organic compounds
3-Acetyl-2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one
aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: lahmidi_sanae@yahoo.fr
In the title compound, C11H10N2O2, the pyridopyrimidine moiety deviates slightly from planarity. In the crystal, molecules stack along the a-axis direction assisted by π–π stacking interactions and C—H⋯O hydrogen bonds. The stacks are associated in centrosymmetric pairs through C—H⋯N hydrogen bonds.
Keywords: crystal structure; hydrogen bonding; pyridopyrimidine; π–π stacking.
CCDC reference: 1560036
Structure description
Pyrido[1,2-a]pyrimidine derivatives exhibit a broad range of biological activities (Harriman et al., 2003), including antibacterial (Nargund et al., 1991) and antimalarial agents (Mane et al., 2014). Also, the antiallergic agent ramastine (Awouters et al., 1986), the antidepressant lusaperidone (Kennis et al., 2000) and the tranquilizer pirenperone (Smith et al., 1995) derive from such aza-bridgehead-fused As part of our ongoing studies (Lahmidi et al., 2016) of pyridopyrimidine derivatives, we report here the synthesis and structure of the title compound.
The pyridopyrimidine unit deviates slightly from planarity as indicated by the dihedral angle of 2.76 (5)° between the two constituent rings (Fig. 1). The acetyl moiety is inclined to the pyrimidine ring by 41.21 (7)°. In the crystal, the molecules form stacks along the a-axis direction through head-to-head π–π stacking interactions [centroid⋯centroid = 3.7715 (9) Å], which are reinforced by C10—H10A⋯O1i [symmetry code: (i) x + 1, y, z] hydrogen bonds (Table 1 and Fig. 2). Pairs of stacks are associated through pairwise inversion-related C2—H2⋯N2ii [symmetry code: (ii) −x + 1, −y + 1, −z + 1] hydrogen bonds (Table 1 and Fig. 2).
Synthesis and crystallization
A mixture of 1-(2-methyl-4-oxo-4H-pyrido[1,2-a]pyrimidin-3- yl)butane-1,3-dione (0.7 g, 2.86 mmol) and o-phenylenediamine (0.93 g, 8.58 mmol) was stirred in acetic acid (20 ml) at room temperature for 8 h. After completion of the reaction as monitored by the reaction mixture was cooled and the excess of acetic acid removed under reduced pressure. The residue was re-dissolved in dichloromethane and evaporated again. The solid obtained was filtered, washed with cold water and recrystallized from ethanol solution.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1560036
https://doi.org/10.1107/S2414314617009919/wm4051sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617009919/wm4051Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617009919/wm4051Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314617009919/wm4051Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C11H10N2O2 | Z = 2 |
Mr = 202.21 | F(000) = 212 |
Triclinic, P1 | Dx = 1.442 Mg m−3 |
a = 3.7716 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.3959 (15) Å | Cell parameters from 3681 reflections |
c = 12.3280 (18) Å | θ = 2.4–29.2° |
α = 78.017 (2)° | µ = 0.10 mm−1 |
β = 83.431 (2)° | T = 100 K |
γ = 81.266 (2)° | Block, colourless |
V = 465.63 (12) Å3 | 0.21 × 0.20 × 0.11 mm |
Bruker SMART APEX CCD diffractometer | 2470 independent reflections |
Radiation source: fine-focus sealed tube | 1901 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 29.3°, θmin = 1.7° |
φ and ω scans | h = −5→5 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −14→14 |
Tmin = 0.88, Tmax = 0.99 | l = −16→16 |
9022 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.136 | All H-atom parameters refined |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0998P)2] where P = (Fo2 + 2Fc2)/3 |
2470 reflections | (Δ/σ)max < 0.001 |
176 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 25 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.2926 (2) | 0.34971 (8) | 0.07890 (6) | 0.0208 (2) | |
O2 | 0.5557 (2) | 0.00837 (8) | 0.28674 (7) | 0.0249 (2) | |
N1 | 0.2518 (2) | 0.47066 (9) | 0.21721 (7) | 0.0139 (2) | |
N2 | 0.4884 (3) | 0.37592 (9) | 0.39182 (7) | 0.0152 (2) | |
C1 | 0.3175 (3) | 0.47757 (10) | 0.32396 (8) | 0.0142 (2) | |
C2 | 0.1954 (3) | 0.59856 (11) | 0.36119 (9) | 0.0182 (3) | |
H2 | 0.252 (4) | 0.5959 (14) | 0.4387 (12) | 0.024 (3)* | |
C3 | 0.0194 (3) | 0.70330 (12) | 0.29381 (9) | 0.0207 (3) | |
H3 | −0.064 (4) | 0.7835 (15) | 0.3192 (13) | 0.033 (4)* | |
C4 | −0.0399 (3) | 0.69249 (12) | 0.18479 (9) | 0.0196 (3) | |
H4 | −0.161 (4) | 0.7630 (15) | 0.1353 (12) | 0.028 (4)* | |
C5 | 0.0787 (3) | 0.57829 (11) | 0.14802 (9) | 0.0172 (3) | |
H5 | 0.039 (4) | 0.5650 (14) | 0.0762 (13) | 0.031 (4)* | |
C6 | 0.3588 (3) | 0.34940 (10) | 0.17422 (8) | 0.0147 (2) | |
C7 | 0.5185 (3) | 0.24174 (10) | 0.25242 (8) | 0.0140 (2) | |
C8 | 0.5827 (3) | 0.25987 (11) | 0.35758 (8) | 0.0144 (2) | |
C9 | 0.6088 (3) | 0.10916 (11) | 0.21968 (9) | 0.0174 (3) | |
C10 | 0.7731 (4) | 0.10147 (12) | 0.10354 (10) | 0.0222 (3) | |
H10A | 0.912 (4) | 0.1737 (16) | 0.0714 (13) | 0.036 (4)* | |
H10B | 0.933 (5) | 0.0147 (18) | 0.1094 (14) | 0.048 (5)* | |
H10C | 0.586 (5) | 0.1028 (16) | 0.0571 (13) | 0.039 (4)* | |
C11 | 0.7671 (3) | 0.15253 (11) | 0.44132 (9) | 0.0177 (3) | |
H11A | 0.592 (4) | 0.1061 (14) | 0.4931 (12) | 0.029 (4)* | |
H11B | 0.899 (4) | 0.1935 (14) | 0.4844 (12) | 0.026 (4)* | |
H11C | 0.940 (4) | 0.0891 (14) | 0.4056 (11) | 0.028 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0308 (5) | 0.0203 (4) | 0.0126 (4) | −0.0014 (3) | −0.0067 (3) | −0.0046 (3) |
O2 | 0.0339 (5) | 0.0155 (4) | 0.0239 (4) | −0.0019 (4) | 0.0002 (4) | −0.0030 (3) |
N1 | 0.0176 (5) | 0.0136 (5) | 0.0107 (4) | −0.0011 (4) | −0.0036 (3) | −0.0020 (3) |
N2 | 0.0189 (5) | 0.0137 (5) | 0.0127 (4) | −0.0002 (4) | −0.0033 (3) | −0.0022 (3) |
C1 | 0.0157 (6) | 0.0169 (5) | 0.0102 (5) | −0.0019 (4) | −0.0024 (4) | −0.0027 (4) |
C2 | 0.0228 (6) | 0.0164 (5) | 0.0155 (5) | 0.0007 (4) | −0.0042 (4) | −0.0046 (4) |
C3 | 0.0258 (7) | 0.0177 (6) | 0.0183 (6) | 0.0015 (5) | −0.0026 (5) | −0.0054 (4) |
C4 | 0.0222 (6) | 0.0161 (5) | 0.0183 (5) | 0.0016 (4) | −0.0053 (4) | 0.0003 (4) |
C5 | 0.0202 (6) | 0.0182 (6) | 0.0125 (5) | −0.0014 (4) | −0.0046 (4) | −0.0006 (4) |
C6 | 0.0172 (6) | 0.0150 (5) | 0.0125 (5) | −0.0025 (4) | −0.0021 (4) | −0.0035 (4) |
C7 | 0.0160 (6) | 0.0140 (5) | 0.0120 (5) | −0.0012 (4) | −0.0015 (4) | −0.0025 (4) |
C8 | 0.0146 (5) | 0.0163 (5) | 0.0118 (5) | −0.0020 (4) | −0.0006 (4) | −0.0020 (4) |
C9 | 0.0180 (6) | 0.0172 (5) | 0.0176 (5) | −0.0004 (4) | −0.0036 (4) | −0.0051 (4) |
C10 | 0.0268 (7) | 0.0218 (6) | 0.0189 (6) | −0.0020 (5) | 0.0007 (5) | −0.0086 (4) |
C11 | 0.0199 (6) | 0.0171 (5) | 0.0148 (5) | 0.0012 (4) | −0.0038 (4) | −0.0012 (4) |
O1—C6 | 1.2283 (13) | C4—H4 | 0.947 (16) |
O2—C9 | 1.2197 (14) | C5—H5 | 0.955 (15) |
N1—C5 | 1.3838 (14) | C6—C7 | 1.4229 (15) |
N1—C1 | 1.3849 (13) | C7—C8 | 1.4007 (14) |
N1—C6 | 1.4515 (13) | C7—C9 | 1.4952 (14) |
N2—C1 | 1.3346 (14) | C8—C11 | 1.4984 (15) |
N2—C8 | 1.3443 (13) | C9—C10 | 1.5066 (16) |
C1—C2 | 1.4214 (14) | C10—H10A | 0.972 (16) |
C2—C3 | 1.3593 (16) | C10—H10B | 1.001 (18) |
C2—H2 | 0.997 (14) | C10—H10C | 0.955 (18) |
C3—C4 | 1.4171 (16) | C11—H11A | 0.974 (15) |
C3—H3 | 0.948 (15) | C11—H11B | 0.964 (15) |
C4—C5 | 1.3530 (15) | C11—H11C | 0.990 (14) |
C5—N1—C1 | 121.40 (9) | C8—C7—C6 | 120.56 (9) |
C5—N1—C6 | 117.53 (8) | C8—C7—C9 | 121.33 (10) |
C1—N1—C6 | 121.07 (9) | C6—C7—C9 | 118.11 (9) |
C1—N2—C8 | 118.71 (9) | N2—C8—C7 | 122.90 (10) |
N2—C1—N1 | 122.63 (9) | N2—C8—C11 | 113.96 (9) |
N2—C1—C2 | 119.61 (9) | C7—C8—C11 | 123.13 (9) |
N1—C1—C2 | 117.76 (9) | O2—C9—C7 | 120.39 (9) |
C3—C2—C1 | 120.72 (10) | O2—C9—C10 | 120.45 (10) |
C3—C2—H2 | 126.2 (8) | C7—C9—C10 | 119.15 (10) |
C1—C2—H2 | 113.1 (8) | C9—C10—H10A | 112.7 (9) |
C2—C3—C4 | 119.75 (10) | C9—C10—H10B | 106.3 (10) |
C2—C3—H3 | 120.5 (9) | H10A—C10—H10B | 109.8 (14) |
C4—C3—H3 | 119.8 (9) | C9—C10—H10C | 109.1 (9) |
C5—C4—C3 | 120.04 (10) | H10A—C10—H10C | 109.2 (13) |
C5—C4—H4 | 117.5 (9) | H10B—C10—H10C | 109.6 (14) |
C3—C4—H4 | 122.4 (9) | C8—C11—H11A | 110.8 (9) |
C4—C5—N1 | 120.31 (10) | C8—C11—H11B | 108.1 (9) |
C4—C5—H5 | 123.4 (9) | H11A—C11—H11B | 107.0 (12) |
N1—C5—H5 | 116.3 (9) | C8—C11—H11C | 112.1 (8) |
O1—C6—C7 | 128.13 (10) | H11A—C11—H11C | 110.6 (12) |
O1—C6—N1 | 117.88 (9) | H11B—C11—H11C | 108.0 (12) |
C7—C6—N1 | 113.94 (9) | ||
C8—N2—C1—N1 | −3.80 (17) | C1—N1—C6—C7 | 2.35 (15) |
C8—N2—C1—C2 | 176.08 (9) | O1—C6—C7—C8 | 178.50 (11) |
C5—N1—C1—N2 | −179.02 (10) | N1—C6—C7—C8 | −4.19 (16) |
C6—N1—C1—N2 | 1.65 (17) | O1—C6—C7—C9 | −2.57 (18) |
C5—N1—C1—C2 | 1.10 (16) | N1—C6—C7—C9 | 174.74 (9) |
C6—N1—C1—C2 | −178.24 (9) | C1—N2—C8—C7 | 1.82 (17) |
N2—C1—C2—C3 | −179.70 (11) | C1—N2—C8—C11 | −179.04 (9) |
N1—C1—C2—C3 | 0.18 (17) | C6—C7—C8—N2 | 2.34 (17) |
C1—C2—C3—C4 | −0.70 (19) | C9—C7—C8—N2 | −176.56 (9) |
C2—C3—C4—C5 | −0.05 (19) | C6—C7—C8—C11 | −176.72 (10) |
C3—C4—C5—N1 | 1.32 (18) | C9—C7—C8—C11 | 4.39 (17) |
C1—N1—C5—C4 | −1.87 (17) | C8—C7—C9—O2 | 39.27 (16) |
C6—N1—C5—C4 | 177.49 (10) | C6—C7—C9—O2 | −139.66 (11) |
C5—N1—C6—O1 | 0.60 (16) | C8—C7—C9—C10 | −139.53 (12) |
C1—N1—C6—O1 | 179.95 (10) | C6—C7—C9—C10 | 41.55 (15) |
C5—N1—C6—C7 | −177.01 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···N2i | 0.997 (14) | 2.494 (14) | 3.4679 (15) | 165.5 (11) |
C5—H5···O1ii | 0.955 (15) | 2.349 (16) | 3.1710 (14) | 143.9 (12) |
C10—H10A···O1iii | 0.972 (16) | 2.513 (17) | 3.4153 (16) | 154.5 (12) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z; (iii) x+1, y, z. |
Acknowledgements
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.
References
Awouters, F., Vermeire, J., Smeyers, F., Vermote, P., van Beek, R. & Niemegeers, C. J. E. (1986). Drug Dev. Res. 8, 95–102. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Harriman, G. C. B., Chi, S., Zhang, M., Crowe, A., Bennett, R. A. & Parsons, I. (2003). Tetrahedron Lett. 44, 3659–3662. CrossRef CAS Google Scholar
Kennis, L. E. J., Bischoff, F. P., Mertens, C. J., Love, C. J., Van den Keybus, F. A. F., Pieters, S., Braeken, M., Megens, A. A. H. P. & Leysen, J. E. (2000). Bioorg. Med. Chem. Lett. 10, 71–74. CrossRef PubMed CAS Google Scholar
Lahmidi, S., El Ouasif, L., Jilalat, A. E., Al-Garadi, W., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x161978. Google Scholar
Mane, U. R., Mohanakrishnan, D., Sahal, D., Murumkar, P. R., Giridhar, R. & Yadav, M. R. (2014). Eur. J. Med. Chem. 79, 422–435. Web of Science CrossRef CAS PubMed Google Scholar
Nargund, L. V. G., Reddy, Y. S. R. & Jose, R. (1991). Indian Drugs, 29, 45–46. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, R. L., Barrett, R. J. & Sanders-Bush, E. J. (1995). J. Pharmacol. Exp. Ther. 275, 1050–1057. CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.