organic compounds
Prop-2-ynyl 2-oxo-1-(prop-2-ynyl)-1,2-dihydroquinoline-4-carboxylate
aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco
*Correspondence e-mail: yassir.filali.baba@gmail.com
In the title compound, C16H11NO3, the dihedral angles between the mean planes of the quinolone ring system and the prop-2-ynyl and carboxyprop-2-ynyl groups are 87.9 (8) and 41.6 (8)°, respectively. In the crystal, a weak C—H⋯O interaction links the molecules into chains along the c-axis direction and weak π–π stacking interactions further stabilize the crystal packing.
Keywords: crystal structure; quinolone.
Structure description
Quinolone derivatives are a classical division of organic chemistry and many of these molecules have shown remarkable biological properties, including exceptional antibacterial activity (Chai et al., 2011; Hoshino et al., 2008). Quinolone derivatives are also frequently associated with medicinal applications, such as anti-fungal (Musiol et al., 2010), anti-tumoral (Bergh et al., 1997) and anti-cancer drugs (Elderfield & LeVon, 1960). As a continuation of our research work devoted to the development of substituted quinoline derivatives (Filali Baba et al., 2017), we report here the synthesis of prop-2-ynyl 2-oxo-1-(prop-2-ynyl)-1,2-dihydroquinoline-4-carboxylate, by reacting 2-oxo-1,2-dihydroquinoline-4-carboxylic acid with 3-bromoprop-1-yne, under conditions using tetra-n-butyl ammonium bromide (TBAB) as a catalyst and potassium carbonate as a base.
The title compound crystallizes with one independent molecule in the ). The CH2 group attached to N1 occupies an equatorial position with respect to the mean plane of the quinolone ring. The mean plane through the prop-2-ynyl substituent (N1/C14/C15/C16) makes a dihedral angle of 87.9 (8)° with the mean plane of the quinolone ring system. The dihedral angle between the mean planes of the quinolone ring and the carboxy-prop-2-ynyl unit is 41.6 (8)°.
(Fig. 1In the crystal, a single weak C16—H16⋯O2 intermolecular interaction links the molecules forming one-dimensional chains along the c axis (Fig. 2, Table 1). In addition, weak π–π stacking interactions involving the quinolone rings form wave-like layers [intercentroid distances Cg1⋯Cg2ii = 3.6169 (5) Å, Cg2⋯Cg1iii = 3.8112 (6) Å; symmetry codes: (ii) −x, 1 − y, 1 − z; (iii) 1 − x, 1 − y, 1 − z; Cg1 and Cg2 are the centroids of the N1/C1/C2/C3/C4/C9 and C4–C9 rings, respectively].
Synthesis and crystallization
A solution of 0.5 g (2.64 mmol) 2-oxo-1,2-dihydroquinoline-4-carboxylic acid in 10 ml of DMF was mixed with 0.55 ml (6.34 mmol) 3-bromoprop-1-yne, and 1.09 g (7.92 mmol) K2CO3 and 0.17 g (0.52 mmol) TBAB. The reaction mixture was stirred at room temperature in DMF for 6 h. After removal of salts by filtration, the DMF was evaporated under reduced pressure and the residue obtained was dissolved in dichloromethane. The organic phase was dried over Na2SO4 then concentrated in vacuo. The resulting mixture was chromatographed on a silica gel column [eluent: ethyl acetate / hexane (1/2)]. Crystals were obtained when the solvent was allowed to evaporate (yield = 87%).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
https://doi.org/10.1107/S2414314617010720/vm4026sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617010720/vm4026Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617010720/vm4026Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314617010720/vm4026Isup4.cml
Data collection: CrysAlis PRO (Rigaku, 2015); cell
CrysAlis PRO (Rigaku, 2015); data reduction: CrysAlis PRO (Rigaku, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C16H11NO3 | Z = 2 |
Mr = 265.26 | F(000) = 276 |
Triclinic, P1 | Dx = 1.371 Mg m−3 |
a = 7.3070 (11) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 8.7763 (13) Å | Cell parameters from 943 reflections |
c = 11.2927 (13) Å | θ = 4.1–70.2° |
α = 91.059 (11)° | µ = 0.79 mm−1 |
β = 107.867 (12)° | T = 293 K |
γ = 109.814 (14)° | Plate, colourless |
V = 642.36 (17) Å3 | 0.4 × 0.12 × 0.06 mm |
Rigaku Oxford Diffraction diffractometer | 2418 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 1624 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 16.0416 pixels mm-1 | θmax = 71.0°, θmin = 4.2° |
ω scans | h = −8→6 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku, 2015) | k = −10→10 |
Tmin = 0.833, Tmax = 1.000 | l = −13→13 |
3962 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.142 | w = 1/[σ2(Fo2) + (0.0621P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
2418 reflections | Δρmax = 0.14 e Å−3 |
181 parameters | Δρmin = −0.20 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All H atoms were placed in calculated positions and refined using the riding model with C—H bond lengths of 0.93 Å (CH) or 0.97 Å (CH2). Isotropic displacement parameters for these atoms were set to 1.2 times Ueq of the parent atom. In the final cycles of refinement, 4 outliers were omitted. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.0174 (3) | 0.0643 (2) | 0.29315 (16) | 0.0698 (5) | |
O2 | 0.3186 (3) | 0.4028 (2) | 0.79834 (14) | 0.0621 (5) | |
O3 | 0.4300 (2) | 0.2141 (2) | 0.74109 (13) | 0.0568 (4) | |
N1 | 0.0822 (3) | 0.3367 (2) | 0.32712 (15) | 0.0455 (4) | |
C1 | 0.0936 (3) | 0.1917 (3) | 0.3668 (2) | 0.0499 (5) | |
C2 | 0.1935 (3) | 0.1990 (3) | 0.5004 (2) | 0.0497 (5) | |
H2 | 0.2045 | 0.1041 | 0.5317 | 0.060* | |
C3 | 0.2707 (3) | 0.3380 (3) | 0.58080 (18) | 0.0433 (5) | |
C4 | 0.2700 (3) | 0.4906 (3) | 0.53617 (18) | 0.0418 (5) | |
C5 | 0.3604 (3) | 0.6417 (3) | 0.6127 (2) | 0.0513 (5) | |
H5 | 0.4252 | 0.6466 | 0.6984 | 0.062* | |
C6 | 0.3554 (4) | 0.7834 (3) | 0.5639 (2) | 0.0585 (6) | |
H6 | 0.4145 | 0.8827 | 0.6163 | 0.070* | |
C7 | 0.2618 (4) | 0.7773 (3) | 0.4359 (2) | 0.0571 (6) | |
H7 | 0.2576 | 0.8728 | 0.4029 | 0.068* | |
C8 | 0.1753 (3) | 0.6319 (3) | 0.3576 (2) | 0.0507 (5) | |
H8 | 0.1163 | 0.6300 | 0.2717 | 0.061* | |
C9 | 0.1753 (3) | 0.4868 (3) | 0.40563 (19) | 0.0424 (5) | |
C10 | 0.3424 (3) | 0.3264 (3) | 0.71837 (19) | 0.0477 (5) | |
C11 | 0.4825 (4) | 0.1777 (3) | 0.8687 (2) | 0.0624 (6) | |
H11A | 0.3585 | 0.1216 | 0.8886 | 0.075* | |
H11B | 0.5623 | 0.2777 | 0.9271 | 0.075* | |
C12 | 0.6031 (4) | 0.0739 (3) | 0.8771 (2) | 0.0645 (7) | |
C13 | 0.7044 (5) | −0.0037 (4) | 0.8812 (3) | 0.0873 (10) | |
H13 | 0.7860 | −0.0661 | 0.8845 | 0.105* | |
C14 | −0.0384 (3) | 0.3270 (3) | 0.19428 (19) | 0.0534 (6) | |
H14A | −0.1455 | 0.2193 | 0.1664 | 0.064* | |
H14B | −0.1052 | 0.4066 | 0.1867 | 0.064* | |
C15 | 0.0878 (4) | 0.3570 (3) | 0.1123 (2) | 0.0546 (6) | |
C16 | 0.1826 (5) | 0.3752 (4) | 0.0445 (2) | 0.0720 (7) | |
H16 | 0.2586 | 0.3898 | −0.0098 | 0.086* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0967 (13) | 0.0552 (10) | 0.0540 (10) | 0.0319 (10) | 0.0157 (9) | 0.0002 (8) |
O2 | 0.0823 (11) | 0.0796 (12) | 0.0427 (9) | 0.0450 (10) | 0.0278 (8) | 0.0133 (8) |
O3 | 0.0763 (10) | 0.0698 (11) | 0.0410 (8) | 0.0430 (9) | 0.0235 (7) | 0.0188 (7) |
N1 | 0.0536 (10) | 0.0534 (11) | 0.0363 (9) | 0.0261 (9) | 0.0166 (7) | 0.0099 (8) |
C1 | 0.0610 (13) | 0.0505 (13) | 0.0457 (12) | 0.0254 (11) | 0.0217 (10) | 0.0091 (10) |
C2 | 0.0652 (13) | 0.0503 (12) | 0.0453 (12) | 0.0298 (11) | 0.0241 (10) | 0.0160 (9) |
C3 | 0.0476 (11) | 0.0541 (12) | 0.0395 (11) | 0.0259 (10) | 0.0212 (9) | 0.0114 (9) |
C4 | 0.0429 (10) | 0.0502 (12) | 0.0413 (11) | 0.0217 (9) | 0.0208 (8) | 0.0086 (9) |
C5 | 0.0569 (12) | 0.0546 (13) | 0.0465 (12) | 0.0216 (11) | 0.0211 (10) | 0.0054 (10) |
C6 | 0.0689 (14) | 0.0478 (13) | 0.0650 (15) | 0.0197 (12) | 0.0323 (12) | 0.0053 (11) |
C7 | 0.0688 (14) | 0.0494 (13) | 0.0683 (15) | 0.0288 (12) | 0.0347 (12) | 0.0190 (11) |
C8 | 0.0560 (12) | 0.0581 (14) | 0.0479 (12) | 0.0286 (11) | 0.0216 (10) | 0.0166 (10) |
C9 | 0.0449 (10) | 0.0494 (12) | 0.0428 (11) | 0.0232 (9) | 0.0211 (8) | 0.0107 (9) |
C10 | 0.0551 (12) | 0.0552 (13) | 0.0405 (11) | 0.0254 (11) | 0.0199 (9) | 0.0131 (9) |
C11 | 0.0902 (17) | 0.0701 (16) | 0.0387 (12) | 0.0441 (14) | 0.0198 (12) | 0.0188 (11) |
C12 | 0.0861 (17) | 0.0691 (16) | 0.0412 (12) | 0.0391 (15) | 0.0124 (12) | 0.0127 (11) |
C13 | 0.114 (2) | 0.101 (2) | 0.0633 (18) | 0.073 (2) | 0.0142 (16) | 0.0096 (16) |
C14 | 0.0577 (13) | 0.0604 (14) | 0.0403 (11) | 0.0254 (11) | 0.0095 (10) | 0.0063 (10) |
C15 | 0.0749 (14) | 0.0583 (14) | 0.0374 (11) | 0.0346 (12) | 0.0161 (10) | 0.0088 (10) |
C16 | 0.105 (2) | 0.0784 (19) | 0.0522 (15) | 0.0481 (17) | 0.0356 (15) | 0.0166 (13) |
O1—C1 | 1.229 (3) | C6—H6 | 0.9300 |
O2—C10 | 1.203 (2) | C6—C7 | 1.387 (3) |
O3—C10 | 1.336 (3) | C7—H7 | 0.9300 |
O3—C11 | 1.444 (2) | C7—C8 | 1.371 (3) |
N1—C1 | 1.378 (3) | C8—H8 | 0.9300 |
N1—C9 | 1.401 (3) | C8—C9 | 1.393 (3) |
N1—C14 | 1.472 (3) | C11—H11A | 0.9700 |
C1—C2 | 1.450 (3) | C11—H11B | 0.9700 |
C2—H2 | 0.9300 | C11—C12 | 1.454 (3) |
C2—C3 | 1.345 (3) | C12—C13 | 1.155 (4) |
C3—C4 | 1.441 (3) | C13—H13 | 0.9300 |
C3—C10 | 1.497 (3) | C14—H14A | 0.9700 |
C4—C5 | 1.399 (3) | C14—H14B | 0.9700 |
C4—C9 | 1.418 (3) | C14—C15 | 1.464 (3) |
C5—H5 | 0.9300 | C15—C16 | 1.161 (3) |
C5—C6 | 1.377 (3) | C16—H16 | 0.9300 |
C10—O3—C11 | 115.86 (16) | C7—C8—H8 | 119.8 |
C1—N1—C9 | 123.77 (18) | C7—C8—C9 | 120.5 (2) |
C1—N1—C14 | 116.01 (19) | C9—C8—H8 | 119.8 |
C9—N1—C14 | 120.21 (18) | N1—C9—C4 | 119.30 (19) |
O1—C1—N1 | 121.4 (2) | C8—C9—N1 | 121.09 (19) |
O1—C1—C2 | 122.9 (2) | C8—C9—C4 | 119.6 (2) |
N1—C1—C2 | 115.6 (2) | O2—C10—O3 | 123.80 (19) |
C1—C2—H2 | 118.8 | O2—C10—C3 | 125.2 (2) |
C3—C2—C1 | 122.5 (2) | O3—C10—C3 | 110.91 (17) |
C3—C2—H2 | 118.8 | O3—C11—H11A | 110.4 |
C2—C3—C4 | 120.96 (19) | O3—C11—H11B | 110.4 |
C2—C3—C10 | 117.7 (2) | O3—C11—C12 | 106.68 (18) |
C4—C3—C10 | 121.16 (19) | H11A—C11—H11B | 108.6 |
C5—C4—C3 | 124.25 (19) | C12—C11—H11A | 110.4 |
C5—C4—C9 | 118.2 (2) | C12—C11—H11B | 110.4 |
C9—C4—C3 | 117.50 (19) | C13—C12—C11 | 176.9 (3) |
C4—C5—H5 | 119.3 | C12—C13—H13 | 180.0 |
C6—C5—C4 | 121.3 (2) | N1—C14—H14A | 109.0 |
C6—C5—H5 | 119.3 | N1—C14—H14B | 109.0 |
C5—C6—H6 | 120.2 | H14A—C14—H14B | 107.8 |
C5—C6—C7 | 119.6 (2) | C15—C14—N1 | 112.87 (18) |
C7—C6—H6 | 120.2 | C15—C14—H14A | 109.0 |
C6—C7—H7 | 119.6 | C15—C14—H14B | 109.0 |
C8—C7—C6 | 120.7 (2) | C16—C15—C14 | 177.4 (3) |
C8—C7—H7 | 119.6 | C15—C16—H16 | 180.0 |
D—H···A | D—H | H···A | D···A | D—H···A |
C16—H16···O2i | 0.93 | 2.34 | 3.214 (3) | 157 |
Symmetry code: (i) x, y, z−1. |
Footnotes
‡Additional correspondence author, e-mail: younes.ouzidan@usmba.ac.ma.
Acknowledgements
JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.
References
Bergh, J. C. S., Tötterman, T. H., Termander, B. C., Strandgarden, K. A.-M. P., Gunnarsson, P. O. G. & Nilsson, B. I. (1997). Cancer Invest. 15, 204–211. CrossRef CAS PubMed Web of Science Google Scholar
Chai, Y., Liu, M.-L., Lv, K., Feng, L.-S., Li, S.-J., Sun, L.-Y., Wang, S. & Guo, H.-Y. (2011). Eur. J. Med. Chem. 46, 4267–4273. Web of Science CrossRef CAS PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Elderfield, R. C. & LeVon, E. F. (1960). J. Org. Chem. 25, 1576–1583. CrossRef CAS Web of Science Google Scholar
Filali Baba, Y., Kandri Rodi, Y., Hayani, S., Jasinski, J. P., Kaur, M. & Essassi, E. M. (2017). IUCrData, 2, x170917. Google Scholar
Hoshino, K., Inoue, K., Murakami, Y., Kurosaka, Y., Namba, K., Kashimoto, Y., Uoyama, S., Okumura, R., Higuchi, S. & Otani, T. (2008). Antimicrob. Agents Chemother. 52, 65–76. Web of Science CrossRef PubMed CAS Google Scholar
Musiol, R., Serda, M., Hensel-Bielowka, S. & Polanski, J. (2010). Curr. Med. Chem. 17, 1960–1973. CrossRef CAS PubMed Google Scholar
Rigaku (2015). CrysAlis PRO, Rigaku Americas, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.