||
C4—N1—N2—C5 | 176.27 (14) | C9—C10—C11—C12 | −178.17 (17) |
C21—C1—C2—C3 | 0.6 (3) | C10—C11—C12—C13 | 0.5 (3) |
C1—C2—C3—C4 | 0.1 (3) | C11—C12—C13—C14 | −1.1 (3) |
C2—C3—C4—C20 | −0.9 (3) | C12—C13—C14—C15 | 0.7 (3) |
C2—C3—C4—N1 | 176.58 (16) | C11—C10—C15—C14 | −1.0 (3) |
N2—N1—C4—C3 | −176.93 (16) | C9—C10—C15—C14 | 177.65 (18) |
N2—N1—C4—C20 | 0.5 (2) | C13—C14—C15—C10 | 0.4 (3) |
N1—N2—C5—C6 | −176.78 (16) | N3—C9—C16—O1 | −49.4 (2) |
N1—N2—C5—C19 | 0.2 (2) | C10—C9—C16—O1 | −173.93 (16) |
N2—C5—C6—C7 | 175.99 (16) | C6—C7—C17—O2 | −178.44 (17) |
C19—C5—C6—C7 | −1.1 (3) | C8—C7—C17—O2 | −1.0 (3) |
C5—C6—C7—C8 | −178.38 (17) | C6—C7—C17—C18 | 1.6 (2) |
C5—C6—C7—C17 | −0.9 (3) | C8—C7—C17—C18 | 179.09 (17) |
C9—N3—C8—C7 | −172.05 (16) | O2—C17—C18—C19 | 179.68 (17) |
C6—C7—C8—N3 | 178.53 (17) | C7—C17—C18—C19 | −0.4 (3) |
C17—C7—C8—N3 | 1.0 (3) | C17—C18—C19—C5 | −1.6 (3) |
C8—N3—C9—C10 | −122.26 (18) | C6—C5—C19—C18 | 2.4 (3) |
C8—N3—C9—C16 | 113.59 (19) | N2—C5—C19—C18 | −174.51 (17) |
N3—C9—C10—C15 | −2.3 (2) | C3—C4—C20—C21 | 1.0 (3) |
C16—C9—C10—C15 | 119.73 (19) | N1—C4—C20—C21 | −176.29 (17) |
N3—C9—C10—C11 | 176.36 (16) | C4—C20—C21—C1 | −0.2 (3) |
C16—C9—C10—C11 | −61.6 (2) | C2—C1—C21—C20 | −0.6 (3) |
C15—C10—C11—C12 | 0.5 (3) |
Cg1 and Cg2 are the centroids of the C1–C4/C20/C21 and C5–C7/C17–C19 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3···O2 | 0.86 | 1.92 | 2.587 (2) | 134 |
O1—H8···O2i | 0.93 (3) | 1.79 (3) | 2.708 (2) | 168 (2) |
C16—H9···O1ii | 0.97 | 2.45 | 3.355 (2) | 156 |
C9—H11···O2i | 0.98 | 2.62 | 3.294 (2) | 127 |
C14—H5···Cg2iii | 0.93 | 3.20 | 3.722 (2) | 118 |
C8—H12···Cg1iv | 0.93 | 2.75 | 3.458 (2) | 134 |
C20—H16···Cg2iv | 0.93 | 2.89 | 3.480 (2) | 122 |
C3—H18···Cg1v | 0.93 | 3.02 | 3.711 (2) | 132 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, y+1/2, −z+1; (iii) x−1, y, z; (iv) −x+1, y−1/2, −z; (v) −x+1, y+1/2, −z. |
References
Akitsu, T. (2007). Polyhedron, 26, 2527–2535. Web of Science CSD CrossRef CAS Google Scholar
Akitsu, T. & Einaga, Y. (2005a). Polyhedron, 24, 1869–1877. Web of Science CSD CrossRef CAS Google Scholar
Akitsu, T. & Einaga, Y. (2005b). Polyhedron, 24, 2933–2943. Web of Science CSD CrossRef CAS Google Scholar
Akitsu, T. & Einaga, Y. (2006a). Polyhedron, 25, 1089–1095. Web of Science CSD CrossRef CAS Google Scholar
Akitsu, T. & Einaga, Y. (2006b). Acta Cryst. E62, o4315–o4317. Web of Science CSD CrossRef IUCr Journals Google Scholar
Akitsu, T., Takeuchi, Y. & Einaga, Y. (2004). Acta Cryst. C60, o801–o802. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Aritake, Y., Watanabe, Y. & Akitsu, T. (2010). Acta Cryst. E66, o749. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dey, D. K., Dey, S. P., Elmali, A. & Elerman, Y. (2001). J. Mol. Struct. 562, 177–184. Web of Science CSD CrossRef CAS Google Scholar
Elerman, Y., Kabak, M., Elmali, A. & Svoboda, I. (1998). Acta Cryst. C54, 128–130. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579–588. Web of Science PubMed CAS Google Scholar
Hökelek, T., Kılıç, Z., Isıklan, M. & Toy, M. (2000). J. Mol. Struct. 523, 61–69. Google Scholar
Labarthet, F. L., Rochon, P. & Natansohn, A. (1999). Appl. Phys. Lett. 75, 1377–1379. CrossRef Google Scholar
Miura, Y., Aritake, Y. & Akitsu, T. (2009). Acta Cryst. E65, o2381. Web of Science CSD CrossRef IUCr Journals Google Scholar
Moriwaki, R. & Akitsu, T. (2015). Acta Cryst. E71, o886–o887. Web of Science CSD CrossRef IUCr Journals Google Scholar
Moustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709–3715. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Odabas˛ogˇlu, M., Albayrak, Ç., Büyükgüngör, O. & Goesmann, H. (2003). Acta Cryst. C59, o234–o236. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Ünver, H., Kabak, M., Zengin, D. M. & Durlu, T. N. (2002). J. Chem. Crystallogr. 31, 203–209. Google Scholar
Yang, C.-T. & Vittal, J. (2003). Inorg. Chim. Acta, 344, 65–76. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.