organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Sulfanyl­­idene-1,3-di­thiolo[4,5-b]pyrazine-5,6-dicarbo­nitrile

CROSSMARK_Color_square_no_text.svg

aInstitute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
*Correspondence e-mail: tomura@ims.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 June 2017; accepted 10 July 2017; online 13 July 2017)

In the title compound, C7N4S3, the mol­ecular entity consisting of a 1,3-di­thiole-2-thione with a fused pyrazine ring is planar, with an r.m.s. deviation of 0.042 (3) Å from the least-squares plane. In the crystal, mol­ecules are linked via short inter­molecular S⋯N contacts [3.251 (4) and 3.308 (3) Å] between the S atom of the thio­carbonyl group and N atoms of the cyano groups.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Mol­ecules containing an 1,3-di­thiolo[4,5-b]pyrazine-2-thione framework are important synthetic precursors of multi-dimensional organic superconductors and conductors. Inter­molecular S⋯N and S⋯S contacts involving peripheral S and N atoms may increase the dimensionality in the solid state and suppress metal–insulator transitions (Williams et al., 1992[Williams, J. M., Ferraro, J. R., Thorn, R. J., Carlson, K. D., Geiser, U., Wang, H. H., Kini, A. M. & Whangbo, M. H. (1992). In Organic Superconductors. Englewood Cliffs, NJ: Prentice Hall.]; Ishiguro et al., 1998[Ishiguro, T., Yamaji, K. & Saito, G. (1998). Organic Superconductors, edited by P. Fulde, Springer Series Solid-State Science, Vol. 88. Berlin, Heidelberg: Springer.]). In addition, such contacts may lead to the formation of unique mol­ecular networks which have special functions, such as inclusion properties (Yamashita & Tomura, 1998[Yamashita, Y. & Tomura, M. (1998). J. Mater. Chem. 8, 1933-1944.]). Fused pyrazine units are expected to extend the π-conjugated system, resulting in decreased Coulombic repulsion (Tomura & Yamashita, 1995[Tomura, M. & Yamashita, Y. (1995). J. Mater. Chem. 5, 1753-1754.]; Belo et al., 2004[Belo, D., Santos, I. C. & Almeida, M. (2004). Polyhedron, 23, 1351-1359.]; Nomura et al., 2009[Nomura, M., Tsukano, E., Fujita-Takayama, C., Sugiyama, T. & Kajitani, M. (2009). J. Organomet. Chem. 694, 3116-3124.]), and coordinate to transition metals (Imakubo et al., 2006[Imakubo, T., Kibune, M., Yoshino, H., Shirahata, T. & Yoza, K. (2006). J. Mater. Chem. 16, 4110-4116.]; Rabaça & Almeida, 2010[Rabaça, S. & Almeida, M. (2010). Coord. Chem. Rev. 254, 1493-1508.]; Imakubo & Murayama, 2013[Imakubo, T. & Murayama, R. (2013). CrystEngComm, 15, 3072-3075.]), constructing organometallic coordination polymers. We report here the mol­ecular and crystal structure of the title compound.

The title compound crystallizes in the space group P212121 with one mol­ecule in the asymmetric unit. The mol­ecular structure is shown in Fig. 1[link]. The mol­ecular geometry is comparable to that found in the parent thione (2-thioxo-1,3-di­thiolo[4,5-b]pyrazine; Rabaça et al., 2013[Rabaça, S., Oliveira, S., Santos, I. C. & Almeida, M. (2013). Tetrahedron Lett. 54, 6635-6639.]), although the parent mol­ecule lies on a mirror plane. The mol­ecular entity of the title compound is planar, with an r.m.s. deviation of 0.042 (3) Å from the least-squares plane. In the crystal, a short inter­molecular S⋯N contact [3.251 (4) Å for S1—N4(−x + [{1\over 2}], −y + 1, z − [{1\over 2}])] is observed between the S atom of the thio­carbonyl group and the N atom of the cyano group, constructing a zigzag mol­ecular tape network extending along the c axis (Fig. 2[link]). The mol­ecular tapes are linked via short inter­tape S⋯N inter­actions [3.308 (3) Å for S1⋯N3(−x − [{1\over 2}], −y + 1, z − [{1\over 2}])].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
A partial view along the b axis of the crystal packing of the title compound. Dashed lines show the inter­molecular S⋯N contacts.

Synthesis and crystallization

According to the literature method of Tomura et al. (1994[Tomura, M., Tanaka, S. & Yamashita, Y. (1994). Synth. Met. 64, 197-202.]), the title compound was synthesized by the reaction of 2,3-di­chloro­pyrazine-5,6-dicarbonitrile with sodium sulfide and thio­phosgene. The details will be reported elsewhere. Decomposition point: 463 K, MS (EI): m/z 236 (M+). Orange crystals suitable for X-ray analysis were grown from an aceto­nitrile solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. One reflection (205) was omitted due to bad agreement between the observed and calculated intensities.

Table 1
Experimental details

Crystal data
Chemical formula C7N4S3
Mr 236.29
Crystal system, space group Orthorhombic, P212121
Temperature (K) 173
a, b, c (Å) 6.1657 (15), 7.0875 (19), 20.883 (6)
V3) 912.6 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.77
Crystal size (mm) 0.30 × 0.30 × 0.05
 
Data collection
Diffractometer Rigaku/MSC Mercury CCD
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.825, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8289, 2561, 2314
Rint 0.031
(sin θ/λ)max−1) 0.721
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.11
No. of reflections 2561
No. of parameters 127
Δρmax, Δρmin (e Å−3) 0.29, −0.35
Absolute structure Flack x determined using 803 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.07 (4)
Computer programs: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015).

2-Sulfanylidene-1,3-dithiolo[4,5-b]pyrazine-5,6-dicarbonitrile top
Crystal data top
C7N4S3Dx = 1.720 Mg m3
Mr = 236.29Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3015 reflections
a = 6.1657 (15) Åθ = 2.0–30.7°
b = 7.0875 (19) ŵ = 0.77 mm1
c = 20.883 (6) ÅT = 173 K
V = 912.6 (4) Å3Prism, orange
Z = 40.30 × 0.30 × 0.05 mm
F(000) = 472
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
2561 independent reflections
Radiation source: Rotating Anode2314 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.031
Detector resolution: 14.7059 pixels mm-1θmax = 30.8°, θmin = 2.0°
φ & ω scansh = 86
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 98
Tmin = 0.825, Tmax = 1.000l = 2328
8289 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.1364P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.29 e Å3
2561 reflectionsΔρmin = 0.35 e Å3
127 parametersAbsolute structure: Flack x determined using 803 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.07 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.17153 (16)0.55587 (14)0.06252 (4)0.0479 (3)
S20.21351 (14)0.62442 (14)0.07652 (4)0.0434 (2)
S30.17499 (14)0.43326 (12)0.02606 (4)0.0410 (2)
N10.0522 (4)0.5875 (4)0.19453 (13)0.0339 (6)
N20.3228 (4)0.4055 (4)0.14587 (13)0.0334 (6)
N30.0894 (5)0.6018 (5)0.35380 (15)0.0451 (7)
N40.6025 (5)0.3496 (4)0.28648 (16)0.0445 (7)
C10.0756 (6)0.5386 (5)0.00956 (17)0.0394 (7)
C20.0230 (5)0.5554 (5)0.13276 (16)0.0338 (6)
C30.1080 (5)0.5255 (4)0.23255 (15)0.0309 (6)
C40.2925 (5)0.4362 (4)0.20854 (15)0.0318 (6)
C50.1642 (5)0.4634 (4)0.10837 (15)0.0314 (6)
C60.0915 (5)0.5664 (5)0.30048 (17)0.0359 (7)
C70.4656 (5)0.3844 (5)0.25174 (16)0.0344 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0596 (6)0.0427 (5)0.0414 (5)0.0048 (5)0.0122 (4)0.0016 (4)
S20.0366 (4)0.0517 (5)0.0420 (5)0.0053 (4)0.0011 (3)0.0079 (4)
S30.0506 (5)0.0391 (4)0.0334 (4)0.0080 (4)0.0024 (3)0.0008 (4)
N10.0301 (12)0.0343 (14)0.0373 (15)0.0020 (11)0.0040 (10)0.0041 (12)
N20.0384 (12)0.0283 (13)0.0336 (14)0.0020 (11)0.0032 (11)0.0004 (11)
N30.0508 (15)0.0473 (18)0.0374 (17)0.0067 (14)0.0070 (13)0.0006 (14)
N40.0460 (15)0.0421 (18)0.0456 (18)0.0097 (13)0.0026 (13)0.0061 (14)
C10.0476 (17)0.0293 (17)0.0413 (19)0.0061 (14)0.0025 (14)0.0033 (14)
C20.0352 (14)0.0302 (15)0.0361 (17)0.0020 (12)0.0029 (12)0.0062 (13)
C30.0323 (13)0.0273 (16)0.0330 (16)0.0001 (11)0.0046 (11)0.0042 (12)
C40.0334 (13)0.0263 (14)0.0356 (16)0.0004 (12)0.0052 (12)0.0039 (12)
C50.0341 (14)0.0263 (14)0.0337 (16)0.0005 (12)0.0037 (12)0.0017 (12)
C60.0349 (14)0.0333 (16)0.0395 (19)0.0041 (13)0.0061 (12)0.0042 (14)
C70.0345 (15)0.0311 (16)0.0376 (17)0.0036 (13)0.0041 (13)0.0022 (14)
Geometric parameters (Å, º) top
S1—C11.622 (4)N2—C41.340 (4)
S2—C21.732 (3)N3—C61.141 (4)
S2—C11.746 (4)N4—C71.140 (4)
S3—C51.733 (3)C2—C51.420 (4)
S3—C11.750 (4)C3—C41.395 (4)
N1—C21.322 (4)C3—C61.452 (5)
N1—C31.341 (4)C4—C71.445 (4)
N2—C51.319 (4)
S1···N4i3.251 (4)S1···N3ii3.308 (3)
C2—S2—C196.57 (17)N1—C3—C6117.5 (3)
C5—S3—C196.24 (16)C4—C3—C6120.0 (3)
C2—N1—C3114.9 (3)N2—C4—C3122.6 (3)
C5—N2—C4115.2 (3)N2—C4—C7117.7 (3)
S1—C1—S2122.6 (2)C3—C4—C7119.6 (3)
S1—C1—S3122.5 (2)N2—C5—C2122.2 (3)
S2—C1—S3114.9 (2)N2—C5—S3121.5 (2)
N1—C2—C5122.6 (3)C2—C5—S3116.3 (2)
N1—C2—S2121.4 (2)N3—C6—C3176.4 (4)
C5—C2—S2116.0 (2)N4—C7—C4177.7 (4)
N1—C3—C4122.4 (3)
C2—S2—C1—S1179.2 (2)N1—C3—C4—N20.2 (5)
C2—S2—C1—S31.0 (2)C6—C3—C4—N2175.7 (3)
C5—S3—C1—S1179.3 (2)N1—C3—C4—C7175.8 (3)
C5—S3—C1—S21.0 (2)C6—C3—C4—C70.3 (4)
C3—N1—C2—C50.4 (5)C4—N2—C5—C21.3 (4)
C3—N1—C2—S2179.7 (2)C4—N2—C5—S3179.4 (2)
C1—S2—C2—N1179.4 (3)N1—C2—C5—N20.7 (5)
C1—S2—C2—C50.7 (3)S2—C2—C5—N2179.2 (2)
C2—N1—C3—C40.8 (4)N1—C2—C5—S3180.0 (3)
C2—N1—C3—C6176.4 (3)S2—C2—C5—S30.1 (3)
C5—N2—C4—C30.9 (4)C1—S3—C5—N2179.8 (3)
C5—N2—C4—C7177.0 (3)C1—S3—C5—C20.6 (3)
Symmetry codes: (i) x+1/2, y+1, z1/2; (ii) x1/2, y+1, z1/2.
 

Acknowledgements

The author would like to thank the Instrument Center of the Institute for Mol­ecular Science for the X-ray crystallographic analysis.

Funding information

Funding for this research was provided by: Inter-University Research Institute Corporation, National Institutes of Natural Sciences, Institute for Molecular Science.

References

First citationBelo, D., Santos, I. C. & Almeida, M. (2004). Polyhedron, 23, 1351–1359.  Web of Science CSD CrossRef CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationImakubo, T., Kibune, M., Yoshino, H., Shirahata, T. & Yoza, K. (2006). J. Mater. Chem. 16, 4110–4116.  Web of Science CSD CrossRef CAS Google Scholar
First citationImakubo, T. & Murayama, R. (2013). CrystEngComm, 15, 3072–3075.  Web of Science CSD CrossRef CAS Google Scholar
First citationIshiguro, T., Yamaji, K. & Saito, G. (1998). Organic Superconductors, edited by P. Fulde, Springer Series Solid-State Science, Vol. 88. Berlin, Heidelberg: Springer.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNomura, M., Tsukano, E., Fujita-Takayama, C., Sugiyama, T. & Kajitani, M. (2009). J. Organomet. Chem. 694, 3116–3124.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRabaça, S. & Almeida, M. (2010). Coord. Chem. Rev. 254, 1493–1508.  Google Scholar
First citationRabaça, S., Oliveira, S., Santos, I. C. & Almeida, M. (2013). Tetrahedron Lett. 54, 6635–6639.  Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomura, M., Tanaka, S. & Yamashita, Y. (1994). Synth. Met. 64, 197–202.  CSD CrossRef CAS Web of Science Google Scholar
First citationTomura, M. & Yamashita, Y. (1995). J. Mater. Chem. 5, 1753–1754.  CrossRef CAS Web of Science Google Scholar
First citationWilliams, J. M., Ferraro, J. R., Thorn, R. J., Carlson, K. D., Geiser, U., Wang, H. H., Kini, A. M. & Whangbo, M. H. (1992). In Organic Superconductors. Englewood Cliffs, NJ: Prentice Hall.  Google Scholar
First citationYamashita, Y. & Tomura, M. (1998). J. Mater. Chem. 8, 1933–1944.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds