organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Methyl 2-cyano-2-(1,3-di­thian-2-yl­­idene)acetate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, 25000 Constantine, Algeria, bUMR 6226 CNRS–Université Rennes 1 `Sciences Chimiques de Rennes', Equipe `Matière Condensée et Systèmes Electroactifs', Bâtiment 10C, Campus de Beaulieu, 263 Avenue du Général Leclerc, F-35042 Rennes, France, and cUnité de Recherche de Chimie de l'Environnement et Moléculaire, Structurale CHEMS, Université des frères Mentouri Constantine, Constantine, Algeria
*Correspondence e-mail: n_hamdouni@yahoo.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 21 June 2017; accepted 8 July 2017; online 18 July 2017)

The title compound, C8H9NO2S2, contains a 1,3-di­thiane ring which has a twist-boat conformation. In the crystal, there are no significant inter­molecuar inter­actions present. The dihedral angle between the planes of the acetate group and the dithiane ring is 177.1 (2)°

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Ketene di­thio­acetals are useful inter­mediates in organic synthesis and have been used for the synthesis of heterocyclic compounds (Kolb, 1990[Kolb, M. (1990). Synthesis, pp. 171-190.]; Ila et al., 2001[Ila, H., Junjappa, H. & Barun, O. (2001). J. Organomet. Chem. 624, 34-40.]). The synthesis of tri­fluoro­methyl ketene di­thio­acetals plays an important role in the field of pharmaceuticals and agrochemicals (Gouault-Bironneau et al., 2012[Gouault-Bironneau, S., Timoshenko, V. M., Grellepois, F. & Portella, C. (2012). J. Fluorine Chem. 134, 164-171.]; Timoshenko & Portella, 2009[Timoshenko, V. M. & Portella, C. (2009). J. Fluorine Chem. 130, 586-590.]). They have also been used to develop domino reactions owing to their ability to produce a wide range of substances of structural diversity and varied biological activities (Pan et al., 2013[Pan, L., Bi, X. & Liu, Q. (2013). Chem. Soc. Rev. 42, 1251-1286.]; Samai et al., 2012[Samai, S., Nandi, G. C. & Singh, M. S. (2012). Tetrahedron, 68, 1247-1252.]). The α-C ketene di­thio­acetals are reactive towards electrophiles (Okuyama, 1986[Okuyama, T. (1986). Acc. Chem. Res. 19, 370-376.]; Okuyama, 1984[Okuyama, T. (1984). J. Am. Chem. Soc. 106, 7134-7139.]). They act as a precursors for C—C bond formation at the α-C atom (Kouno et al., 1998[Kouno, R., Okauchi, T., Nakamura, M., Ichikawa, J. & Minami, T. (1998). J. Org. Chem. 63, 6239-6246.]; Minami et al., 1996[Minami, T., Okauchi, T., Matsuki, H., Nakamura, M., Ichikawa, J. & Ishida, M. (1996). J. Org. Chem. 61, 8132-8140.]). They have also been used for chlorination reactions to generated vinyl halides from α-acetyl ketene dithioacetals; these dithioacetals are further transformed into the corresponding α-ethynyl ketene dithioacetals (Liu et al., 2003[Liu, Q., Che, G., Yu, H., Liu, Y., Zhang, J., Zhang, Q. & Dong, D. (2003). J. Org. Chem. 68, 9148-9150.]; Dong et al., 2005[Dong, D., Liu, Y., Zhao, Y., Qi, Y., Wang, Z. & Liu, Q. (2005). Synthesis, pp. 85-91.]). In the present study, we report the synthesis and crystal structure of the new title 1,3-di­thian-2-yl­idene derivative, which has a dipolar moment of the order of 6.8 Debye.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The 1,3-di­thiane ring has a twist-boat conformation [puckering parameters: amplitude (Q) = 0.632 (3) Å, θ = 106.5 (3)° and φ = 114.3 (3)°]. In this ring, the two C—S bond lengths adjacent to the C4=C2 bond [1.381 (3) Å] are C4—S1 = 1.733 (2) Å and C4—S3 = 1.736 (2) Å. The geometric parameters and the deformation of the 1,3-di­thiane ring are similar to those found for related structures. For example, in methyl 2-(di­phenyl­methyl­ene­amino)-2-(1,3-di­thian-2-yl­idene)acetate (Dolling et al., 1993[Dolling, W., Frost, K., Heinemann, F. & Hartung, H. (1993). Z. Naturforsch. Teil B, 48, 493-504.]) or (3Z,6E)-dimethyl 3,7-di­chloro-2,8-bis­(1,3-di­thian-2-yl­idene)-5-(4-nitro­phen­yl)nona-3,6-diene-1,9-dioate (Zhao et al., 2007[Zhao, Y.-L., Chen, L., Liu, Q. & Li, D.-W. (2007). Synlett, pp. 37-42.]). In these two compounds, the C—S bond lengths vary from 1.736 to 1.758 Å and the C=C bond length varies from 1.349 to 1.366 Å. In both compounds, the 1,3-di­thiane rings also have twist-boat conformations.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

In the crystal of the title compound, there are no significant directional inter­molecuar inter­actions present (Fig. 2[link]).

[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound.

Synthesis and crystallization

In a three-necked round-bottomed flask swept by a nitro­gen current and equipped with a dropping funnel containing 1,3-di­bromo­propane, a suspension of K2CO3 (42 g, 0.3 mol) mixed with the corresponding active methyl­ene compound, NCCH2COOCH3 (0.15 mol) in DMF (50 ml), was stirred with a magnetic stirrer. Carbon di­sulfide (9 ml, 0.15 mol) was added all at once, at room temperature. Stirring was continued for 10 min, after which 1,3-di­bromo­propane (0.12 mol) was added dropwise over a period of 20 min. After further stirring for 7 h at room temperature, ice-cold water (500 ml) was added to the reaction mixture. The precipitate that formed was filtered off, dried and then dissolved in ethanol, giving pale-yellow needle-like crystals on slow evaporation of the solvent.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C8H9NO2S2
Mr 215.28
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 7.4927 (6), 15.2501 (19), 8.5522 (9)
β (°) 94.923 (9)
V3) 973.61 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.51
Crystal size (mm) 0.28 × 0.17 × 0.03
 
Data collection
Diffractometer Agilent Technologies Xcalibur Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.842, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6282, 3076, 1740
Rint 0.036
(sin θ/λ)max−1) 0.754
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.155, 1.00
No. of reflections 3076
No. of parameters 118
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.54, −0.40
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Methyl 2-cyano-2-(1,3-dithian-2-ylidene)acetate top
Crystal data top
C8H9NO2S2F(000) = 448
Mr = 215.28Dx = 1.469 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 1541 reflections
a = 7.4927 (6) Åθ = 3.7–28.9°
b = 15.2501 (19) ŵ = 0.51 mm1
c = 8.5522 (9) ÅT = 293 K
β = 94.923 (9)°Needle, pale yellow
V = 973.61 (18) Å30.28 × 0.17 × 0.03 mm
Z = 4
Data collection top
Agilent Technologies Xcalibur Eos
diffractometer
3076 independent reflections
Radiation source: Enhance (Mo) X-ray Source1740 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 8.02 pixels mm-1θmax = 32.4°, θmin = 3.0°
ω scansh = 611
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1022
Tmin = 0.842, Tmax = 1.000l = 1210
6282 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0578P)2]
where P = (Fo2 + 2Fc2)/3
3076 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.40 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48769 (9)0.16638 (5)0.33331 (8)0.0486 (2)
S30.82543 (9)0.07137 (6)0.46302 (9)0.0594 (3)
O20.3383 (2)0.10646 (12)0.8114 (2)0.0458 (4)
O10.2734 (2)0.17772 (14)0.5839 (2)0.0537 (5)
C20.5515 (3)0.10466 (16)0.6310 (3)0.0360 (5)
N10.7540 (3)0.0327 (2)0.8531 (3)0.0665 (8)
C10.3739 (3)0.13390 (17)0.6686 (3)0.0386 (6)
C40.6154 (3)0.11524 (15)0.4855 (3)0.0357 (5)
C80.1685 (3)0.1339 (2)0.8649 (4)0.0567 (8)
H8A0.15690.11060.96780.085*
H8B0.07230.11260.79370.085*
H8C0.1640.19680.86870.085*
C30.6647 (3)0.06433 (18)0.7544 (3)0.0427 (6)
C70.6114 (4)0.1453 (2)0.1655 (3)0.0561 (8)
H7A0.60580.0830.14250.067*
H7B0.55340.17590.07550.067*
C60.8063 (4)0.1728 (2)0.1858 (4)0.0711 (10)
H6A0.85710.16710.08570.085*
H6B0.81240.23430.21520.085*
C50.9137 (4)0.1229 (3)0.3017 (5)0.0970 (15)
H5A1.00790.16180.34480.116*
H5B0.97180.07740.24530.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0506 (4)0.0592 (4)0.0353 (4)0.0148 (3)0.0001 (3)0.0032 (3)
S30.0458 (4)0.0808 (6)0.0529 (5)0.0241 (4)0.0109 (3)0.0159 (4)
O20.0390 (9)0.0551 (11)0.0442 (10)0.0026 (9)0.0084 (8)0.0065 (10)
O10.0442 (10)0.0666 (13)0.0500 (11)0.0146 (9)0.0036 (8)0.0112 (11)
C20.0326 (11)0.0367 (12)0.0385 (13)0.0006 (10)0.0013 (10)0.0006 (11)
N10.0526 (14)0.093 (2)0.0536 (15)0.0132 (14)0.0026 (12)0.0237 (16)
C10.0373 (12)0.0397 (13)0.0383 (13)0.0041 (11)0.0010 (10)0.0008 (12)
C40.0370 (11)0.0309 (11)0.0382 (13)0.0003 (10)0.0035 (10)0.0015 (11)
C80.0416 (14)0.0693 (19)0.0615 (18)0.0008 (15)0.0172 (13)0.0024 (18)
C30.0368 (12)0.0495 (15)0.0420 (15)0.0028 (12)0.0041 (11)0.0057 (13)
C70.0578 (17)0.076 (2)0.0345 (14)0.0023 (16)0.0042 (12)0.0018 (16)
C60.0625 (19)0.087 (2)0.065 (2)0.0043 (19)0.0135 (17)0.020 (2)
C50.0493 (17)0.153 (4)0.091 (3)0.012 (2)0.0211 (18)0.062 (3)
Geometric parameters (Å, º) top
S1—C41.733 (2)C8—H8A0.96
S1—C71.803 (3)C8—H8B0.96
S3—C41.736 (2)C8—H8C0.96
S3—C51.765 (3)C7—C61.515 (4)
O2—C11.339 (3)C7—H7A0.97
O2—C81.450 (3)C7—H7B0.97
O1—C11.202 (3)C6—C51.440 (4)
C2—C41.381 (3)C6—H6A0.97
C2—C31.435 (3)C6—H6B0.97
C2—C11.465 (3)C5—H5A0.97
N1—C31.138 (3)C5—H5B0.97
C4—S1—C7103.25 (13)C6—C7—S1114.6 (2)
C4—S3—C5108.61 (15)C6—C7—H7A108.6
C1—O2—C8116.5 (2)S1—C7—H7A108.6
C4—C2—C3119.0 (2)C6—C7—H7B108.6
C4—C2—C1123.6 (2)S1—C7—H7B108.6
C3—C2—C1117.4 (2)H7A—C7—H7B107.6
O1—C1—O2124.1 (2)C5—C6—C7114.1 (3)
O1—C1—C2124.8 (2)C5—C6—H6A108.7
O2—C1—C2111.1 (2)C7—C6—H6A108.7
C2—C4—S1121.18 (18)C5—C6—H6B108.7
C2—C4—S3116.27 (18)C7—C6—H6B108.7
S1—C4—S3122.51 (15)H6A—C6—H6B107.6
O2—C8—H8A109.5C6—C5—S3123.3 (2)
O2—C8—H8B109.5C6—C5—H5A106.5
H8A—C8—H8B109.5S3—C5—H5A106.5
O2—C8—H8C109.5C6—C5—H5B106.5
H8A—C8—H8C109.5S3—C5—H5B106.5
H8B—C8—H8C109.5H5A—C5—H5B106.5
N1—C3—C2179.5 (3)
C8—O2—C1—O0041.3 (4)C1—C2—C4—S3177.10 (18)
C8—O2—C1—C2177.8 (2)C7—S1—C4—C2169.9 (2)
C4—C2—C1—O18.2 (4)C7—S1—C4—S37.9 (2)
C3—C2—C1—O1170.7 (3)C5—S3—C4—C2159.8 (2)
C4—C2—C1—O2172.7 (2)C5—S3—C4—S122.4 (3)
C3—C2—C1—O28.4 (3)C4—S1—C7—C653.9 (3)
C3—C2—C4—S1178.08 (18)S1—C7—C6—C566.7 (4)
C1—C2—C4—S10.8 (4)C7—C6—C5—S326.9 (6)
C3—C2—C4—S34.0 (3)C4—S3—C5—C616.1 (5)
 

Acknowledgements

We thank Mr F. Saidi, Engineer at the Laboratory of Crystallography, University Constantine 1, for assistance in collecting the X-ray data on the Xcalibur diffractometer.

Funding information

Funding for this research was provided by: Laboratoire de Cristallographie, Departement de Physique, Universite Constantine 1, Algeria.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDolling, W., Frost, K., Heinemann, F. & Hartung, H. (1993). Z. Naturforsch. Teil B, 48, 493–504.  Google Scholar
First citationDong, D., Liu, Y., Zhao, Y., Qi, Y., Wang, Z. & Liu, Q. (2005). Synthesis, pp. 85–91.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGouault-Bironneau, S., Timoshenko, V. M., Grellepois, F. & Portella, C. (2012). J. Fluorine Chem. 134, 164–171.  CAS Google Scholar
First citationIla, H., Junjappa, H. & Barun, O. (2001). J. Organomet. Chem. 624, 34–40.  CrossRef CAS Google Scholar
First citationKolb, M. (1990). Synthesis, pp. 171–190.  CrossRef Google Scholar
First citationKouno, R., Okauchi, T., Nakamura, M., Ichikawa, J. & Minami, T. (1998). J. Org. Chem. 63, 6239–6246.  CrossRef CAS Google Scholar
First citationLiu, Q., Che, G., Yu, H., Liu, Y., Zhang, J., Zhang, Q. & Dong, D. (2003). J. Org. Chem. 68, 9148–9150.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMinami, T., Okauchi, T., Matsuki, H., Nakamura, M., Ichikawa, J. & Ishida, M. (1996). J. Org. Chem. 61, 8132–8140.  CSD CrossRef CAS Google Scholar
First citationOkuyama, T. (1984). J. Am. Chem. Soc. 106, 7134–7139.  CrossRef CAS Google Scholar
First citationOkuyama, T. (1986). Acc. Chem. Res. 19, 370–376.  CrossRef CAS Google Scholar
First citationPan, L., Bi, X. & Liu, Q. (2013). Chem. Soc. Rev. 42, 1251–1286.  CrossRef CAS Google Scholar
First citationSamai, S., Nandi, G. C. & Singh, M. S. (2012). Tetrahedron, 68, 1247–1252.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTimoshenko, V. M. & Portella, C. (2009). J. Fluorine Chem. 130, 586–590.  CrossRef CAS Google Scholar
First citationZhao, Y.-L., Chen, L., Liu, Q. & Li, D.-W. (2007). Synlett, pp. 37–42.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds