organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-[(R)-(2-Hy­dr­oxy-1-phenyl­eth­yl)amino­methyl­­idene]-4-(2-phenyl­diazen-1-yl)cyclohexa-2,4-dien-1-one

aDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
*Correspondence e-mail: akitsu@rs.kagu.tus.ac.jp

Edited by O. Blacque, University of Zürich, Switzerland (Received 22 June 2017; accepted 3 July 2017; online 7 July 2017)

The title chiral photochromic Schiff base compound, C21H19N3O2, was synthesized from (R)-(−)-2-phenyl­glycinol and salicyl­aldehyde of azo­benzene derivative. The mol­ecule exhibits the keto–amine tautomeric form and displays characteristic features of azo­benzene derivatives. The diazenyl group adopts a trans (E) conformation, with N=N bond length of 1.260 (2) Å. The hy­droxy group is involved in an inter­molecular O—H⋯O hydrogen bond.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Schiff bases with an azo­benzene moiety are well known in the literature (Miura et al., 2009[Miura, Y., Aritake, Y. & Akitsu, T. (2009). Acta Cryst. E65, o2381.]; Aritake et al., 2010[Aritake, Y., Watanabe, Y. & Akitsu, T. (2010). Acta Cryst. E66, o749.]; Moriwaki & Akitsu, 2015[Moriwaki, R. & Akitsu, T. (2015). Acta Cryst. E71, o886-o887.]). Schiff base ligands are known to perform as photochromic, thermochromic, or fluorescent substances (Akitsu et al., 2004[Akitsu, T., Takeuchi, Y. & Einaga, Y. (2004). Acta Cryst. C60, o801-o802.]; Hadjoudis & Mavridis, 2004[Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579-588.]; Moustakali-Mavridis et al., 1978[Moustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709-3715.]; Akitsu & Einaga, 2006b[Akitsu, T. & Einaga, Y. (2006b). Acta Cryst. E62, o4315-o4317.]). Schiff base complexes have also been investigated regarding changes of chiral conformation in solutions induced by photochromic solutes (Akitsu & Einaga, 2005a[Akitsu, T. & Einaga, Y. (2005a). Polyhedron, 24, 1869-1877.],b[Akitsu, T. & Einaga, Y. (2005b). Polyhedron, 24, 2933-2943.], 2006a[Akitsu, T. & Einaga, Y. (2006a). Polyhedron, 25, 1089-1095.]; Akitsu, 2007[Akitsu, T. (2007). Polyhedron, 26, 2527-2535.]) and their optical anisotropy as a composite in polymer films has been also reported (Labarthet et al., 1999[Labarthet, F. L., Rochon, P. & Natansohn, A. (1999). Appl. Phys. Lett. 75, 1377-1379.]). Here we report the crystal structure of the title compound (Fig. 1[link]), a new chiral photochromic dye of a keto–amine tautomer.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound (50% probability displacement ellipsoids).

Schiff bases display two possible tautomeric forms, namely, phenol–imine and keto–amine. In the solid state, the keto–amine tautomer has been found in naphthaldimine (Hökelek et al., 2000[Hökelek, T., Kılıç, Z., Isıklan, M. & Toy, M. (2000). J. Mol. Struct. 523, 61-69.]; Ünver et al., 2002[Ünver, H., Kabak, M., Zengin, D. M. & Durlu, T. N. (2002). J. Chem. Crystallogr. 31, 203-209.]), while the phenol–imine tautomer is found in salicylaldimine Schiff bases (Elerman et al., 1998[Elerman, Y., Kabak, M., Elmali, A. & Svoboda, I. (1998). Acta Cryst. C54, 128-130.]; Dey et al., 2001[Dey, D. K., Dey, S. P., Elmali, A. & Elerman, Y. (2001). J. Mol. Struct. 562, 177-184.]; Yang & Vittal, 2003[Yang, C.-T. & Vittal, J. (2003). Inorg. Chim. Acta, 344, 65-76.]). The title mol­ecule (Fig. 1[link]) has a chiral C atom (C9) with an R configuration. The C17=O2, C8—N3 and C7—C8 bond lengths of 1.285 (2), 1.299 (2) and 1.420 Å, respectively, are in good agreement with the corresponding distances observed in 4-[(3-chloro­phen­yl)diazen­yl]-2-{[tris­(hy­droxy­meth­yl)meth­yl]amino­methyl­ene}cyclo­hexa-3,5-dien-1(2H)-one [1.285 (3), 1.414 (2) and 1.411 (3) Å, respectively; Odabasoglu et al., 2003[Odabas˛ogˇlu, M., Albayrak, Ç., Büyükgüngör, O. & Goesmann, H. (2003). Acta Cryst. C59, o234-o236.]]. The π-conjugated system around the imine group is substanti­ally planar as shown by the C7—C8—N3—C9 torsion angle of 172.05 (15)°. The N=N double bond is 1.260 (2) Å and adopts an E conformation. All of the geometrical parameters agree with those in related compounds adopting the phenol-imine form, for example the corresponding torsion angle C4—N1—N2—C5 of 176.27 (16)° (Moriwaki & Akitsu, 2015[Moriwaki, R. & Akitsu, T. (2015). Acta Cryst. E71, o886-o887.]).

In the crystal, the mol­ecules are connected through inter­molecular hydrogen bonds (O1—H8⋯O2), forming a sheet arrangement (Table 1[link], Fig. 2[link]). In addition, weak supra­molecular C—H⋯π inter­actions such as C8—H12⋯Cg1, C3—H18⋯Cg1, C14—H15⋯Cg2 and C20—H16⋯Cg2 are also found in the crystal structure (Table 1[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C4/C20/C21 and C5–C7/C17–C19 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O2 0.86 1.92 2.587 (2) 134
O1—H8⋯O2i 0.93 (3) 1.79 (3) 2.708 (2) 168 (2)
C16—H9⋯O1ii 0.97 2.45 3.355 (2) 156
C9—H11⋯O2i 0.98 2.62 3.294 (2) 127
C8—H12⋯Cg1iii 0.93 2.75 3.458 (2) 134
C20—H16⋯Cg2iii 0.93 2.89 3.480 (2) 122
C3—H18⋯Cg1iv 0.93 3.02 3.711 (2) 132
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z]; (iv) [-x+1, y+{\script{1\over 2}}, -z].
[Figure 2]
Figure 2
A view of the various N—H⋯O and O—H⋯O hydrogen bonds (blue dashed lines) present in the crystal of the title compound.
[Figure 3]
Figure 3
A view of the various C—H⋯π inter­actions (blue dashed lines) present in the crystal of the title compound.

Synthesis and crystallization

Treatment of aniline (0.951 g, 10.0 mmol) in 15 ml of 6 M HCl and NaNO2 (0.690 g, 10 mmol) in 15 ml of H2O for 30 min at 278 K gave rise to a yellow precursor. Treatment of the precursor and salicyl­aldehyde (1.22 g 10.0 mmol) in 30 ml of 10% NaOH aqueous solution for 1 h at 278 K gave an orange precipitate, which was filtrated and washed with water and ethanol, and dried in a desiccator for several days. Treatment of the brown precipitate (0.678 g, 3.00 mmol) and (R)-(-)-2-phenyl­gycinol (0.4116 g, 3.00 mmol) in 30 ml of toluene for 5 h at 393 K gave rise to an orange compound after evaporation (yield 0.9243 g, 89%). This crude orange compound was filtered and recrystallized by slow evaporation of an acetone solution to give orange prismatic single crystals. IR (KBr, cm−1): 1405 (N=N), 1635 (C=N), 3445 (O—H). 1H NMR (300 MHz, DMSO) δ (p.p.m.): 3.70 (m, 2H), 4.61 (m, 1H), 5.26 (t, 1H), 7.02 (d, 1H), 7.41 (m, 9H), 7.83 (d, 2H), 7.96 (dd, 1H), 8.14 (d, 1H), 8.83 (s, 1H).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H19N3O2
Mr 345.39
Crystal system, space group Monoclinic, P21
Temperature (K) 103
a, b, c (Å) 9.0503 (7), 5.9762 (5), 16.3508 (12)
β (°) 102.732 (1)
V3) 862.61 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.15 × 0.09 × 0.08
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.987, 0.993
No. of measured, independent and observed [I > 2σ(I)] reflections 4779, 3542, 3408
Rint 0.014
(sin θ/λ)max−1) 0.653
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.074, 1.04
No. of reflections 3542
No. of parameters 238
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.20
Absolute structure Flack parameter not reliable here
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

6-[(R)-(2-Hydroxy-1-phenylethyl)aminomethylidene]-4-(2-phenyldiazen-1-yl)cyclohexa-2,4-dien-1-one top
Crystal data top
C21H19N3O2F(000) = 364
Mr = 345.39Dx = 1.330 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.0503 (7) ÅCell parameters from 3069 reflections
b = 5.9762 (5) Åθ = 2.3–27.7°
c = 16.3508 (12) ŵ = 0.09 mm1
β = 102.732 (1)°T = 103 K
V = 862.61 (12) Å3Prism, orange
Z = 20.15 × 0.09 × 0.08 mm
Data collection top
Bruker APEXII
diffractometer
3542 independent reflections
Radiation source: fine-focus sealed tube3408 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.014
φ and ω scansθmax = 27.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 611
Tmin = 0.987, Tmax = 0.993k = 77
4779 measured reflectionsl = 2013
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0306P)2 + 0.2577P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3542 reflectionsΔρmax = 0.24 e Å3
238 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack parameter not reliable here
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were located on difference Fourier maps but C-bound and N-bound H atoms were con­strained using a riding model [C—H = 0.93 Å andUiso(H) = 1.2Ueq(C) for aromatic H atoms, C—H = 0.98 Å andUiso(H) = 1.2Ueq(C) for the methine H atom, and N—H = 0.86 Å andUiso(H) = 1.2Ueq(N)]. The coordinates of the hydroxy H atom were freely refined but its isotropic displacement parameter was considered as 1.5Ueq(O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.52800 (14)0.2877 (3)0.43795 (9)0.0208 (3)
H80.522 (3)0.406 (5)0.4000 (16)0.031*
O20.47218 (16)0.3639 (2)0.32957 (8)0.0208 (3)
N10.74880 (17)0.2803 (3)0.01627 (9)0.0173 (3)
N20.66505 (18)0.1391 (3)0.04115 (9)0.0184 (3)
N30.34194 (17)0.0234 (3)0.32052 (9)0.0158 (3)
H30.35240.10720.34310.019*
C10.9597 (2)0.0884 (4)0.17739 (12)0.0210 (4)
H11.010.0480.2190.025*
C20.9847 (2)0.2973 (4)0.13999 (12)0.0218 (4)
H191.05080.39760.15680.026*
C30.9102 (2)0.3558 (3)0.07716 (11)0.0183 (4)
H180.92630.49580.05190.022*
C40.81138 (19)0.2051 (3)0.05196 (11)0.0163 (4)
C50.6113 (2)0.2097 (3)0.11202 (11)0.0170 (4)
C60.5257 (2)0.0588 (3)0.14488 (11)0.0166 (4)
H150.50080.07790.11820.02*
C70.4750 (2)0.1084 (3)0.21870 (11)0.0158 (4)
C80.3900 (2)0.0539 (3)0.25210 (11)0.0161 (4)
H120.36770.18860.22360.019*
C90.27104 (19)0.1981 (3)0.36140 (11)0.0150 (4)
H110.26240.33310.32660.018*
C100.1132 (2)0.1343 (3)0.37080 (11)0.0166 (4)
C110.0294 (2)0.2918 (4)0.40452 (12)0.0210 (4)
H70.07190.43020.4220.025*
C120.1174 (2)0.2432 (4)0.41213 (12)0.0235 (4)
H60.17210.34860.43510.028*
C130.1823 (2)0.0378 (4)0.38554 (12)0.0238 (4)
H20.2810.00630.38970.029*
C140.0994 (2)0.1195 (4)0.35286 (13)0.0245 (4)
H50.14230.25780.33550.029*
C150.0482 (2)0.0720 (4)0.34567 (12)0.0210 (4)
H40.10340.17920.32390.025*
C160.3771 (2)0.2510 (3)0.44649 (11)0.0187 (4)
H90.37560.12720.48470.022*
H100.34090.38320.47030.022*
C170.5143 (2)0.3177 (3)0.26138 (11)0.0164 (4)
C180.6022 (2)0.4711 (3)0.22420 (11)0.0182 (4)
H140.62920.60840.24990.022*
C190.6472 (2)0.4208 (3)0.15215 (11)0.0174 (4)
H130.7020.52540.12890.021*
C200.7848 (2)0.0038 (3)0.09025 (11)0.0180 (4)
H160.71770.10370.07410.022*
C210.8596 (2)0.0612 (3)0.15289 (11)0.0203 (4)
H170.84280.20050.17860.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0164 (6)0.0203 (7)0.0247 (7)0.0002 (6)0.0027 (5)0.0014 (6)
O20.0251 (7)0.0181 (7)0.0216 (7)0.0001 (6)0.0100 (6)0.0037 (5)
N10.0174 (7)0.0173 (8)0.0167 (7)0.0003 (7)0.0028 (6)0.0009 (6)
N20.0185 (7)0.0203 (9)0.0166 (7)0.0007 (7)0.0041 (6)0.0013 (6)
N30.0159 (7)0.0126 (8)0.0198 (7)0.0002 (6)0.0056 (6)0.0016 (6)
C10.0166 (9)0.0301 (11)0.0164 (8)0.0030 (8)0.0040 (7)0.0016 (8)
C20.0176 (9)0.0277 (11)0.0201 (9)0.0037 (8)0.0040 (7)0.0038 (8)
C30.0173 (9)0.0175 (10)0.0186 (9)0.0024 (8)0.0004 (7)0.0011 (7)
C40.0136 (8)0.0190 (9)0.0152 (8)0.0015 (7)0.0008 (7)0.0023 (7)
C50.0154 (8)0.0179 (9)0.0171 (8)0.0020 (8)0.0022 (7)0.0001 (7)
C60.0162 (8)0.0160 (9)0.0171 (8)0.0002 (7)0.0022 (7)0.0010 (7)
C70.0140 (8)0.0157 (9)0.0169 (8)0.0019 (7)0.0020 (7)0.0015 (7)
C80.0136 (8)0.0173 (9)0.0164 (8)0.0024 (7)0.0012 (6)0.0007 (7)
C90.0158 (8)0.0133 (9)0.0170 (8)0.0002 (7)0.0060 (7)0.0003 (7)
C100.0159 (8)0.0205 (9)0.0138 (8)0.0008 (7)0.0041 (7)0.0029 (7)
C110.0219 (9)0.0193 (9)0.0221 (9)0.0006 (8)0.0055 (7)0.0009 (8)
C120.0220 (9)0.0276 (12)0.0229 (10)0.0067 (9)0.0090 (8)0.0000 (8)
C130.0155 (9)0.0345 (12)0.0216 (9)0.0011 (9)0.0050 (7)0.0042 (9)
C140.0208 (9)0.0248 (11)0.0278 (10)0.0053 (9)0.0055 (8)0.0006 (9)
C150.0204 (9)0.0211 (10)0.0222 (9)0.0007 (8)0.0064 (7)0.0020 (8)
C160.0175 (8)0.0205 (10)0.0179 (9)0.0005 (8)0.0038 (7)0.0013 (7)
C170.0133 (8)0.0170 (10)0.0184 (8)0.0039 (7)0.0026 (7)0.0012 (7)
C180.0173 (9)0.0135 (9)0.0228 (9)0.0005 (8)0.0025 (7)0.0015 (8)
C190.0155 (8)0.0157 (9)0.0208 (9)0.0004 (7)0.0037 (7)0.0029 (7)
C200.0165 (9)0.0195 (10)0.0176 (8)0.0008 (8)0.0029 (7)0.0028 (7)
C210.0212 (9)0.0201 (10)0.0184 (9)0.0020 (8)0.0016 (7)0.0001 (8)
Geometric parameters (Å, º) top
O1—C161.420 (2)C9—C101.519 (2)
O1—H80.93 (3)C9—C161.539 (2)
O2—C171.285 (2)C9—H110.98
N1—N21.260 (2)C10—C151.388 (3)
N1—C41.430 (2)C10—C111.397 (3)
N2—C51.416 (2)C11—C121.392 (3)
N3—C81.299 (2)C11—H70.93
N3—C91.462 (2)C12—C131.389 (3)
N3—H30.86C12—H60.93
C1—C21.387 (3)C13—C141.381 (3)
C1—C211.393 (3)C13—H20.93
C1—H10.93C14—C151.396 (3)
C2—C31.392 (3)C14—H50.93
C2—H190.93C15—H40.93
C3—C41.394 (3)C16—H90.97
C3—H180.93C16—H100.97
C4—C201.394 (3)C17—C181.434 (3)
C5—C61.373 (3)C18—C191.362 (3)
C5—C191.426 (3)C18—H140.93
C6—C71.414 (2)C19—H130.93
C6—H150.93C20—C211.390 (3)
C7—C81.420 (3)C20—H160.93
C7—C171.438 (3)C21—H170.93
C8—H120.93
C16—O1—H8105.7 (16)C11—C10—C9118.38 (17)
N2—N1—C4114.28 (15)C12—C11—C10120.44 (19)
N1—N2—C5113.82 (15)C12—C11—H7119.8
C8—N3—C9123.89 (16)C10—C11—H7119.8
C8—N3—H3118.1C13—C12—C11120.19 (19)
C9—N3—H3118.1C13—C12—H6119.9
C2—C1—C21120.29 (18)C11—C12—H6119.9
C2—C1—H1119.9C14—C13—C12119.62 (18)
C21—C1—H1119.9C14—C13—H2120.2
C1—C2—C3119.54 (19)C12—C13—H2120.2
C1—C2—H19120.2C13—C14—C15120.4 (2)
C3—C2—H19120.2C13—C14—H5119.8
C2—C3—C4120.17 (19)C15—C14—H5119.8
C2—C3—H18119.9C10—C15—C14120.42 (19)
C4—C3—H18119.9C10—C15—H4119.8
C3—C4—C20120.31 (17)C14—C15—H4119.8
C3—C4—N1114.70 (17)O1—C16—C9111.39 (14)
C20—C4—N1124.95 (16)O1—C16—H9109.4
C6—C5—N2116.70 (17)C9—C16—H9109.4
C6—C5—C19119.47 (17)O1—C16—H10109.4
N2—C5—C19123.76 (17)C9—C16—H10109.4
C5—C6—C7120.89 (18)H9—C16—H10108.0
C5—C6—H15119.6O2—C17—C18121.93 (17)
C7—C6—H15119.6O2—C17—C7121.24 (17)
C6—C7—C8119.36 (17)C18—C17—C7116.84 (16)
C6—C7—C17120.28 (17)C19—C18—C17121.69 (18)
C8—C7—C17120.31 (16)C19—C18—H14119.2
N3—C8—C7123.23 (18)C17—C18—H14119.2
N3—C8—H12118.4C18—C19—C5120.78 (17)
C7—C8—H12118.4C18—C19—H13119.6
N3—C9—C10112.59 (15)C5—C19—H13119.6
N3—C9—C16108.09 (14)C21—C20—C4119.22 (18)
C10—C9—C16111.93 (14)C21—C20—H16120.4
N3—C9—H11108.0C4—C20—H16120.4
C10—C9—H11108.0C20—C21—C1120.47 (19)
C16—C9—H11108.0C20—C21—H17119.8
C15—C10—C11118.95 (17)C1—C21—H17119.8
C15—C10—C9122.66 (17)
C4—N1—N2—C5176.27 (14)C9—C10—C11—C12178.17 (17)
C21—C1—C2—C30.6 (3)C10—C11—C12—C130.5 (3)
C1—C2—C3—C40.1 (3)C11—C12—C13—C141.1 (3)
C2—C3—C4—C200.9 (3)C12—C13—C14—C150.7 (3)
C2—C3—C4—N1176.58 (16)C11—C10—C15—C141.0 (3)
N2—N1—C4—C3176.93 (16)C9—C10—C15—C14177.65 (18)
N2—N1—C4—C200.5 (2)C13—C14—C15—C100.4 (3)
N1—N2—C5—C6176.78 (16)N3—C9—C16—O149.4 (2)
N1—N2—C5—C190.2 (2)C10—C9—C16—O1173.93 (16)
N2—C5—C6—C7175.99 (16)C6—C7—C17—O2178.44 (17)
C19—C5—C6—C71.1 (3)C8—C7—C17—O21.0 (3)
C5—C6—C7—C8178.38 (17)C6—C7—C17—C181.6 (2)
C5—C6—C7—C170.9 (3)C8—C7—C17—C18179.09 (17)
C9—N3—C8—C7172.05 (16)O2—C17—C18—C19179.68 (17)
C6—C7—C8—N3178.53 (17)C7—C17—C18—C190.4 (3)
C17—C7—C8—N31.0 (3)C17—C18—C19—C51.6 (3)
C8—N3—C9—C10122.26 (18)C6—C5—C19—C182.4 (3)
C8—N3—C9—C16113.59 (19)N2—C5—C19—C18174.51 (17)
N3—C9—C10—C152.3 (2)C3—C4—C20—C211.0 (3)
C16—C9—C10—C15119.73 (19)N1—C4—C20—C21176.29 (17)
N3—C9—C10—C11176.36 (16)C4—C20—C21—C10.2 (3)
C16—C9—C10—C1161.6 (2)C2—C1—C21—C200.6 (3)
C15—C10—C11—C120.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C4/C20/C21 and C5–C7/C17–C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N3—H3···O20.861.922.587 (2)134
O1—H8···O2i0.93 (3)1.79 (3)2.708 (2)168 (2)
C16—H9···O1ii0.972.453.355 (2)156
C9—H11···O2i0.982.623.294 (2)127
C14—H5···Cg2iii0.933.203.722 (2)118
C8—H12···Cg1iv0.932.753.458 (2)134
C20—H16···Cg2iv0.932.893.480 (2)122
C3—H18···Cg1v0.933.023.711 (2)132
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1; (iii) x1, y, z; (iv) x+1, y1/2, z; (v) x+1, y+1/2, z.
 

References

First citationAkitsu, T. (2007). Polyhedron, 26, 2527–2535.  Web of Science CSD CrossRef CAS Google Scholar
First citationAkitsu, T. & Einaga, Y. (2005a). Polyhedron, 24, 1869–1877.  Web of Science CSD CrossRef CAS Google Scholar
First citationAkitsu, T. & Einaga, Y. (2005b). Polyhedron, 24, 2933–2943.  Web of Science CSD CrossRef CAS Google Scholar
First citationAkitsu, T. & Einaga, Y. (2006a). Polyhedron, 25, 1089–1095.  Web of Science CSD CrossRef CAS Google Scholar
First citationAkitsu, T. & Einaga, Y. (2006b). Acta Cryst. E62, o4315–o4317.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkitsu, T., Takeuchi, Y. & Einaga, Y. (2004). Acta Cryst. C60, o801–o802.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAritake, Y., Watanabe, Y. & Akitsu, T. (2010). Acta Cryst. E66, o749.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDey, D. K., Dey, S. P., Elmali, A. & Elerman, Y. (2001). J. Mol. Struct. 562, 177–184.  Web of Science CSD CrossRef CAS Google Scholar
First citationElerman, Y., Kabak, M., Elmali, A. & Svoboda, I. (1998). Acta Cryst. C54, 128–130.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579–588.  Web of Science PubMed CAS Google Scholar
First citationHökelek, T., Kılıç, Z., Isıklan, M. & Toy, M. (2000). J. Mol. Struct. 523, 61–69.  Google Scholar
First citationLabarthet, F. L., Rochon, P. & Natansohn, A. (1999). Appl. Phys. Lett. 75, 1377–1379.  CrossRef Google Scholar
First citationMiura, Y., Aritake, Y. & Akitsu, T. (2009). Acta Cryst. E65, o2381.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoriwaki, R. & Akitsu, T. (2015). Acta Cryst. E71, o886–o887.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709–3715.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOdabas˛ogˇlu, M., Albayrak, Ç., Büyükgüngör, O. & Goesmann, H. (2003). Acta Cryst. C59, o234–o236.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationÜnver, H., Kabak, M., Zengin, D. M. & Durlu, T. N. (2002). J. Chem. Crystallogr. 31, 203–209.  Google Scholar
First citationYang, C.-T. & Vittal, J. (2003). Inorg. Chim. Acta, 344, 65–76.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds