organic compounds
2-Sulfanylidene-1,3-dithiolo[4,5-b]pyrazine-5,6-dicarbonitrile
aInstitute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
*Correspondence e-mail: tomura@ims.ac.jp
In the title compound, C7N4S3, the molecular entity consisting of a 1,3-dithiole-2-thione with a fused pyrazine ring is planar, with an r.m.s. deviation of 0.042 (3) Å from the least-squares plane. In the crystal, molecules are linked via short intermolecular S⋯N contacts [3.251 (4) and 3.308 (3) Å] between the S atom of the thiocarbonyl group and N atoms of the cyano groups.
CCDC reference: 1561227
Structure description
Molecules containing an 1,3-dithiolo[4,5-b]pyrazine-2-thione framework are important synthetic precursors of multi-dimensional organic superconductors and conductors. Intermolecular S⋯N and S⋯S contacts involving peripheral S and N atoms may increase the dimensionality in the solid state and suppress metal–insulator transitions (Williams et al., 1992; Ishiguro et al., 1998). In addition, such contacts may lead to the formation of unique molecular networks which have special functions, such as inclusion properties (Yamashita & Tomura, 1998). Fused pyrazine units are expected to extend the π-conjugated system, resulting in decreased Coulombic repulsion (Tomura & Yamashita, 1995; Belo et al., 2004; Nomura et al., 2009), and coordinate to transition metals (Imakubo et al., 2006; Rabaça & Almeida, 2010; Imakubo & Murayama, 2013), constructing organometallic coordination polymers. We report here the molecular and of the title compound.
The title compound crystallizes in the P212121 with one molecule in the The molecular structure is shown in Fig. 1. The molecular geometry is comparable to that found in the parent thione (2-thioxo-1,3-dithiolo[4,5-b]pyrazine; Rabaça et al., 2013), although the parent molecule lies on a mirror plane. The molecular entity of the title compound is planar, with an r.m.s. deviation of 0.042 (3) Å from the least-squares plane. In the crystal, a short intermolecular S⋯N contact [3.251 (4) Å for S1—N4(−x + , −y + 1, z − )] is observed between the S atom of the thiocarbonyl group and the N atom of the cyano group, constructing a zigzag molecular tape network extending along the c axis (Fig. 2). The molecular tapes are linked via short intertape S⋯N interactions [3.308 (3) Å for S1⋯N3(−x − , −y + 1, z − )].
Synthesis and crystallization
According to the literature method of Tomura et al. (1994), the title compound was synthesized by the reaction of 2,3-dichloropyrazine-5,6-dicarbonitrile with sodium sulfide and thiophosgene. The details will be reported elsewhere. Decomposition point: 463 K, MS (EI): m/z 236 (M+). Orange crystals suitable for X-ray analysis were grown from an acetonitrile solution.
Refinement
Crystal data, data collection and structure . One reflection (205) was omitted due to bad agreement between the observed and calculated intensities.
details are summarized in Table 1Structural data
CCDC reference: 1561227
https://doi.org/10.1107/S2414314617010239/wm4053sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617010239/wm4053Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617010239/wm4053Isup3.cml
Data collection: CrystalClear (Rigaku/MSC, 2006); cell
CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015).C7N4S3 | Dx = 1.720 Mg m−3 |
Mr = 236.29 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 3015 reflections |
a = 6.1657 (15) Å | θ = 2.0–30.7° |
b = 7.0875 (19) Å | µ = 0.77 mm−1 |
c = 20.883 (6) Å | T = 173 K |
V = 912.6 (4) Å3 | Prism, orange |
Z = 4 | 0.30 × 0.30 × 0.05 mm |
F(000) = 472 |
Rigaku/MSC Mercury CCD diffractometer | 2561 independent reflections |
Radiation source: Rotating Anode | 2314 reflections with I > 2σ(I) |
Graphite Monochromator monochromator | Rint = 0.031 |
Detector resolution: 14.7059 pixels mm-1 | θmax = 30.8°, θmin = 2.0° |
φ & ω scans | h = −8→6 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −9→8 |
Tmin = 0.825, Tmax = 1.000 | l = −23→28 |
8289 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | w = 1/[σ2(Fo2) + (0.0486P)2 + 0.1364P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.103 | (Δ/σ)max < 0.001 |
S = 1.11 | Δρmax = 0.29 e Å−3 |
2561 reflections | Δρmin = −0.35 e Å−3 |
127 parameters | Absolute structure: Flack x determined using 803 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: 0.07 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | −0.17153 (16) | 0.55587 (14) | −0.06252 (4) | 0.0479 (3) | |
S2 | −0.21351 (14) | 0.62442 (14) | 0.07652 (4) | 0.0434 (2) | |
S3 | 0.17499 (14) | 0.43326 (12) | 0.02606 (4) | 0.0410 (2) | |
N1 | −0.0522 (4) | 0.5875 (4) | 0.19453 (13) | 0.0339 (6) | |
N2 | 0.3228 (4) | 0.4055 (4) | 0.14587 (13) | 0.0334 (6) | |
N3 | 0.0894 (5) | 0.6018 (5) | 0.35380 (15) | 0.0451 (7) | |
N4 | 0.6025 (5) | 0.3496 (4) | 0.28648 (16) | 0.0445 (7) | |
C1 | −0.0756 (6) | 0.5386 (5) | 0.00956 (17) | 0.0394 (7) | |
C2 | −0.0230 (5) | 0.5554 (5) | 0.13276 (16) | 0.0338 (6) | |
C3 | 0.1080 (5) | 0.5255 (4) | 0.23255 (15) | 0.0309 (6) | |
C4 | 0.2925 (5) | 0.4362 (4) | 0.20854 (15) | 0.0318 (6) | |
C5 | 0.1642 (5) | 0.4634 (4) | 0.10837 (15) | 0.0314 (6) | |
C6 | 0.0915 (5) | 0.5664 (5) | 0.30048 (17) | 0.0359 (7) | |
C7 | 0.4656 (5) | 0.3844 (5) | 0.25174 (16) | 0.0344 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0596 (6) | 0.0427 (5) | 0.0414 (5) | −0.0048 (5) | −0.0122 (4) | 0.0016 (4) |
S2 | 0.0366 (4) | 0.0517 (5) | 0.0420 (5) | 0.0053 (4) | −0.0011 (3) | 0.0079 (4) |
S3 | 0.0506 (5) | 0.0391 (4) | 0.0334 (4) | 0.0080 (4) | 0.0024 (3) | −0.0008 (4) |
N1 | 0.0301 (12) | 0.0343 (14) | 0.0373 (15) | 0.0020 (11) | 0.0040 (10) | 0.0041 (12) |
N2 | 0.0384 (12) | 0.0283 (13) | 0.0336 (14) | 0.0020 (11) | 0.0032 (11) | −0.0004 (11) |
N3 | 0.0508 (15) | 0.0473 (18) | 0.0374 (17) | 0.0067 (14) | 0.0070 (13) | −0.0006 (14) |
N4 | 0.0460 (15) | 0.0421 (18) | 0.0456 (18) | 0.0097 (13) | −0.0026 (13) | −0.0061 (14) |
C1 | 0.0476 (17) | 0.0293 (17) | 0.0413 (19) | −0.0061 (14) | −0.0025 (14) | 0.0033 (14) |
C2 | 0.0352 (14) | 0.0302 (15) | 0.0361 (17) | −0.0020 (12) | 0.0029 (12) | 0.0062 (13) |
C3 | 0.0323 (13) | 0.0273 (16) | 0.0330 (16) | 0.0001 (11) | 0.0046 (11) | 0.0042 (12) |
C4 | 0.0334 (13) | 0.0263 (14) | 0.0356 (16) | 0.0004 (12) | 0.0052 (12) | 0.0039 (12) |
C5 | 0.0341 (14) | 0.0263 (14) | 0.0337 (16) | 0.0005 (12) | 0.0037 (12) | 0.0017 (12) |
C6 | 0.0349 (14) | 0.0333 (16) | 0.0395 (19) | 0.0041 (13) | 0.0061 (12) | 0.0042 (14) |
C7 | 0.0345 (15) | 0.0311 (16) | 0.0376 (17) | 0.0036 (13) | 0.0041 (13) | −0.0022 (14) |
S1—C1 | 1.622 (4) | N2—C4 | 1.340 (4) |
S2—C2 | 1.732 (3) | N3—C6 | 1.141 (4) |
S2—C1 | 1.746 (4) | N4—C7 | 1.140 (4) |
S3—C5 | 1.733 (3) | C2—C5 | 1.420 (4) |
S3—C1 | 1.750 (4) | C3—C4 | 1.395 (4) |
N1—C2 | 1.322 (4) | C3—C6 | 1.452 (5) |
N1—C3 | 1.341 (4) | C4—C7 | 1.445 (4) |
N2—C5 | 1.319 (4) | ||
S1···N4i | 3.251 (4) | S1···N3ii | 3.308 (3) |
C2—S2—C1 | 96.57 (17) | N1—C3—C6 | 117.5 (3) |
C5—S3—C1 | 96.24 (16) | C4—C3—C6 | 120.0 (3) |
C2—N1—C3 | 114.9 (3) | N2—C4—C3 | 122.6 (3) |
C5—N2—C4 | 115.2 (3) | N2—C4—C7 | 117.7 (3) |
S1—C1—S2 | 122.6 (2) | C3—C4—C7 | 119.6 (3) |
S1—C1—S3 | 122.5 (2) | N2—C5—C2 | 122.2 (3) |
S2—C1—S3 | 114.9 (2) | N2—C5—S3 | 121.5 (2) |
N1—C2—C5 | 122.6 (3) | C2—C5—S3 | 116.3 (2) |
N1—C2—S2 | 121.4 (2) | N3—C6—C3 | 176.4 (4) |
C5—C2—S2 | 116.0 (2) | N4—C7—C4 | 177.7 (4) |
N1—C3—C4 | 122.4 (3) | ||
C2—S2—C1—S1 | 179.2 (2) | N1—C3—C4—N2 | −0.2 (5) |
C2—S2—C1—S3 | −1.0 (2) | C6—C3—C4—N2 | −175.7 (3) |
C5—S3—C1—S1 | −179.3 (2) | N1—C3—C4—C7 | 175.8 (3) |
C5—S3—C1—S2 | 1.0 (2) | C6—C3—C4—C7 | 0.3 (4) |
C3—N1—C2—C5 | −0.4 (5) | C4—N2—C5—C2 | 1.3 (4) |
C3—N1—C2—S2 | 179.7 (2) | C4—N2—C5—S3 | −179.4 (2) |
C1—S2—C2—N1 | −179.4 (3) | N1—C2—C5—N2 | −0.7 (5) |
C1—S2—C2—C5 | 0.7 (3) | S2—C2—C5—N2 | 179.2 (2) |
C2—N1—C3—C4 | 0.8 (4) | N1—C2—C5—S3 | −180.0 (3) |
C2—N1—C3—C6 | 176.4 (3) | S2—C2—C5—S3 | −0.1 (3) |
C5—N2—C4—C3 | −0.9 (4) | C1—S3—C5—N2 | −179.8 (3) |
C5—N2—C4—C7 | −177.0 (3) | C1—S3—C5—C2 | −0.6 (3) |
Symmetry codes: (i) −x+1/2, −y+1, z−1/2; (ii) −x−1/2, −y+1, z−1/2. |
Acknowledgements
The author would like to thank the Instrument Center of the Institute for Molecular Science for the X-ray crystallographic analysis.
Funding information
Funding for this research was provided by: Inter-University Research Institute Corporation, National Institutes of Natural Sciences, Institute for Molecular Science.
References
Belo, D., Santos, I. C. & Almeida, M. (2004). Polyhedron, 23, 1351–1359. Web of Science CSD CrossRef CAS Google Scholar
Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309. Web of Science CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Imakubo, T., Kibune, M., Yoshino, H., Shirahata, T. & Yoza, K. (2006). J. Mater. Chem. 16, 4110–4116. Web of Science CSD CrossRef CAS Google Scholar
Imakubo, T. & Murayama, R. (2013). CrystEngComm, 15, 3072–3075. Web of Science CSD CrossRef CAS Google Scholar
Ishiguro, T., Yamaji, K. & Saito, G. (1998). Organic Superconductors, edited by P. Fulde, Springer Series Solid-State Science, Vol. 88. Berlin, Heidelberg: Springer. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nomura, M., Tsukano, E., Fujita-Takayama, C., Sugiyama, T. & Kajitani, M. (2009). J. Organomet. Chem. 694, 3116–3124. Web of Science CSD CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rabaça, S. & Almeida, M. (2010). Coord. Chem. Rev. 254, 1493–1508. Google Scholar
Rabaça, S., Oliveira, S., Santos, I. C. & Almeida, M. (2013). Tetrahedron Lett. 54, 6635–6639. Google Scholar
Rigaku/MSC (2006). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tomura, M., Tanaka, S. & Yamashita, Y. (1994). Synth. Met. 64, 197–202. CSD CrossRef CAS Web of Science Google Scholar
Tomura, M. & Yamashita, Y. (1995). J. Mater. Chem. 5, 1753–1754. CrossRef CAS Web of Science Google Scholar
Williams, J. M., Ferraro, J. R., Thorn, R. J., Carlson, K. D., Geiser, U., Wang, H. H., Kini, A. M. & Whangbo, M. H. (1992). In Organic Superconductors. Englewood Cliffs, NJ: Prentice Hall. Google Scholar
Yamashita, Y. & Tomura, M. (1998). J. Mater. Chem. 8, 1933–1944. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.