organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(4-Chloro­phen­yl)-3-hy­dr­oxy-4H-chromen-4-one

aArmstrong State University, Department of Chemistry and Physics, 11935 Abercorn St., Savannah, GA 31419, USA
*Correspondence e-mail: clifford.padgett@armstrong.edu

Edited by M. Zeller, Purdue University, USA (Received 28 June 2017; accepted 5 July 2017; online 13 July 2017)

Flavones are a subclass of flavonoids, secondary metabolites of plants which contain the 2-phenyl­benzo­pyran pharmacophore. They are of inter­est as they display a wide variety of biological activities, such as anti­cancer and anti­oxidant. Recently, there has been an inter­est in coordinating flavones to various transition metals for anti­cancer activity. Our work in this area led to the synthesis and crystallization of flavones as inter­mediates. Herein, we report the first crystal structure of 2-(4-chloro­phen­yl)-3-hy­droxy-4H-chromen-4-one, C15H9ClO3, a well studied compound.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In the crystal structure of the title compound (Fig. 1[link]), the mol­ecules form hydrogen-bonded dimers (Table 1[link]) between the mol­ecule and an inversion-related adjacent mol­ecule. The hydrogen-bonding occurs between oxygen atoms on the benzo­pyran­one ring, with a classical [R_{2}^{2}] (10) synthon. The O1i ⋯O3 hydrogen-bond distance is 2.698 (3) Å [symmetry code: (i) −x, −y + 2, −z + 1]. The mol­ecule is nearly planar with the phenyl ring tilted 15.92 (8)° with respect to the benzo­pyran­one ring. The overall structure forms a herringbone pattern (Fig. 2[link]) with each block consisting of mol­ecular dimers, the layers are held together with ππ inter­actions and π–Br inter­actions. The layers have a parallel displacement that results in a Br1⋯Cg1ii π–Br inter­action with a distance of 3.623 (3) Å [symmetry code: (ii) x, y − 1, z; Cg1 is the centroid of the chloro­phenyl ring] and a Cg2⋯Cg1ii ππ inter­action with a distance of 3.688 (2) Å. (Cg2 is the centroid of the pyran­one ring).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.84 (5) 1.95 (5) 2.698 (3) 149 (4)
Symmetry code: (i) -x, -y+2, -z+1.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Crystal packing diagram of the title compound viewed along the a axis, H atoms have been omitted for clarity.

Synthesis and crystallization

The title compound was synthesized from the aldol condensation of 2-hy­droxy­aceto­phenone and 4-chloro­benzaldehyde to yield the chalcone (E)-3-(4-chloro­phen­yl)-1-(2-hy­droxy­phen­yl)prop-2-en-1-one followed by its oxidative cyclization to the flavone, as reported in the literature (Kurzwernhart et al., 2012[Kurzwernhart, A., Kandioller, W., Bächler, S., Bartel, C., Martic, S., Buczkowska, M., Mühlgassner, G., Jakupec, M., Kraatz, H.-B., Bednarski, P., Arion, V., Marko, D., Keppler, B. & Hartinger, C. (2012). J. Med. Chem. 55, 10512-10522.]), see Fig. 3[link]. 2-Hy­droxy­aceto­phenone (136 mg, 1 mmol) and 4-chloro­benzaldehyde (141 mg, 1 mmol) were dissolved in ethanol (5 ml). An NaOH solution (5 M, 1 ml) was added and the reaction was stirred until a precipitate formed. The reaction mixture was cooled in an ice bath for 20 min. The solids were filtered and taken directly to the next step. (E)-3-(4-Chloro­phen­yl)-1-(2-hy­droxy­phen­yl)prop-2-en-1-one was then suspended in EtOH (5 ml) and cooled in an ice–water bath. An NaOH solution (5 M, 1 ml) and H2O2 (30%, 2.2 equiv, 0.25 ml) were added and the reaction stirred overnight, warming to room temperature. The reaction mixture was acidified to pH 1 with HCl (6 M) and poured into cold water. The yellow solid was collected by filtration and slow evaporation of a solution of the title compound in MeOH gave yellow crystals (64 mg, 24% yield over two steps). The structure was confirmed to match the literature (Kurzwernhart et al., 2012[Kurzwernhart, A., Kandioller, W., Bächler, S., Bartel, C., Martic, S., Buczkowska, M., Mühlgassner, G., Jakupec, M., Kraatz, H.-B., Bednarski, P., Arion, V., Marko, D., Keppler, B. & Hartinger, C. (2012). J. Med. Chem. 55, 10512-10522.]) NMR: 1H NMR [300 MHz, (CD3)2SO)] δ = 8.24 (bs, 1H), 8.22 (d, J = 8.7 Hz, 2H), 8.07 (d, J = 7.5 Hz, 1H), 7.81–7.71 (m, 2H), 7.60 (d, J = 8.4 Hz, 2H), 7.44 (t, J = 7.2 Hz, 1H) p.p.m..

[Figure 3]
Figure 3
Reaction sequence for the synthesis of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H9ClO3
Mr 272.67
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 13.267 (7), 5.1050 (18), 18.866 (9)
β (°) 109.67 (2)
V3) 1203.2 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.32
Crystal size (mm) 0.6 × 0.1 × 0.1
 
Data collection
Diffractometer Rigaku XtaLab mini with hybrid CCD photon counting detector
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.848, 1.00
No. of measured, independent and observed [I > 2σ(I)] reflections 12153, 2790, 1798
Rint 0.134
(sin θ/λ)max−1) 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.148, 1.03
No. of reflections 2790
No. of parameters 176
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.33
Computer programs: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-(4-Chlorophenyl)-3-hydroxy-4H-chromen-4-one top
Crystal data top
C15H9ClO3F(000) = 560
Mr = 272.67Dx = 1.505 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.267 (7) ÅCell parameters from 2168 reflections
b = 5.1050 (18) Åθ = 2.3–27.5°
c = 18.866 (9) ŵ = 0.32 mm1
β = 109.67 (2)°T = 173 K
V = 1203.2 (10) Å3Prism, colorless
Z = 40.6 × 0.1 × 0.1 mm
Data collection top
Rigaku XtaLab mini with hybrid CCD photon counting detector
diffractometer
1798 reflections with I > 2σ(I)
ω scansRint = 0.134
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
θmax = 27.6°, θmin = 1.7°
Tmin = 0.848, Tmax = 1.00h = 1717
12153 measured reflectionsk = 66
2790 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.045P)2 + 0.358P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2790 reflectionsΔρmax = 0.25 e Å3
176 parametersΔρmin = 0.33 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were positioned geometrically and refined as riding with C—H = 0.95 or 0.98 Å and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for C(H) and C(H,H,H) groups respectively. Positions and thermal parameters of hydroxyl H atoms were freely refined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.29231 (7)0.28855 (15)0.31556 (4)0.0465 (3)
O20.35505 (15)0.5852 (4)0.58662 (10)0.0319 (5)
O30.07635 (17)0.6574 (4)0.46991 (12)0.0378 (5)
O10.09468 (17)1.0214 (4)0.57933 (11)0.0434 (6)
C40.3655 (2)0.7714 (5)0.64026 (15)0.0299 (6)
C30.2581 (2)0.5458 (5)0.53041 (14)0.0280 (6)
C100.2654 (2)0.3419 (5)0.47707 (15)0.0288 (6)
C10.1756 (2)0.8890 (6)0.58247 (15)0.0315 (6)
C50.2797 (2)0.9286 (6)0.64112 (14)0.0299 (6)
C20.1711 (2)0.6911 (5)0.52714 (15)0.0293 (6)
C110.1738 (2)0.2221 (6)0.42686 (15)0.0332 (7)
H110.10640.27120.42710.040*
C90.2971 (2)1.1185 (6)0.69760 (16)0.0361 (7)
H90.24091.22490.69900.043*
C120.1827 (2)0.0323 (6)0.37722 (15)0.0358 (7)
H120.12150.04390.34370.043*
C130.2827 (3)0.0442 (6)0.37737 (15)0.0349 (7)
C150.3655 (2)0.2598 (6)0.47606 (16)0.0355 (7)
H150.42720.33550.50920.043*
C140.3744 (2)0.0684 (6)0.42671 (16)0.0381 (7)
H140.44150.01560.42670.046*
C60.4670 (2)0.8002 (6)0.69450 (16)0.0371 (7)
H60.52350.69410.69350.045*
C80.3977 (3)1.1489 (6)0.75141 (16)0.0381 (7)
H80.40891.27600.78860.046*
C70.4821 (3)0.9891 (6)0.74977 (17)0.0408 (8)
H70.54931.00960.78620.049*
H30.035 (4)0.780 (9)0.471 (3)0.103 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0659 (6)0.0394 (4)0.0341 (4)0.0075 (4)0.0166 (4)0.0049 (3)
O20.0270 (10)0.0373 (11)0.0264 (10)0.0045 (9)0.0023 (9)0.0038 (8)
O30.0256 (11)0.0457 (13)0.0364 (12)0.0028 (10)0.0030 (9)0.0071 (10)
O10.0338 (12)0.0591 (14)0.0347 (12)0.0145 (11)0.0083 (10)0.0065 (10)
C40.0327 (16)0.0312 (14)0.0249 (14)0.0001 (12)0.0085 (13)0.0015 (11)
C30.0265 (14)0.0325 (15)0.0212 (13)0.0005 (12)0.0032 (12)0.0031 (11)
C100.0309 (15)0.0289 (15)0.0255 (14)0.0020 (12)0.0080 (12)0.0047 (11)
C10.0305 (16)0.0378 (16)0.0276 (14)0.0031 (13)0.0115 (13)0.0050 (12)
C50.0311 (15)0.0357 (15)0.0244 (14)0.0007 (13)0.0115 (13)0.0022 (12)
C20.0277 (15)0.0337 (15)0.0258 (14)0.0013 (12)0.0078 (12)0.0001 (12)
C110.0315 (16)0.0370 (16)0.0276 (14)0.0013 (13)0.0052 (13)0.0016 (12)
C90.0382 (17)0.0383 (16)0.0317 (15)0.0000 (13)0.0118 (14)0.0019 (12)
C120.0408 (18)0.0350 (16)0.0276 (15)0.0005 (13)0.0061 (14)0.0017 (12)
C130.0492 (19)0.0299 (15)0.0240 (14)0.0048 (14)0.0103 (14)0.0031 (11)
C150.0277 (15)0.0403 (17)0.0329 (15)0.0054 (13)0.0027 (13)0.0007 (13)
C140.0374 (17)0.0427 (17)0.0354 (17)0.0094 (14)0.0137 (15)0.0005 (14)
C60.0321 (16)0.0422 (17)0.0334 (16)0.0025 (13)0.0063 (14)0.0046 (13)
C80.0423 (18)0.0400 (17)0.0301 (15)0.0065 (14)0.0096 (14)0.0076 (13)
C70.0367 (18)0.0472 (18)0.0324 (16)0.0041 (15)0.0036 (14)0.0055 (14)
Geometric parameters (Å, º) top
Cl1—C131.742 (3)C11—H110.9300
O2—C41.361 (3)C11—C121.380 (4)
O2—C31.379 (3)C9—H90.9300
O3—C21.365 (3)C9—C81.387 (4)
O3—H30.83 (5)C12—H120.9300
O1—C11.252 (3)C12—C131.381 (4)
C4—C51.398 (4)C13—C141.384 (4)
C4—C61.398 (4)C15—H150.9300
C3—C101.473 (4)C15—C141.382 (4)
C3—C21.356 (4)C14—H140.9300
C10—C111.405 (4)C6—H60.9300
C10—C151.399 (4)C6—C71.384 (4)
C1—C51.464 (4)C8—H80.9300
C1—C21.440 (4)C8—C71.394 (4)
C5—C91.401 (4)C7—H70.9300
C4—O2—C3120.6 (2)C8—C9—C5120.4 (3)
C2—O3—H3109 (3)C8—C9—H9119.8
O2—C4—C5122.0 (2)C11—C12—H12120.0
O2—C4—C6116.7 (2)C13—C12—C11119.9 (3)
C5—C4—C6121.3 (3)C13—C12—H12120.0
O2—C3—C10111.7 (2)C12—C13—Cl1119.2 (2)
C2—C3—O2121.0 (2)C12—C13—C14120.7 (3)
C2—C3—C10127.3 (2)C14—C13—Cl1120.1 (2)
C11—C10—C3121.8 (3)C10—C15—H15119.4
C15—C10—C3120.1 (3)C14—C15—C10121.2 (3)
C15—C10—C11118.1 (3)C14—C15—H15119.4
O1—C1—C5122.5 (3)C13—C14—H14120.3
O1—C1—C2121.3 (3)C15—C14—C13119.4 (3)
C2—C1—C5116.3 (2)C15—C14—H14120.3
C4—C5—C1118.5 (2)C4—C6—H6120.5
C4—C5—C9118.6 (3)C7—C6—C4119.0 (3)
C9—C5—C1122.9 (3)C7—C6—H6120.5
O3—C2—C1117.6 (2)C9—C8—H8120.0
C3—C2—O3120.7 (3)C9—C8—C7120.0 (3)
C3—C2—C1121.7 (3)C7—C8—H8120.0
C10—C11—H11119.6C6—C7—C8120.7 (3)
C12—C11—C10120.7 (3)C6—C7—H7119.7
C12—C11—H11119.6C8—C7—H7119.7
C5—C9—H9119.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.84 (5)1.95 (5)2.698 (3)149 (4)
Symmetry code: (i) x, y+2, z+1.
 

Acknowledgements

The authors would like to thank Armstrong State University for support of this work.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKurzwernhart, A., Kandioller, W., Bächler, S., Bartel, C., Martic, S., Buczkowska, M., Mühlgassner, G., Jakupec, M., Kraatz, H.-B., Bednarski, P., Arion, V., Marko, D., Keppler, B. & Hartinger, C. (2012). J. Med. Chem. 55, 10512–10522.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds