organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Pyridin-2-yl)methyl 2-oxo-1-[(pyridin-2-yl)meth­yl]-1,2-di­hydro­quinoline-4-carboxyl­ate hemihydrate

aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco
*Correspondence e-mail: yassir.filali.baba@gmail.com

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 4 July 2017; accepted 13 July 2017; online 25 July 2017)

In the title compound, C22H17N3O3·0.5H2O, the heterocyclic portion of the di­hydro­quinoline moiety is distinctly nonplanar. Two quinoline­carboxyl­ate mol­ecules are associated through hydrogen bonding to a disordered lattice water mol­ecule. These units stack along the a-axis direction assisted by C—H⋯O and C—H⋯N hydrogen bonds, as well as C—H⋯π(ring) inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quinoline and its derivatives have aroused great attention in recent years due to the wide variety of their biological activities, relevant to applications as anti­cancer agents (Elderfield & Le Von, 1960[Elderfield, R. C. & Le Von, E. F. (1960). J. Org. Chem. 25, 1576-1583.]), HIV protease inhibitors (Garrouste et al., 1998[Garrouste, P., Pawlowski, M., Tonnaire, T., Sicsic, S., Dumy, P., De Rosny, E., ReboudRavaux, M., Fulcrand, P. & Martinez, J. (1998). Eur. J. Med. Chem. 33, 423-436.]) and anti­leishmanial agents (Desrivot et al., 2007[Desrivot, J., Herrenknecht, C., Ponchel, G., Garbi, N., Prina, E., Fournet, A., Bories, C., Figadére, B., Hocquemiller, R. & Loiseau, P. M. (2007). Biomed. Pharmacother. 61, 441-450.]). As a continuation of our research work devoted to the development of substituted quinoline derivatives (Filali Baba et al., 2016[Filali Baba, Y., Mague, J. T., Kandri Rodi, Y., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016). IUCrData, 1, x160997.]), we report here the synthesis of (pyridin-2-yl)methyl 2-oxo-1-[(pyridin-2-yl)meth­yl]-1,2-di­hydro­quinoline-4-carboxyl­ate hemihydrate by the reaction of 2-oxo-1,2-di­hydro­quinoline-4-carb­oxy­lic acid with 2-(bromo­meth­yl)pyridine hydro­bromide under phase-transfer catalysis conditions using tetra-n-butyl­ammonium bromide (TBAB) as catalyst and potassium carbonate as base.

In the title mol­ecule (Fig. 1[link]), the N1/C1/C6–C9 ring deviates from planarity by between 0.0464 (13) (for atom C9) and −0.0498 (12) Å (N1), with an r.m.s. deviation from the mean plane of 0.0329 Å. The dihedral angles between this plane and those of the C1–C6 and N3/C18–C22 rings are 3.2 (1) and 88.54 (4)°, respectively. The C7/C10/O1/O2 unit is twisted out of the mean plane of the N1/C1/C6–C9 ring by 11.8 (1)°, while the dihedral angle between this plane and the N2/C12–C16 ring is 18.1 (1)°. In the crystal, two mol­ecules are connected by a disordered lattice water mol­ecule through O4—H4A⋯O3 and O4—H4B⋯O3ii hydrogen bonds, as well as by weaker C—H⋯O inter­actions (Table 1[link] and Fig. 2[link]). These units stack along the a-axis direction assisted by C17—H17A⋯O3i and C2—H2⋯N3i hydrogen bonds, and C11—H11ACg1i inter­actions (Cg1 is the centroid of the C12–C16/N2 ring) (Table 1[link] and Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C12–C16/N2 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N3i 0.98 (3) 2.50 (3) 3.344 (3) 145 (2)
O4—H4A⋯O3 0.87 1.87 2.647 (4) 147
O4—H4B⋯O3ii 0.87 2.26 2.989 (4) 141
C8—H8⋯O4ii 0.97 (2) 2.28 (2) 3.113 (4) 143.7 (17)
C13—H13⋯O4ii 1.00 (2) 2.44 (2) 3.345 (4) 149.3 (19)
C17—H17A⋯O3i 1.00 (2) 2.57 (2) 3.307 (3) 130.4 (16)
C11—H11ACg1i 1.02 (2) 2.85 (2) 3.673 (2) 137.9 (15)
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1.
[Figure 1]
Figure 1
The title mol­ecule, showing the atom-labelling scheme and 50% probability displacement ellipsoids. Only one orientation of the disordered water mol­ecule is shown and its hydrogen bonding to the main molcule is designated by a dashed line.
[Figure 2]
Figure 2
Detail of the inter­molecular inter­actions projected onto (011). O—H⋯O hydrogen bonds are indicated by red dashed lines, C—H⋯O and C—H⋯N hydrogen bonds by black dashed lines, and the C—H⋯π(ring) inter­action by a green dashed line. [Symmetry codes: (i) x + 1, y, z; (ii) −x, −y + 1, −z + 1.]
[Figure 3]
Figure 3
The packing of the title compound, viewed along the a-axis direction, with hydrogen bonds depicted as in Fig. 2[link].

Synthesis and crystallization

A solution of 0.5 g (2.64 mmol) of 2-oxo-1,2-di­hydro­quinoline-4-carb­oxy­lic acid in 10 ml di­methyl­formamide (DMF) was mixed with 1.47 g (5.82 mmol) of 2-(bromo­meth­yl)pyridine hydro­bromide, 1.09 g (7.92 mmol) of K2CO3 and 0.17 g (0.52 mmol) of TBAB. The reaction mixture was stirred at room temperature in DMF for 6 h. After removal of the salts by filtration, the DMF was evaporated under reduced pressure and the residue obtained was dissolved in di­chloro­methane. The organic phase was dried over Na2SO4 and then concentrated in vacuo. The resulting mixture was chromatographed on a silica-gel column (eluent: ethyl acetate–hexane 1:3 v/v). The product was obtained in 85% yield and was crystallized by slow evaporation from an ethanol solution.

Refinement

Crystal and refinement details are presented in Table 2[link]. The lattice water mol­ecule is disordered about the centre of symmetry at (0, [1 \over 2], [1 \over 2]).

Table 2
Experimental details

Crystal data
Chemical formula C22H17N3O3·0.5H2O
Mr 380.40
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 4.9634 (1), 14.0708 (3), 25.7168 (6)
β (°) 90.602 (1)
V3) 1795.94 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.80
Crystal size (mm) 0.16 × 0.10 × 0.01
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.86, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 13518, 3502, 2673
Rint 0.052
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.106, 1.04
No. of reflections 3502
No. of parameters 330
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.21
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(Pyridin-2-yl)methyl 2-oxo-1-[(pyridin-2-yl)methyl]-1,2-dihydroquinoline-4-carboxylate hemihydrate top
Crystal data top
C22H17N3O3·0.5H2OF(000) = 796
Mr = 380.40Dx = 1.407 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 4.9634 (1) ÅCell parameters from 7827 reflections
b = 14.0708 (3) Åθ = 3.4–72.4°
c = 25.7168 (6) ŵ = 0.80 mm1
β = 90.602 (1)°T = 150 K
V = 1795.94 (7) Å3Plate, colourless
Z = 40.16 × 0.10 × 0.01 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3502 independent reflections
Radiation source: INCOATEC IµS micro-focus source2673 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.052
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 3.4°
ω scansh = 65
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1517
Tmin = 0.86, Tmax = 0.99l = 3130
13518 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: difference Fourier map
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.031P)2 + 0.9731P]
where P = (Fo2 + 2Fc2)/3
3502 reflections(Δ/σ)max < 0.001
330 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The lattice water molecule is disordered about the centre of symmetry at 0,1/2,1/2. The associated hydrogen atoms were included as riding contributions with idealized geometry.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.6090 (3)0.70283 (11)0.69423 (5)0.0385 (4)
O20.2853 (3)0.61435 (10)0.65746 (5)0.0306 (3)
O30.4227 (3)0.61004 (11)0.47233 (5)0.0378 (4)
N10.7442 (3)0.71558 (11)0.49832 (6)0.0268 (3)
N20.0427 (3)0.46214 (12)0.74963 (6)0.0317 (4)
N30.5118 (3)0.84261 (13)0.42986 (6)0.0376 (4)
C10.8541 (4)0.77580 (13)0.53640 (7)0.0262 (4)
C21.0459 (4)0.84395 (15)0.52284 (8)0.0355 (5)
H21.108 (5)0.8472 (18)0.4868 (10)0.054 (7)*
C31.1542 (4)0.90375 (16)0.55987 (9)0.0399 (5)
H31.288 (5)0.9520 (18)0.5494 (9)0.050 (7)*
C41.0711 (4)0.89791 (15)0.61121 (9)0.0368 (5)
H41.143 (5)0.9417 (17)0.6375 (9)0.046 (7)*
C50.8819 (4)0.83122 (14)0.62528 (8)0.0310 (4)
H50.833 (5)0.8278 (16)0.6618 (9)0.039 (6)*
C60.7705 (4)0.76796 (13)0.58865 (7)0.0244 (4)
C70.5721 (4)0.69590 (13)0.60066 (7)0.0242 (4)
C80.4610 (4)0.64377 (14)0.56205 (7)0.0285 (4)
H80.328 (4)0.5950 (15)0.5682 (8)0.035 (6)*
C90.5352 (4)0.65462 (14)0.50801 (7)0.0279 (4)
C100.4961 (4)0.67449 (13)0.65563 (7)0.0259 (4)
C110.2171 (4)0.58148 (15)0.70873 (7)0.0307 (4)
H11A0.387 (5)0.5565 (15)0.7270 (8)0.036 (6)*
H11B0.142 (4)0.6371 (16)0.7294 (8)0.037 (6)*
C120.0124 (4)0.50362 (13)0.70393 (7)0.0263 (4)
C130.1113 (4)0.47750 (14)0.65748 (7)0.0302 (4)
H130.060 (5)0.5114 (17)0.6247 (9)0.047 (7)*
C140.3031 (4)0.40591 (15)0.65822 (8)0.0358 (5)
H140.389 (5)0.3878 (18)0.6266 (10)0.057 (8)*
C150.3632 (5)0.36315 (16)0.70488 (9)0.0389 (5)
H150.496 (5)0.3130 (19)0.7073 (10)0.057 (8)*
C160.2284 (4)0.39295 (15)0.74904 (8)0.0361 (5)
H160.259 (5)0.3606 (17)0.7842 (9)0.046 (7)*
C170.8454 (4)0.71720 (16)0.44491 (7)0.0313 (4)
H17A1.045 (5)0.7265 (16)0.4468 (8)0.041 (6)*
H17B0.804 (4)0.6514 (16)0.4298 (8)0.033 (6)*
C180.7117 (4)0.79080 (13)0.41056 (7)0.0252 (4)
C190.7988 (4)0.80085 (14)0.35978 (7)0.0304 (4)
H190.951 (5)0.7607 (17)0.3464 (9)0.045 (7)*
C200.6714 (5)0.86600 (15)0.32762 (8)0.0355 (5)
H200.728 (5)0.8726 (17)0.2904 (10)0.050 (7)*
C210.4628 (4)0.92012 (14)0.34694 (8)0.0317 (4)
H210.365 (5)0.9702 (17)0.3254 (9)0.045 (6)*
C220.3924 (4)0.90607 (17)0.39807 (8)0.0387 (5)
H220.246 (5)0.9434 (18)0.4128 (10)0.056 (7)*
O40.0130 (7)0.4897 (2)0.46975 (12)0.0499 (8)0.5
H4A0.15570.51800.48210.060*0.5
H4B0.04160.45450.49540.060*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0519 (9)0.0436 (9)0.0201 (7)0.0178 (7)0.0006 (6)0.0004 (6)
O20.0314 (7)0.0403 (8)0.0200 (6)0.0096 (6)0.0027 (5)0.0058 (5)
O30.0441 (9)0.0476 (9)0.0217 (7)0.0048 (7)0.0019 (6)0.0015 (6)
N10.0263 (8)0.0349 (9)0.0194 (7)0.0016 (6)0.0035 (6)0.0056 (6)
N20.0383 (10)0.0337 (9)0.0232 (8)0.0068 (7)0.0044 (7)0.0033 (7)
N30.0335 (9)0.0522 (11)0.0274 (9)0.0121 (8)0.0095 (7)0.0120 (8)
C10.0251 (9)0.0290 (10)0.0245 (9)0.0037 (7)0.0018 (7)0.0043 (7)
C20.0334 (11)0.0394 (12)0.0338 (11)0.0026 (9)0.0078 (8)0.0079 (9)
C30.0364 (12)0.0376 (12)0.0459 (13)0.0099 (9)0.0035 (9)0.0098 (10)
C40.0395 (12)0.0330 (11)0.0378 (11)0.0087 (9)0.0000 (9)0.0017 (9)
C50.0343 (11)0.0284 (10)0.0303 (10)0.0034 (8)0.0016 (8)0.0002 (8)
C60.0248 (10)0.0246 (9)0.0239 (9)0.0019 (7)0.0016 (7)0.0049 (7)
C70.0247 (9)0.0269 (9)0.0211 (9)0.0019 (7)0.0022 (7)0.0028 (7)
C80.0288 (10)0.0344 (11)0.0222 (9)0.0031 (8)0.0012 (7)0.0041 (8)
C90.0311 (10)0.0319 (10)0.0208 (9)0.0011 (8)0.0001 (7)0.0029 (8)
C100.0289 (10)0.0252 (9)0.0237 (9)0.0018 (7)0.0031 (7)0.0015 (7)
C110.0377 (12)0.0364 (11)0.0180 (9)0.0070 (9)0.0058 (8)0.0039 (8)
C120.0294 (10)0.0286 (10)0.0210 (9)0.0011 (7)0.0055 (7)0.0010 (7)
C130.0332 (11)0.0330 (11)0.0245 (10)0.0002 (8)0.0035 (8)0.0008 (8)
C140.0415 (12)0.0362 (12)0.0296 (11)0.0047 (9)0.0021 (9)0.0059 (9)
C150.0428 (13)0.0331 (12)0.0410 (12)0.0107 (9)0.0045 (9)0.0018 (9)
C160.0444 (12)0.0332 (11)0.0309 (11)0.0086 (9)0.0066 (9)0.0039 (9)
C170.0323 (11)0.0425 (12)0.0194 (9)0.0044 (9)0.0050 (8)0.0056 (8)
C180.0232 (9)0.0315 (10)0.0210 (9)0.0044 (7)0.0011 (7)0.0027 (7)
C190.0357 (11)0.0334 (11)0.0224 (9)0.0029 (8)0.0054 (8)0.0001 (8)
C200.0495 (13)0.0355 (11)0.0215 (9)0.0054 (9)0.0040 (8)0.0029 (8)
C210.0353 (11)0.0309 (11)0.0288 (10)0.0049 (8)0.0026 (8)0.0057 (8)
C220.0348 (12)0.0475 (13)0.0339 (11)0.0085 (10)0.0054 (9)0.0108 (10)
O40.050 (2)0.057 (2)0.0420 (18)0.0207 (16)0.0022 (15)0.0030 (15)
Geometric parameters (Å, º) top
O1—C101.203 (2)C11—C121.498 (3)
O2—C101.347 (2)C11—H11A1.02 (2)
O2—C111.441 (2)C11—H11B1.02 (2)
O3—C91.240 (2)C12—C131.387 (3)
N1—C91.371 (2)C13—C141.386 (3)
N1—C11.401 (2)C13—H131.01 (2)
N1—C171.468 (2)C14—C151.378 (3)
N2—C161.341 (3)C14—H140.95 (3)
N2—C121.343 (2)C15—C161.377 (3)
N3—C181.331 (2)C15—H150.97 (3)
N3—C221.344 (3)C16—H161.03 (2)
C1—C21.398 (3)C17—C181.510 (3)
C1—C61.415 (2)C17—H17A1.00 (2)
C2—C31.376 (3)C17—H17B1.02 (2)
C2—H20.98 (3)C18—C191.387 (2)
C3—C41.390 (3)C19—C201.383 (3)
C3—H30.99 (3)C19—H191.01 (2)
C4—C51.379 (3)C20—C211.382 (3)
C4—H40.98 (2)C20—H201.00 (2)
C5—C61.405 (3)C21—C221.378 (3)
C5—H50.97 (2)C21—H211.02 (2)
C6—C71.449 (2)C22—H220.98 (3)
C7—C81.348 (3)O4—O4i1.589 (6)
C7—C101.498 (2)O4—H4A0.8701
C8—C91.450 (2)O4—H4B0.8700
C8—H80.97 (2)
C10—O2—C11115.06 (14)H11A—C11—H11B109.2 (17)
C9—N1—C1122.76 (15)N2—C12—C13123.09 (18)
C9—N1—C17116.55 (16)N2—C12—C11112.95 (16)
C1—N1—C17120.67 (16)C13—C12—C11123.96 (16)
C16—N2—C12116.89 (17)C14—C13—C12118.61 (18)
C18—N3—C22117.55 (17)C14—C13—H13122.5 (14)
C2—C1—N1120.11 (17)C12—C13—H13118.8 (14)
C2—C1—C6119.83 (18)C15—C14—C13118.95 (19)
N1—C1—C6120.06 (16)C15—C14—H14122.0 (16)
C3—C2—C1120.60 (19)C13—C14—H14119.1 (16)
C3—C2—H2120.1 (15)C16—C15—C14118.5 (2)
C1—C2—H2119.2 (15)C16—C15—H15119.6 (15)
C2—C3—C4120.2 (2)C14—C15—H15121.8 (15)
C2—C3—H3119.4 (14)N2—C16—C15123.93 (19)
C4—C3—H3120.4 (14)N2—C16—H16114.8 (13)
C5—C4—C3120.0 (2)C15—C16—H16121.2 (14)
C5—C4—H4119.4 (15)N1—C17—C18113.91 (16)
C3—C4—H4120.7 (15)N1—C17—H17A107.7 (13)
C4—C5—C6121.29 (19)C18—C17—H17A111.6 (13)
C4—C5—H5117.7 (14)N1—C17—H17B105.7 (12)
C6—C5—H5121.0 (14)C18—C17—H17B108.3 (12)
C5—C6—C1118.06 (17)H17A—C17—H17B109.3 (18)
C5—C6—C7124.32 (17)N3—C18—C19122.41 (18)
C1—C6—C7117.62 (16)N3—C18—C17118.83 (16)
C8—C7—C6119.84 (17)C19—C18—C17118.76 (17)
C8—C7—C10118.73 (17)C20—C19—C18119.05 (19)
C6—C7—C10121.36 (16)C20—C19—H19120.5 (13)
C7—C8—C9122.87 (18)C18—C19—H19120.4 (13)
C7—C8—H8122.7 (13)C21—C20—C19119.32 (18)
C9—C8—H8114.4 (13)C21—C20—H20120.6 (14)
O3—C9—N1121.20 (17)C19—C20—H20120.0 (14)
O3—C9—C8122.63 (18)C22—C21—C20117.54 (19)
N1—C9—C8116.14 (16)C22—C21—H21119.6 (13)
O1—C10—O2122.33 (16)C20—C21—H21122.8 (13)
O1—C10—C7126.34 (17)N3—C22—C21124.1 (2)
O2—C10—C7111.27 (15)N3—C22—H22116.5 (15)
O2—C11—C12108.95 (15)C21—C22—H22119.4 (15)
O2—C11—H11A109.3 (13)O4i—O4—H4A68.4
C12—C11—H11A109.9 (12)O4i—O4—H4B48.2
O2—C11—H11B108.8 (13)H4A—O4—H4B104.0
C12—C11—H11B110.6 (13)
C9—N1—C1—C2172.75 (18)C11—O2—C10—C7173.42 (16)
C17—N1—C1—C25.5 (3)C8—C7—C10—O1166.6 (2)
C9—N1—C1—C67.1 (3)C6—C7—C10—O110.5 (3)
C17—N1—C1—C6174.69 (17)C8—C7—C10—O210.8 (2)
N1—C1—C2—C3179.69 (19)C6—C7—C10—O2172.11 (16)
C6—C1—C2—C30.1 (3)C10—O2—C11—C12170.60 (16)
C1—C2—C3—C40.9 (3)C16—N2—C12—C130.5 (3)
C2—C3—C4—C50.8 (3)C16—N2—C12—C11178.63 (18)
C3—C4—C5—C60.3 (3)O2—C11—C12—N2173.67 (16)
C4—C5—C6—C11.3 (3)O2—C11—C12—C137.2 (3)
C4—C5—C6—C7179.69 (19)N2—C12—C13—C140.7 (3)
C2—C1—C6—C51.2 (3)C11—C12—C13—C14178.30 (19)
N1—C1—C6—C5178.64 (17)C12—C13—C14—C150.2 (3)
C2—C1—C6—C7179.73 (17)C13—C14—C15—C160.4 (3)
N1—C1—C6—C70.4 (3)C12—N2—C16—C150.2 (3)
C5—C6—C7—C8174.55 (19)C14—C15—C16—N20.7 (4)
C1—C6—C7—C84.5 (3)C9—N1—C17—C1891.8 (2)
C5—C6—C7—C108.4 (3)C1—N1—C17—C1886.6 (2)
C1—C6—C7—C10172.59 (16)C22—N3—C18—C190.4 (3)
C6—C7—C8—C91.5 (3)C22—N3—C18—C17178.54 (19)
C10—C7—C8—C9175.68 (17)N1—C17—C18—N33.3 (3)
C1—N1—C9—O3171.88 (18)N1—C17—C18—C19177.71 (18)
C17—N1—C9—O36.4 (3)N3—C18—C19—C201.0 (3)
C1—N1—C9—C89.9 (3)C17—C18—C19—C20177.95 (18)
C17—N1—C9—C8171.83 (17)C18—C19—C20—C210.7 (3)
C7—C8—C9—O3176.17 (19)C19—C20—C21—C220.1 (3)
C7—C8—C9—N15.6 (3)C18—N3—C22—C210.5 (3)
C11—O2—C10—O14.1 (3)C20—C21—C22—N30.8 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N3ii0.98 (3)2.50 (3)3.344 (3)145 (2)
O4—H4A···O30.871.872.647 (4)147
O4—H4B···O3i0.872.262.989 (4)141
C8—H8···O4i0.97 (2)2.28 (2)3.113 (4)143.7 (17)
C13—H13···O4i1.00 (2)2.44 (2)3.345 (4)149.3 (19)
C17—H17A···O3ii1.00 (2)2.57 (2)3.307 (3)130.4 (16)
C11—H11A···Cg1ii1.02 (2)2.85 (2)3.673 (2)137.9 (15)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z.
 

Acknowledgements

The support of Tulane University for the Tulane Crystallography Laboratory is gratefully acknowledged.

Funding information

Funding for this research was provided by: National Science Foundation Major Research Instrumentation (NSF-MRI) Program (grant No. 1228232).

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesrivot, J., Herrenknecht, C., Ponchel, G., Garbi, N., Prina, E., Fournet, A., Bories, C., Figadére, B., Hocquemiller, R. & Loiseau, P. M. (2007). Biomed. Pharmacother. 61, 441–450.  CrossRef PubMed CAS Google Scholar
First citationElderfield, R. C. & Le Von, E. F. (1960). J. Org. Chem. 25, 1576–1583.  CrossRef CAS Google Scholar
First citationFilali Baba, Y., Mague, J. T., Kandri Rodi, Y., Ouzidan, Y., Essassi, E. M. & Zouihri, H. (2016). IUCrData, 1, x160997.  Google Scholar
First citationGarrouste, P., Pawlowski, M., Tonnaire, T., Sicsic, S., Dumy, P., De Rosny, E., ReboudRavaux, M., Fulcrand, P. & Martinez, J. (1998). Eur. J. Med. Chem. 33, 423–436.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds