metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­aqua­bis­­[3-(4-methyl­phen­yl)-5-(pyridin-2-yl-κN)-1H-1,2,4-triazolato-κN1]cadmium trihydrate

aCollege of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
*Correspondence e-mail: lfy20110407@163.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 10 May 2017; accepted 1 July 2017; online 4 July 2017)

In the title compound, [Cd(C14H11N4)2(H2O)2]·3H2O, the CdII cation is chelated by two 3-(4-methyl­phen­yl)-5-(pyridin-2-yl)-1H-1,2,4-triazolate anions and coordinated by two water mol­ecules in a distorted N4O2 octa­hedral geometry. Within the organic ligands, the methyl­phenyl rings are twisted with respect to the mean planes of chelating rings by 18.31 (16) and 14.89 (15)°. In the crystal, extensive O—H⋯O and O—H⋯N hydrogen bonds and weak C—H⋯O inter­actions link the mol­ecules into a three-dimensional supra­molecular architecture.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Metal–azolate coordination polymers have attracted intense attention in recent years due to their inter­esting structures and potential applications (Yan et al., 2012[Yan, Z., Li, M., Gao, H.-L., Huang, X.-C. & Li, D. (2012). Chem. Commun. 48, 3960-3962.]). Many efforts have focused on symmetrical mol­ecules based on the flexible bridging mode of 1,2,4-triazoles and their derivatives (Chen et al., 2011[Chen, L., Zhao, J., Shen, G.-P., Shen, X., Xu, Y., Zhu, D.-R. & Wang, J. (2011). J. Coord. Chem. 64, 3980-3991.]). It was found that the size and shape of the 3- and 5-substituents may be a crucial factor in determining the final structures of coordination polymers. However, there are few reports using asymmetrical triazolate ligands in the synthesis of metal–azolate coordination polymers (Liu et al., 2017[Liu, F.-Y., Zhou, D.-M., Zhao, X.-L. & Kou, J.-F. (2017). Acta Cryst. C73, 382-392.]). Here, we report the synthesis and crystal structure of the title complex.

The title mononuclear complex consists of one CdII cation, two bidentate organic anions, two coordinating water mol­ecules and three crystal water molecules. As shown in Fig. 1[link], the CdII cation is chelated by two organic ligands and is coordinated by two water mol­ecules in a distorted octa­hedral geometry. In the organic ligands, the methyl­phenyl rings are twisted with respect to the mean planes of chelating rings by 18.31 (16) and 14.89 (15)°.

[Figure 1]
Figure 1
The structures of the molecular entities of the title complex, showing the atom labeling and 30% probability displacement ellipsoids.

In the crystal, extensive O—H⋯O and O—H⋯N hydrogen bonds and weak C—H⋯O inter­actions link the mol­ecules into a three-dimensional supra­molecular architecture (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯N6i 0.86 2.02 2.869 (4) 170
O1W—H1B⋯O3Wii 0.83 2.08 2.907 (4) 176
O2W—H2A⋯N6i 0.85 2.59 3.424 (4) 167
O2W—H2B⋯O5W 0.83 2.32 3.084 (4) 154
O3W—H3A⋯N4 0.83 2.09 2.920 (3) 175
O3W—H3B⋯O5Wiii 0.83 2.35 3.168 (4) 168
O4W—H4A⋯N2 0.82 1.98 2.785 (4) 167
O4W—H4B⋯O5W 0.94 2.48 3.408 (5) 175
O5W—H5A⋯N8iv 0.83 2.19 3.006 (4) 165
O5W—H5B⋯O4Wv 0.74 2.13 2.854 (5) 167
C17—H17⋯O5Wiv 0.93 2.58 3.479 (5) 163
Symmetry codes: (i) -x+2, -y, -z+2; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+1, -y, -z+2; (v) -x+1, -y, -z+1.
[Figure 2]
Figure 2
A view of the crystal packing of the title complex. Hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

A mixture of cadmium acetate dihydrate (26.7 mg, 0.1 mmol), aqueous ammonia (25%, 0.2 ml), water (4 ml) and 3-(4-methyl­phen­yl)-5-(pyridin-2-yl)-1H-1,2,4-triazole (47.2 mg, 0.2 mmol) was sealed in a 20 ml Teflon-lined reactor and placed in an oven at 393 K for 72 h. The resulting mixture was filtered and the resulting colorless blocks were washed with ethanol (yield 75%, based on Cd). Analysis calculated (wt%) for C28H32CdN8O5: C 49.92, H 4.75, N 16.64; found: C 49.02, H 5.15, N 17.13..

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Cd(C14H11N4)2(H2O)2]·3H2O
Mr 673.01
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 10.919 (2), 23.045 (5), 12.154 (2)
β (°) 107.11 (3)
V3) 2922.8 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.80
Crystal size (mm) 0.30 × 0.27 × 0.25
 
Data collection
Diffractometer Rigaku MM007-HF CCD (Saturn 724+)
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation. Tokyo, Japan.])
Tmin, Tmax 0.787, 0.819
No. of measured, independent and observed [I > 2σ(I)] reflections 20295, 5124, 4037
Rint 0.053
(sin θ/λ)max−1) 0.599
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.080, 1.03
No. of reflections 5124
No. of parameters 381
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.49
Computer programs: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC. (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: CrystalStructure (Rigaku/MSC, 2006); cell refinement: CrystalStructure (Rigaku/MSC, 2006); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXL2014 (Sheldrick, 2015b); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

Diaquabis[3-(4-methylphenyl)-5-(pyridin-2-yl-κN)-1H-1,2,4-triazolato-κN1]cadmium trihydrate top
Crystal data top
[Cd(C14H11N4)2(H2O)2]·3H2OF(000) = 1376
Mr = 673.01Dx = 1.529 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.919 (2) ÅCell parameters from 24845 reflections
b = 23.045 (5) Åθ = 3.1–25.0°
c = 12.154 (2) ŵ = 0.80 mm1
β = 107.11 (3)°T = 293 K
V = 2922.8 (11) Å3Block, colorless
Z = 40.30 × 0.27 × 0.25 mm
Data collection top
Rigaku MM007-HF CCD (Saturn 724+)
diffractometer
4037 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.053
ω scans at fixed χ = 45°θmax = 25.2°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.787, Tmax = 0.819k = 2726
20295 measured reflectionsl = 1414
5124 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0319P)2 + 1.8376P]
where P = (Fo2 + 2Fc2)/3
5124 reflections(Δ/σ)max = 0.001
381 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.49 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms attached to carbons were constrained with C—H = 0.96 Å, and Uiso(H) = 1.5Ueq(C) of the attached C atom for methyl H atoms and C—H = 0.93 Å and 1.2Ueq(C) for other H atoms. The water H atoms were located from a Fourier map and restrained with O—H distance of 0.82–0.94 Å with Uiso(H) = 1.5Ueq(O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.80813 (2)0.08471 (2)0.89399 (2)0.03269 (9)
C10.7173 (3)0.19928 (13)0.5853 (3)0.0300 (7)
C20.7754 (3)0.20571 (13)0.7663 (3)0.0309 (7)
C30.8164 (3)0.22497 (13)0.8865 (3)0.0304 (7)
C40.8298 (3)0.28247 (15)0.9193 (3)0.0428 (9)
H40.80930.31160.86390.051*
C50.8737 (4)0.29671 (17)1.0343 (3)0.0518 (10)
H50.88380.33541.05710.062*
C60.9023 (4)0.25300 (16)1.1149 (3)0.0522 (10)
H60.93270.26141.19300.063*
C70.8848 (4)0.19643 (15)1.0768 (3)0.0434 (9)
H70.90320.16681.13120.052*
C80.6779 (3)0.21194 (14)0.4612 (3)0.0333 (8)
C90.6327 (3)0.26643 (14)0.4183 (3)0.0354 (8)
H90.62940.29610.46920.043*
C100.5927 (3)0.27715 (15)0.3011 (3)0.0397 (8)
H100.56250.31390.27500.048*
C110.5966 (3)0.23440 (15)0.2213 (3)0.0375 (8)
C120.6422 (4)0.18072 (15)0.2648 (3)0.0470 (10)
H120.64660.15130.21380.056*
C130.6815 (4)0.16917 (15)0.3814 (3)0.0427 (9)
H130.71080.13220.40700.051*
C140.7809 (3)0.00303 (13)1.2148 (3)0.0321 (7)
C150.6657 (3)0.04953 (13)1.0738 (3)0.0293 (7)
C160.5604 (3)0.07886 (12)0.9891 (3)0.0307 (7)
C170.4412 (3)0.08834 (14)1.0045 (3)0.0386 (8)
H170.42460.07611.07160.046*
C180.3472 (3)0.11615 (15)0.9192 (3)0.0419 (9)
H180.26660.12280.92810.050*
C190.3745 (4)0.13391 (15)0.8208 (3)0.0445 (9)
H190.31320.15290.76230.053*
C200.4946 (3)0.12285 (15)0.8111 (3)0.0428 (9)
H200.51240.13440.74410.051*
C210.8285 (3)0.02893 (13)1.3246 (3)0.0334 (8)
C220.7610 (4)0.03023 (15)1.4050 (3)0.0441 (9)
H220.68410.01011.39070.053*
C230.8074 (4)0.06140 (16)1.5070 (3)0.0461 (9)
H230.76050.06181.55970.055*
C240.9211 (4)0.09165 (14)1.5315 (3)0.0409 (9)
C250.9867 (4)0.09115 (16)1.4503 (3)0.0498 (10)
H251.06330.11161.46460.060*
C260.9411 (3)0.06092 (16)1.3479 (3)0.0450 (9)
H260.98640.06201.29410.054*
C270.5511 (4)0.24619 (18)0.0937 (3)0.0556 (11)
H27A0.59870.22260.05550.083*
H27B0.56400.28640.07980.083*
H27C0.46160.23700.06440.083*
C280.9733 (4)0.12478 (18)1.6430 (3)0.0590 (11)
H28A0.98760.16451.62630.089*
H28B0.91270.12321.68630.089*
H28C1.05270.10771.68720.089*
N10.7680 (3)0.14903 (11)0.7420 (2)0.0348 (7)
N20.7305 (3)0.14447 (11)0.6243 (2)0.0357 (7)
N30.8429 (3)0.18203 (11)0.9658 (2)0.0337 (6)
N40.7449 (3)0.23935 (11)0.6715 (2)0.0317 (6)
N50.7766 (3)0.03969 (11)1.0512 (2)0.0338 (6)
N60.8526 (3)0.00898 (11)1.1428 (2)0.0355 (7)
N70.5872 (3)0.09635 (11)0.8928 (2)0.0359 (7)
N80.6631 (3)0.02817 (11)1.1765 (2)0.0323 (6)
O1W1.0361 (2)0.07738 (10)0.9683 (2)0.0555 (7)
H1A1.06130.05200.92830.083*
H1B1.08890.09311.02320.083*
O2W0.8212 (3)0.00599 (12)0.7820 (3)0.0758 (9)
H2A0.89970.00080.79010.114*
H2B0.75970.01560.75210.114*
O3W0.7291 (3)0.36566 (11)0.6538 (2)0.0561 (7)
H3A0.73890.32990.66000.084*
H3B0.79240.38410.69280.084*
O4W0.5469 (3)0.06085 (14)0.5259 (3)0.0922 (12)
H4A0.60920.08200.55140.138*
H4B0.54200.03050.57550.138*
O5W0.5504 (3)0.04741 (14)0.7179 (3)0.0719 (9)
H5A0.48960.03620.74100.108*
H5B0.52060.05560.65670.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03730 (16)0.03264 (14)0.03062 (15)0.00326 (11)0.01385 (11)0.00511 (10)
C10.0311 (18)0.0261 (17)0.0333 (19)0.0016 (13)0.0101 (14)0.0009 (13)
C20.0297 (18)0.0332 (18)0.0298 (19)0.0011 (13)0.0086 (14)0.0027 (14)
C30.0304 (18)0.0329 (18)0.0285 (18)0.0031 (13)0.0098 (14)0.0004 (13)
C40.054 (2)0.035 (2)0.036 (2)0.0035 (16)0.0088 (18)0.0013 (15)
C50.069 (3)0.044 (2)0.037 (2)0.0007 (19)0.007 (2)0.0083 (17)
C60.067 (3)0.055 (2)0.028 (2)0.007 (2)0.0047 (19)0.0080 (17)
C70.052 (2)0.044 (2)0.032 (2)0.0063 (17)0.0074 (18)0.0044 (16)
C80.0329 (19)0.0380 (19)0.0287 (19)0.0053 (14)0.0085 (15)0.0008 (14)
C90.042 (2)0.0351 (19)0.0295 (19)0.0031 (15)0.0106 (16)0.0020 (14)
C100.041 (2)0.041 (2)0.035 (2)0.0007 (15)0.0076 (17)0.0062 (15)
C110.035 (2)0.048 (2)0.0277 (19)0.0042 (15)0.0063 (15)0.0020 (15)
C120.062 (3)0.043 (2)0.036 (2)0.0020 (18)0.0131 (19)0.0062 (16)
C130.056 (2)0.035 (2)0.033 (2)0.0041 (16)0.0078 (18)0.0018 (15)
C140.038 (2)0.0324 (18)0.0266 (18)0.0014 (14)0.0107 (15)0.0004 (13)
C150.0337 (19)0.0271 (17)0.0294 (19)0.0001 (13)0.0129 (15)0.0019 (13)
C160.0352 (19)0.0281 (17)0.0307 (18)0.0008 (14)0.0125 (15)0.0010 (13)
C170.041 (2)0.043 (2)0.036 (2)0.0051 (16)0.0176 (16)0.0035 (15)
C180.033 (2)0.049 (2)0.045 (2)0.0059 (16)0.0139 (17)0.0048 (17)
C190.038 (2)0.049 (2)0.044 (2)0.0088 (16)0.0074 (18)0.0103 (17)
C200.040 (2)0.054 (2)0.036 (2)0.0049 (17)0.0137 (17)0.0145 (16)
C210.038 (2)0.0334 (18)0.0285 (19)0.0032 (14)0.0092 (15)0.0004 (14)
C220.048 (2)0.051 (2)0.034 (2)0.0160 (17)0.0143 (18)0.0040 (16)
C230.059 (3)0.054 (2)0.028 (2)0.0041 (19)0.0177 (18)0.0037 (16)
C240.047 (2)0.042 (2)0.030 (2)0.0058 (16)0.0059 (17)0.0047 (15)
C250.036 (2)0.062 (3)0.049 (2)0.0102 (18)0.0100 (18)0.0175 (19)
C260.043 (2)0.057 (2)0.040 (2)0.0059 (18)0.0192 (18)0.0142 (17)
C270.060 (3)0.069 (3)0.034 (2)0.003 (2)0.008 (2)0.0082 (18)
C280.070 (3)0.069 (3)0.033 (2)0.003 (2)0.007 (2)0.0153 (19)
N10.0478 (18)0.0317 (15)0.0266 (16)0.0010 (12)0.0133 (13)0.0027 (11)
N20.0466 (18)0.0341 (16)0.0269 (16)0.0057 (12)0.0117 (14)0.0008 (11)
N30.0385 (17)0.0357 (16)0.0260 (16)0.0015 (12)0.0082 (13)0.0018 (11)
N40.0363 (16)0.0323 (15)0.0255 (15)0.0003 (12)0.0073 (12)0.0017 (11)
N50.0360 (17)0.0376 (16)0.0287 (16)0.0058 (12)0.0111 (13)0.0071 (11)
N60.0377 (17)0.0403 (16)0.0298 (16)0.0068 (12)0.0120 (13)0.0090 (12)
N70.0345 (17)0.0430 (16)0.0302 (16)0.0055 (12)0.0096 (13)0.0069 (12)
N80.0376 (17)0.0338 (15)0.0280 (15)0.0057 (12)0.0139 (13)0.0028 (11)
O1W0.0401 (15)0.0577 (17)0.0672 (19)0.0064 (12)0.0135 (14)0.0171 (13)
O2W0.084 (2)0.069 (2)0.081 (2)0.0120 (16)0.0345 (19)0.0199 (16)
O3W0.0701 (19)0.0436 (15)0.0519 (17)0.0050 (13)0.0137 (15)0.0053 (12)
O4W0.112 (3)0.087 (2)0.084 (3)0.056 (2)0.038 (2)0.0258 (19)
O5W0.0491 (18)0.109 (3)0.058 (2)0.0082 (16)0.0167 (15)0.0098 (17)
Geometric parameters (Å, º) top
Cd1—N52.288 (3)C16—N71.349 (4)
Cd1—O2W2.298 (3)C16—C171.386 (5)
Cd1—N12.308 (3)C17—C181.383 (5)
Cd1—O1W2.391 (3)C17—H170.9300
Cd1—N32.396 (3)C18—C191.377 (5)
Cd1—N72.423 (3)C18—H180.9300
C1—N21.342 (4)C19—C201.374 (5)
C1—N41.362 (4)C19—H190.9300
C1—C81.471 (4)C20—N71.338 (4)
C2—N11.336 (4)C20—H200.9300
C2—N41.347 (4)C21—C221.387 (5)
C2—C31.465 (4)C21—C261.390 (5)
C3—N31.352 (4)C22—C231.393 (5)
C3—C41.379 (4)C22—H220.9300
C4—C51.376 (5)C23—C241.378 (5)
C4—H40.9300C23—H230.9300
C5—C61.375 (5)C24—C251.380 (5)
C5—H50.9300C24—C281.513 (5)
C6—C71.378 (5)C25—C261.384 (5)
C6—H60.9300C25—H250.9300
C7—N31.333 (4)C26—H260.9300
C7—H70.9300C27—H27A0.9600
C8—C131.391 (5)C27—H27B0.9600
C8—C91.393 (4)C27—H27C0.9600
C9—C101.383 (5)C28—H28A0.9600
C9—H90.9300C28—H28B0.9600
C10—C111.392 (5)C28—H28C0.9600
C10—H100.9300N1—N21.370 (4)
C11—C121.379 (5)N5—N61.373 (4)
C11—C271.508 (5)O1W—H1A0.8557
C12—C131.380 (5)O1W—H1B0.8263
C12—H120.9300O2W—H2A0.8470
C13—H130.9300O2W—H2B0.8287
C14—N61.341 (4)O3W—H3A0.8318
C14—N81.362 (4)O3W—H3B0.8307
C14—C211.478 (4)O4W—H4A0.8201
C15—N51.338 (4)O4W—H4B0.9352
C15—N81.350 (4)O5W—H5A0.8342
C15—C161.464 (4)O5W—H5B0.7430
N5—Cd1—O2W100.82 (10)C16—C17—H17120.3
N5—Cd1—N1156.95 (10)C19—C18—C17119.1 (3)
O2W—Cd1—N193.61 (10)C19—C18—H18120.5
N5—Cd1—O1W92.76 (10)C17—C18—H18120.5
O2W—Cd1—O1W85.91 (10)C20—C19—C18118.4 (3)
N1—Cd1—O1W106.22 (10)C20—C19—H19120.8
N5—Cd1—N399.62 (9)C18—C19—H19120.8
O2W—Cd1—N3157.52 (10)N7—C20—C19123.6 (3)
N1—Cd1—N370.29 (9)N7—C20—H20118.2
O1W—Cd1—N383.85 (9)C19—C20—H20118.2
N5—Cd1—N770.18 (9)C22—C21—C26117.8 (3)
O2W—Cd1—N7108.61 (10)C22—C21—C14121.9 (3)
N1—Cd1—N788.27 (10)C26—C21—C14120.2 (3)
O1W—Cd1—N7159.08 (9)C21—C22—C23120.6 (3)
N3—Cd1—N787.11 (9)C21—C22—H22119.7
N2—C1—N4112.9 (3)C23—C22—H22119.7
N2—C1—C8121.2 (3)C24—C23—C22121.4 (3)
N4—C1—C8125.9 (3)C24—C23—H23119.3
N1—C2—N4112.9 (3)C22—C23—H23119.3
N1—C2—C3119.9 (3)C23—C24—C25117.8 (3)
N4—C2—C3127.2 (3)C23—C24—C28121.8 (3)
N3—C3—C4121.0 (3)C25—C24—C28120.5 (3)
N3—C3—C2115.3 (3)C24—C25—C26121.5 (3)
C4—C3—C2123.7 (3)C24—C25—H25119.3
C5—C4—C3119.9 (3)C26—C25—H25119.3
C5—C4—H4120.0C25—C26—C21120.9 (3)
C3—C4—H4120.0C25—C26—H26119.6
C6—C5—C4119.1 (3)C21—C26—H26119.6
C6—C5—H5120.4C11—C27—H27A109.5
C4—C5—H5120.4C11—C27—H27B109.5
C5—C6—C7118.3 (3)H27A—C27—H27B109.5
C5—C6—H6120.9C11—C27—H27C109.5
C7—C6—H6120.9H27A—C27—H27C109.5
N3—C7—C6123.2 (3)H27B—C27—H27C109.5
N3—C7—H7118.4C24—C28—H28A109.5
C6—C7—H7118.4C24—C28—H28B109.5
C13—C8—C9117.2 (3)H28A—C28—H28B109.5
C13—C8—C1121.0 (3)C24—C28—H28C109.5
C9—C8—C1121.8 (3)H28A—C28—H28C109.5
C10—C9—C8121.1 (3)H28B—C28—H28C109.5
C10—C9—H9119.5C2—N1—N2106.6 (2)
C8—C9—H9119.5C2—N1—Cd1117.7 (2)
C9—C10—C11121.7 (3)N2—N1—Cd1135.56 (19)
C9—C10—H10119.1C1—N2—N1105.4 (2)
C11—C10—H10119.1C7—N3—C3118.5 (3)
C12—C11—C10116.7 (3)C7—N3—Cd1124.9 (2)
C12—C11—C27121.9 (3)C3—N3—Cd1116.6 (2)
C10—C11—C27121.4 (3)C2—N4—C1102.2 (3)
C11—C12—C13122.3 (3)C15—N5—N6106.8 (2)
C11—C12—H12118.8C15—N5—Cd1117.5 (2)
C13—C12—H12118.8N6—N5—Cd1135.0 (2)
C12—C13—C8121.0 (3)C14—N6—N5104.6 (3)
C12—C13—H13119.5C20—N7—C16118.1 (3)
C8—C13—H13119.5C20—N7—Cd1126.1 (2)
N6—C14—N8114.1 (3)C16—N7—Cd1115.5 (2)
N6—C14—C21121.5 (3)C15—N8—C14101.3 (3)
N8—C14—C21124.5 (3)Cd1—O1W—H1A107.8
N5—C15—N8113.3 (3)Cd1—O1W—H1B132.5
N5—C15—C16120.3 (3)H1A—O1W—H1B119.7
N8—C15—C16126.4 (3)Cd1—O2W—H2A108.2
N7—C16—C17121.5 (3)Cd1—O2W—H2B123.3
N7—C16—C15115.0 (3)H2A—O2W—H2B127.1
C17—C16—C15123.5 (3)H3A—O3W—H3B113.1
C18—C17—C16119.4 (3)H4A—O4W—H4B113.5
C18—C17—H17120.3H5A—O5W—H5B105.0
N1—C2—C3—N30.7 (4)C23—C24—C25—C260.6 (6)
N4—C2—C3—N3179.2 (3)C28—C24—C25—C26179.7 (4)
N1—C2—C3—C4178.3 (3)C24—C25—C26—C211.3 (6)
N4—C2—C3—C40.2 (5)C22—C21—C26—C252.5 (5)
N3—C3—C4—C51.5 (5)C14—C21—C26—C25179.9 (3)
C2—C3—C4—C5177.4 (3)N4—C2—N1—N20.0 (4)
C3—C4—C5—C60.6 (6)C3—C2—N1—N2178.7 (3)
C4—C5—C6—C70.5 (6)N4—C2—N1—Cd1177.3 (2)
C5—C6—C7—N30.8 (6)C3—C2—N1—Cd14.0 (4)
N2—C1—C8—C1314.9 (5)N4—C1—N2—N10.3 (4)
N4—C1—C8—C13164.5 (3)C8—C1—N2—N1179.8 (3)
N2—C1—C8—C9163.5 (3)C2—N1—N2—C10.2 (3)
N4—C1—C8—C917.1 (5)Cd1—N1—N2—C1176.4 (2)
C13—C8—C9—C100.3 (5)C6—C7—N3—C30.1 (5)
C1—C8—C9—C10178.2 (3)C6—C7—N3—Cd1179.3 (3)
C8—C9—C10—C110.4 (5)C4—C3—N3—C71.3 (5)
C9—C10—C11—C120.1 (5)C2—C3—N3—C7177.8 (3)
C9—C10—C11—C27179.1 (3)C4—C3—N3—Cd1178.2 (2)
C10—C11—C12—C130.4 (6)C2—C3—N3—Cd12.8 (3)
C27—C11—C12—C13178.6 (4)N1—C2—N4—C10.2 (4)
C11—C12—C13—C80.6 (6)C3—C2—N4—C1178.7 (3)
C9—C8—C13—C120.2 (5)N2—C1—N4—C20.3 (4)
C1—C8—C13—C12178.7 (3)C8—C1—N4—C2179.8 (3)
N5—C15—C16—N72.6 (4)N8—C15—N5—N61.2 (4)
N8—C15—C16—N7179.9 (3)C16—C15—N5—N6176.6 (3)
N5—C15—C16—C17177.2 (3)N8—C15—N5—Cd1171.0 (2)
N8—C15—C16—C170.2 (5)C16—C15—N5—Cd111.3 (4)
N7—C16—C17—C180.3 (5)N8—C14—N6—N50.4 (4)
C15—C16—C17—C18179.6 (3)C21—C14—N6—N5179.0 (3)
C16—C17—C18—C190.2 (5)C15—N5—N6—C140.5 (3)
C17—C18—C19—C200.4 (5)Cd1—N5—N6—C14169.7 (2)
C18—C19—C20—N70.8 (6)C19—C20—N7—C160.9 (5)
N6—C14—C21—C22173.1 (3)C19—C20—N7—Cd1172.5 (3)
N8—C14—C21—C227.6 (5)C17—C16—N7—C200.6 (5)
N6—C14—C21—C269.6 (5)C15—C16—N7—C20179.2 (3)
N8—C14—C21—C26169.7 (3)C17—C16—N7—Cd1173.5 (2)
C26—C21—C22—C231.8 (5)C15—C16—N7—Cd16.7 (3)
C14—C21—C22—C23179.1 (3)N5—C15—N8—C141.3 (3)
C21—C22—C23—C240.2 (6)C16—C15—N8—C14176.3 (3)
C22—C23—C24—C251.4 (6)N6—C14—N8—C151.0 (4)
C22—C23—C24—C28179.0 (4)C21—C14—N8—C15178.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···N6i0.862.022.869 (4)170
O1W—H1B···O3Wii0.832.082.907 (4)176
O2W—H2A···N6i0.852.593.424 (4)167
O2W—H2B···O5W0.832.323.084 (4)154
O3W—H3A···N40.832.092.920 (3)175
O3W—H3B···O5Wiii0.832.353.168 (4)168
O4W—H4A···N20.821.982.785 (4)167
O4W—H4B···O5W0.942.483.408 (5)175
O5W—H5A···N8iv0.832.193.006 (4)165
O5W—H5B···O4Wv0.742.132.854 (5)167
C17—H17···O5Wiv0.932.583.479 (5)163
Symmetry codes: (i) x+2, y, z+2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+3/2; (iv) x+1, y, z+2; (v) x+1, y, z+1.
 

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (grant No. 21161023); Natural Science Foundation of Yunnan Province (grant No. 2009CD048).

References

First citationChen, L., Zhao, J., Shen, G.-P., Shen, X., Xu, Y., Zhu, D.-R. & Wang, J. (2011). J. Coord. Chem. 64, 3980–3991.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation. Tokyo, Japan.  Google Scholar
First citationLiu, F.-Y., Zhou, D.-M., Zhao, X.-L. & Kou, J.-F. (2017). Acta Cryst. C73, 382–392.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC. (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYan, Z., Li, M., Gao, H.-L., Huang, X.-C. & Li, D. (2012). Chem. Commun. 48, 3960–3962.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds