organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Prop-2-ynyl 2-oxo-1-(prop-2-yn­yl)-1,2-di­hydro­quinoline-4-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco
*Correspondence e-mail: yassir.filali.baba@gmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 19 July 2017; accepted 20 July 2017; online 25 July 2017)

In the title compound, C16H11NO3, the dihedral angles between the mean planes of the quinolone ring system and the prop-2-ynyl and carb­oxy­prop-2-ynyl groups are 87.9 (8) and 41.6 (8)°, respectively. In the crystal, a weak C—H⋯O inter­action links the mol­ecules into chains along the c-axis direction and weak ππ stacking inter­actions further stabilize the crystal packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quinolone derivatives are a classical division of organic chemistry and many of these mol­ecules have shown remarkable biological properties, including exceptional anti­bacterial activity (Chai et al., 2011[Chai, Y., Liu, M.-L., Lv, K., Feng, L.-S., Li, S.-J., Sun, L.-Y., Wang, S. & Guo, H.-Y. (2011). Eur. J. Med. Chem. 46, 4267-4273.]; Hoshino et al., 2008[Hoshino, K., Inoue, K., Murakami, Y., Kurosaka, Y., Namba, K., Kashimoto, Y., Uoyama, S., Okumura, R., Higuchi, S. & Otani, T. (2008). Antimicrob. Agents Chemother. 52, 65-76.]). Quinolone derivatives are also frequently associated with medicinal applications, such as anti-fungal (Musiol et al., 2010[Musiol, R., Serda, M., Hensel-Bielowka, S. & Polanski, J. (2010). Curr. Med. Chem. 17, 1960-1973.]), anti-tumoral (Bergh et al., 1997[Bergh, J. C. S., Tötterman, T. H., Termander, B. C., Strandgarden, K. A.-M. P., Gunnarsson, P. O. G. & Nilsson, B. I. (1997). Cancer Invest. 15, 204-211.]) and anti-cancer drugs (Elderfield & LeVon, 1960[Elderfield, R. C. & LeVon, E. F. (1960). J. Org. Chem. 25, 1576-1583.]). As a continuation of our research work devoted to the development of substituted quinoline derivatives (Filali Baba et al., 2017[Filali Baba, Y., Kandri Rodi, Y., Hayani, S., Jasinski, J. P., Kaur, M. & Essassi, E. M. (2017). IUCrData, 2, x170917.]), we report here the synthesis of prop-2-ynyl 2-oxo-1-(prop-2-yn­yl)-1,2-di­hydroquinoline-4-carboxyl­ate, by reacting 2-oxo-1,2-di­hydro­quinoline-4-carb­oxy­lic acid with 3-bromo­prop-1-yne, under phase-transfer catalysis conditions using tetra-n-butyl ammonium bromide (TBAB) as a catalyst and potassium carbonate as a base.

The title compound crystallizes with one independent mol­ecule in the asymmetric unit (Fig. 1[link]). The CH2 group attached to N1 occupies an equatorial position with respect to the mean plane of the quinolone ring. The mean plane through the prop-2-ynyl substituent (N1/C14/C15/C16) makes a dihedral angle of 87.9 (8)° with the mean plane of the quinolone ring system. The dihedral angle between the mean planes of the quinolone ring and the carb­oxy-prop-2-ynyl unit is 41.6 (8)°.

[Figure 1]
Figure 1
Structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level.

In the crystal, a single weak C16—H16⋯O2 inter­molecular inter­action links the mol­ecules forming one-dimensional chains along the c axis (Fig. 2[link], Table 1[link]). In addition, weak ππ stacking inter­actions involving the quinolone rings form wave-like layers [inter­centroid distances Cg1⋯Cg2ii = 3.6169 (5) Å, Cg2⋯Cg1iii = 3.8112 (6) Å; symmetry codes: (ii) −x, 1 − y, 1 − z; (iii) 1 − x, 1 − y, 1 − z; Cg1 and Cg2 are the centroids of the N1/C1/C2/C3/C4/C9 and C4–C9 rings, respectively].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O2i 0.93 2.34 3.214 (3) 157
Symmetry code: (i) x, y, z-1.
[Figure 2]
Figure 2
Mol­ecular packing for the title compound, viewed along the b axis. Hydrogen bonds are drawn as dashed lines and H atoms not involved in the packing have been omitted for clarity.

Synthesis and crystallization

A solution of 0.5 g (2.64 mmol) 2-oxo-1,2-di­hydro­quinoline-4-carb­oxy­lic acid in 10 ml of DMF was mixed with 0.55 ml (6.34 mmol) 3-bromo­prop-1-yne, and 1.09 g (7.92 mmol) K2CO3 and 0.17 g (0.52 mmol) TBAB. The reaction mixture was stirred at room temperature in DMF for 6 h. After removal of salts by filtration, the DMF was evaporated under reduced pressure and the residue obtained was dissolved in di­chloro­methane. The organic phase was dried over Na2SO4 then concentrated in vacuo. The resulting mixture was chromatographed on a silica gel column [eluent: ethyl acetate / hexane (1/2)]. Crystals were obtained when the solvent was allowed to evaporate (yield = 87%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H11NO3
Mr 265.26
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.3070 (11), 8.7763 (13), 11.2927 (13)
α, β, γ (°) 91.059 (11), 107.867 (12), 109.814 (14)
V3) 642.36 (17)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.79
Crystal size (mm) 0.4 × 0.12 × 0.06
 
Data collection
Diffractometer Rigaku Oxford Diffraction
Absorption correction Multi-scan (CrysAlis PRO; Rigaku, 2015[Rigaku (2015). CrysAlis PRO, Rigaku Americas, The Woodlands, Texas, USA.])
Tmin, Tmax 0.833, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3962, 2418, 1624
Rint 0.028
(sin θ/λ)max−1) 0.613
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.142, 1.02
No. of reflections 2418
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.20
Computer programs: CrysAlis PRO (Rigaku, 2015[Rigaku (2015). CrysAlis PRO, Rigaku Americas, The Woodlands, Texas, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku, 2015); cell refinement: CrysAlis PRO (Rigaku, 2015); data reduction: CrysAlis PRO (Rigaku, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Prop-2-ynyl 2-oxo-1-(prop-2-ynyl)-1,2-dihydroquinoline-4-carboxylate top
Crystal data top
C16H11NO3Z = 2
Mr = 265.26F(000) = 276
Triclinic, P1Dx = 1.371 Mg m3
a = 7.3070 (11) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.7763 (13) ÅCell parameters from 943 reflections
c = 11.2927 (13) Åθ = 4.1–70.2°
α = 91.059 (11)°µ = 0.79 mm1
β = 107.867 (12)°T = 293 K
γ = 109.814 (14)°Plate, colourless
V = 642.36 (17) Å30.4 × 0.12 × 0.06 mm
Data collection top
Rigaku Oxford Diffraction
diffractometer
2418 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1624 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 16.0416 pixels mm-1θmax = 71.0°, θmin = 4.2°
ω scansh = 86
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku, 2015)
k = 1010
Tmin = 0.833, Tmax = 1.000l = 1313
3962 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0621P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2418 reflectionsΔρmax = 0.14 e Å3
181 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were placed in calculated positions and refined using the riding model with C—H bond lengths of 0.93 Å (CH) or 0.97 Å (CH2). Isotropic displacement parameters for these atoms were set to 1.2 times Ueq of the parent atom. In the final cycles of refinement, 4 outliers were omitted.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0174 (3)0.0643 (2)0.29315 (16)0.0698 (5)
O20.3186 (3)0.4028 (2)0.79834 (14)0.0621 (5)
O30.4300 (2)0.2141 (2)0.74109 (13)0.0568 (4)
N10.0822 (3)0.3367 (2)0.32712 (15)0.0455 (4)
C10.0936 (3)0.1917 (3)0.3668 (2)0.0499 (5)
C20.1935 (3)0.1990 (3)0.5004 (2)0.0497 (5)
H20.20450.10410.53170.060*
C30.2707 (3)0.3380 (3)0.58080 (18)0.0433 (5)
C40.2700 (3)0.4906 (3)0.53617 (18)0.0418 (5)
C50.3604 (3)0.6417 (3)0.6127 (2)0.0513 (5)
H50.42520.64660.69840.062*
C60.3554 (4)0.7834 (3)0.5639 (2)0.0585 (6)
H60.41450.88270.61630.070*
C70.2618 (4)0.7773 (3)0.4359 (2)0.0571 (6)
H70.25760.87280.40290.068*
C80.1753 (3)0.6319 (3)0.3576 (2)0.0507 (5)
H80.11630.63000.27170.061*
C90.1753 (3)0.4868 (3)0.40563 (19)0.0424 (5)
C100.3424 (3)0.3264 (3)0.71837 (19)0.0477 (5)
C110.4825 (4)0.1777 (3)0.8687 (2)0.0624 (6)
H11A0.35850.12160.88860.075*
H11B0.56230.27770.92710.075*
C120.6031 (4)0.0739 (3)0.8771 (2)0.0645 (7)
C130.7044 (5)0.0037 (4)0.8812 (3)0.0873 (10)
H130.78600.06610.88450.105*
C140.0384 (3)0.3270 (3)0.19428 (19)0.0534 (6)
H14A0.14550.21930.16640.064*
H14B0.10520.40660.18670.064*
C150.0878 (4)0.3570 (3)0.1123 (2)0.0546 (6)
C160.1826 (5)0.3752 (4)0.0445 (2)0.0720 (7)
H160.25860.38980.00980.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0967 (13)0.0552 (10)0.0540 (10)0.0319 (10)0.0157 (9)0.0002 (8)
O20.0823 (11)0.0796 (12)0.0427 (9)0.0450 (10)0.0278 (8)0.0133 (8)
O30.0763 (10)0.0698 (11)0.0410 (8)0.0430 (9)0.0235 (7)0.0188 (7)
N10.0536 (10)0.0534 (11)0.0363 (9)0.0261 (9)0.0166 (7)0.0099 (8)
C10.0610 (13)0.0505 (13)0.0457 (12)0.0254 (11)0.0217 (10)0.0091 (10)
C20.0652 (13)0.0503 (12)0.0453 (12)0.0298 (11)0.0241 (10)0.0160 (9)
C30.0476 (11)0.0541 (12)0.0395 (11)0.0259 (10)0.0212 (9)0.0114 (9)
C40.0429 (10)0.0502 (12)0.0413 (11)0.0217 (9)0.0208 (8)0.0086 (9)
C50.0569 (12)0.0546 (13)0.0465 (12)0.0216 (11)0.0211 (10)0.0054 (10)
C60.0689 (14)0.0478 (13)0.0650 (15)0.0197 (12)0.0323 (12)0.0053 (11)
C70.0688 (14)0.0494 (13)0.0683 (15)0.0288 (12)0.0347 (12)0.0190 (11)
C80.0560 (12)0.0581 (14)0.0479 (12)0.0286 (11)0.0216 (10)0.0166 (10)
C90.0449 (10)0.0494 (12)0.0428 (11)0.0232 (9)0.0211 (8)0.0107 (9)
C100.0551 (12)0.0552 (13)0.0405 (11)0.0254 (11)0.0199 (9)0.0131 (9)
C110.0902 (17)0.0701 (16)0.0387 (12)0.0441 (14)0.0198 (12)0.0188 (11)
C120.0861 (17)0.0691 (16)0.0412 (12)0.0391 (15)0.0124 (12)0.0127 (11)
C130.114 (2)0.101 (2)0.0633 (18)0.073 (2)0.0142 (16)0.0096 (16)
C140.0577 (13)0.0604 (14)0.0403 (11)0.0254 (11)0.0095 (10)0.0063 (10)
C150.0749 (14)0.0583 (14)0.0374 (11)0.0346 (12)0.0161 (10)0.0088 (10)
C160.105 (2)0.0784 (19)0.0522 (15)0.0481 (17)0.0356 (15)0.0166 (13)
Geometric parameters (Å, º) top
O1—C11.229 (3)C6—H60.9300
O2—C101.203 (2)C6—C71.387 (3)
O3—C101.336 (3)C7—H70.9300
O3—C111.444 (2)C7—C81.371 (3)
N1—C11.378 (3)C8—H80.9300
N1—C91.401 (3)C8—C91.393 (3)
N1—C141.472 (3)C11—H11A0.9700
C1—C21.450 (3)C11—H11B0.9700
C2—H20.9300C11—C121.454 (3)
C2—C31.345 (3)C12—C131.155 (4)
C3—C41.441 (3)C13—H130.9300
C3—C101.497 (3)C14—H14A0.9700
C4—C51.399 (3)C14—H14B0.9700
C4—C91.418 (3)C14—C151.464 (3)
C5—H50.9300C15—C161.161 (3)
C5—C61.377 (3)C16—H160.9300
C10—O3—C11115.86 (16)C7—C8—H8119.8
C1—N1—C9123.77 (18)C7—C8—C9120.5 (2)
C1—N1—C14116.01 (19)C9—C8—H8119.8
C9—N1—C14120.21 (18)N1—C9—C4119.30 (19)
O1—C1—N1121.4 (2)C8—C9—N1121.09 (19)
O1—C1—C2122.9 (2)C8—C9—C4119.6 (2)
N1—C1—C2115.6 (2)O2—C10—O3123.80 (19)
C1—C2—H2118.8O2—C10—C3125.2 (2)
C3—C2—C1122.5 (2)O3—C10—C3110.91 (17)
C3—C2—H2118.8O3—C11—H11A110.4
C2—C3—C4120.96 (19)O3—C11—H11B110.4
C2—C3—C10117.7 (2)O3—C11—C12106.68 (18)
C4—C3—C10121.16 (19)H11A—C11—H11B108.6
C5—C4—C3124.25 (19)C12—C11—H11A110.4
C5—C4—C9118.2 (2)C12—C11—H11B110.4
C9—C4—C3117.50 (19)C13—C12—C11176.9 (3)
C4—C5—H5119.3C12—C13—H13180.0
C6—C5—C4121.3 (2)N1—C14—H14A109.0
C6—C5—H5119.3N1—C14—H14B109.0
C5—C6—H6120.2H14A—C14—H14B107.8
C5—C6—C7119.6 (2)C15—C14—N1112.87 (18)
C7—C6—H6120.2C15—C14—H14A109.0
C6—C7—H7119.6C15—C14—H14B109.0
C8—C7—C6120.7 (2)C16—C15—C14177.4 (3)
C8—C7—H7119.6C15—C16—H16180.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O2i0.932.343.214 (3)157
Symmetry code: (i) x, y, z1.
 

Footnotes

Additional correspondence author, e-mail: younes.ouzidan@usmba.ac.ma.

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationBergh, J. C. S., Tötterman, T. H., Termander, B. C., Strandgarden, K. A.-M. P., Gunnarsson, P. O. G. & Nilsson, B. I. (1997). Cancer Invest. 15, 204–211.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChai, Y., Liu, M.-L., Lv, K., Feng, L.-S., Li, S.-J., Sun, L.-Y., Wang, S. & Guo, H.-Y. (2011). Eur. J. Med. Chem. 46, 4267–4273.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElderfield, R. C. & LeVon, E. F. (1960). J. Org. Chem. 25, 1576–1583.  CrossRef CAS Web of Science Google Scholar
First citationFilali Baba, Y., Kandri Rodi, Y., Hayani, S., Jasinski, J. P., Kaur, M. & Essassi, E. M. (2017). IUCrData, 2, x170917.  Google Scholar
First citationHoshino, K., Inoue, K., Murakami, Y., Kurosaka, Y., Namba, K., Kashimoto, Y., Uoyama, S., Okumura, R., Higuchi, S. & Otani, T. (2008). Antimicrob. Agents Chemother. 52, 65–76.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMusiol, R., Serda, M., Hensel-Bielowka, S. & Polanski, J. (2010). Curr. Med. Chem. 17, 1960–1973.  CrossRef CAS PubMed Google Scholar
First citationRigaku (2015). CrysAlis PRO, Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds