organic compounds
Methyl 2-cyano-2-(1,3-dithian-2-ylidene)acetate
aLaboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, 25000 Constantine, Algeria, bUMR 6226 CNRS–Université Rennes 1 `Sciences Chimiques de Rennes', Equipe `Matière Condensée et Systèmes Electroactifs', Bâtiment 10C, Campus de Beaulieu, 263 Avenue du Général Leclerc, F-35042 Rennes, France, and cUnité de Recherche de Chimie de l'Environnement et Moléculaire, Structurale CHEMS, Université des frères Mentouri Constantine, Constantine, Algeria
*Correspondence e-mail: n_hamdouni@yahoo.fr
The title compound, C8H9NO2S2, contains a 1,3-dithiane ring which has a twist-boat conformation. In the crystal, there are no significant intermolecuar interactions present. The dihedral angle between the planes of the acetate group and the dithiane ring is 177.1 (2)°
Keywords: crystal structure; 1,3-dithiane; cyano; ketene dithioacetals.
CCDC reference: 1561034
Structure description
Ketene dithioacetals are useful intermediates in organic synthesis and have been used for the synthesis of ; Ila et al., 2001). The synthesis of trifluoromethyl ketene dithioacetals plays an important role in the field of pharmaceuticals and agrochemicals (Gouault-Bironneau et al., 2012; Timoshenko & Portella, 2009). They have also been used to develop domino reactions owing to their ability to produce a wide range of substances of structural diversity and varied biological activities (Pan et al., 2013; Samai et al., 2012). The α-C ketene dithioacetals are reactive towards electrophiles (Okuyama, 1986; Okuyama, 1984). They act as a precursors for C—C bond formation at the α-C atom (Kouno et al., 1998; Minami et al., 1996). They have also been used for chlorination reactions to generated vinyl halides from α-acetyl ketene these are further transformed into the corresponding α-ethynyl ketene (Liu et al., 2003; Dong et al., 2005). In the present study, we report the synthesis and of the new title 1,3-dithian-2-ylidene derivative, which has a dipolar moment of the order of 6.8 Debye.
(Kolb, 1990The molecular structure of the title compound is shown in Fig. 1. The 1,3-dithiane ring has a twist-boat conformation [puckering parameters: amplitude (Q) = 0.632 (3) Å, θ = 106.5 (3)° and φ = 114.3 (3)°]. In this ring, the two C—S bond lengths adjacent to the C4=C2 bond [1.381 (3) Å] are C4—S1 = 1.733 (2) Å and C4—S3 = 1.736 (2) Å. The geometric parameters and the deformation of the 1,3-dithiane ring are similar to those found for related structures. For example, in methyl 2-(diphenylmethyleneamino)-2-(1,3-dithian-2-ylidene)acetate (Dolling et al., 1993) or (3Z,6E)-dimethyl 3,7-dichloro-2,8-bis(1,3-dithian-2-ylidene)-5-(4-nitrophenyl)nona-3,6-diene-1,9-dioate (Zhao et al., 2007). In these two compounds, the C—S bond lengths vary from 1.736 to 1.758 Å and the C=C bond length varies from 1.349 to 1.366 Å. In both compounds, the 1,3-dithiane rings also have twist-boat conformations.
In the crystal of the title compound, there are no significant directional intermolecuar interactions present (Fig. 2).
Synthesis and crystallization
In a three-necked round-bottomed flask swept by a nitrogen current and equipped with a dropping funnel containing 1,3-dibromopropane, a suspension of K2CO3 (42 g, 0.3 mol) mixed with the corresponding active methylene compound, NCCH2COOCH3 (0.15 mol) in DMF (50 ml), was stirred with a magnetic stirrer. Carbon disulfide (9 ml, 0.15 mol) was added all at once, at room temperature. Stirring was continued for 10 min, after which 1,3-dibromopropane (0.12 mol) was added dropwise over a period of 20 min. After further stirring for 7 h at room temperature, ice-cold water (500 ml) was added to the reaction mixture. The precipitate that formed was filtered off, dried and then dissolved in ethanol, giving pale-yellow needle-like crystals on slow evaporation of the solvent.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 1561034
https://doi.org/10.1107/S2414314617010185/su5381sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617010185/su5381Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617010185/su5381Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).C8H9NO2S2 | F(000) = 448 |
Mr = 215.28 | Dx = 1.469 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.7107 Å |
Hall symbol: -P 2ybc | Cell parameters from 1541 reflections |
a = 7.4927 (6) Å | θ = 3.7–28.9° |
b = 15.2501 (19) Å | µ = 0.51 mm−1 |
c = 8.5522 (9) Å | T = 293 K |
β = 94.923 (9)° | Needle, pale yellow |
V = 973.61 (18) Å3 | 0.28 × 0.17 × 0.03 mm |
Z = 4 |
Agilent Technologies Xcalibur Eos diffractometer | 3076 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1740 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
Detector resolution: 8.02 pixels mm-1 | θmax = 32.4°, θmin = 3.0° |
ω scans | h = −6→11 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | k = −10→22 |
Tmin = 0.842, Tmax = 1.000 | l = −12→10 |
6282 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.058 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.155 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0578P)2] where P = (Fo2 + 2Fc2)/3 |
3076 reflections | (Δ/σ)max < 0.001 |
118 parameters | Δρmax = 0.54 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
0 constraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.48769 (9) | 0.16638 (5) | 0.33331 (8) | 0.0486 (2) | |
S3 | 0.82543 (9) | 0.07137 (6) | 0.46302 (9) | 0.0594 (3) | |
O2 | 0.3383 (2) | 0.10646 (12) | 0.8114 (2) | 0.0458 (4) | |
O1 | 0.2734 (2) | 0.17772 (14) | 0.5839 (2) | 0.0537 (5) | |
C2 | 0.5515 (3) | 0.10466 (16) | 0.6310 (3) | 0.0360 (5) | |
N1 | 0.7540 (3) | 0.0327 (2) | 0.8531 (3) | 0.0665 (8) | |
C1 | 0.3739 (3) | 0.13390 (17) | 0.6686 (3) | 0.0386 (6) | |
C4 | 0.6154 (3) | 0.11524 (15) | 0.4855 (3) | 0.0357 (5) | |
C8 | 0.1685 (3) | 0.1339 (2) | 0.8649 (4) | 0.0567 (8) | |
H8A | 0.1569 | 0.1106 | 0.9678 | 0.085* | |
H8B | 0.0723 | 0.1126 | 0.7937 | 0.085* | |
H8C | 0.164 | 0.1968 | 0.8687 | 0.085* | |
C3 | 0.6647 (3) | 0.06433 (18) | 0.7544 (3) | 0.0427 (6) | |
C7 | 0.6114 (4) | 0.1453 (2) | 0.1655 (3) | 0.0561 (8) | |
H7A | 0.6058 | 0.083 | 0.1425 | 0.067* | |
H7B | 0.5534 | 0.1759 | 0.0755 | 0.067* | |
C6 | 0.8063 (4) | 0.1728 (2) | 0.1858 (4) | 0.0711 (10) | |
H6A | 0.8571 | 0.1671 | 0.0857 | 0.085* | |
H6B | 0.8124 | 0.2343 | 0.2152 | 0.085* | |
C5 | 0.9137 (4) | 0.1229 (3) | 0.3017 (5) | 0.0970 (15) | |
H5A | 1.0079 | 0.1618 | 0.3448 | 0.116* | |
H5B | 0.9718 | 0.0774 | 0.2453 | 0.116* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0506 (4) | 0.0592 (4) | 0.0353 (4) | 0.0148 (3) | −0.0001 (3) | 0.0032 (3) |
S3 | 0.0458 (4) | 0.0808 (6) | 0.0529 (5) | 0.0241 (4) | 0.0109 (3) | 0.0159 (4) |
O2 | 0.0390 (9) | 0.0551 (11) | 0.0442 (10) | 0.0026 (9) | 0.0084 (8) | 0.0065 (10) |
O1 | 0.0442 (10) | 0.0666 (13) | 0.0500 (11) | 0.0146 (9) | 0.0036 (8) | 0.0112 (11) |
C2 | 0.0326 (11) | 0.0367 (12) | 0.0385 (13) | −0.0006 (10) | 0.0013 (10) | 0.0006 (11) |
N1 | 0.0526 (14) | 0.093 (2) | 0.0536 (15) | 0.0132 (14) | 0.0026 (12) | 0.0237 (16) |
C1 | 0.0373 (12) | 0.0397 (13) | 0.0383 (13) | −0.0041 (11) | 0.0010 (10) | −0.0008 (12) |
C4 | 0.0370 (11) | 0.0309 (11) | 0.0382 (13) | 0.0003 (10) | −0.0035 (10) | −0.0015 (11) |
C8 | 0.0416 (14) | 0.0693 (19) | 0.0615 (18) | −0.0008 (15) | 0.0172 (13) | 0.0024 (18) |
C3 | 0.0368 (12) | 0.0495 (15) | 0.0420 (15) | 0.0028 (12) | 0.0041 (11) | 0.0057 (13) |
C7 | 0.0578 (17) | 0.076 (2) | 0.0345 (14) | 0.0023 (16) | 0.0042 (12) | −0.0018 (16) |
C6 | 0.0625 (19) | 0.087 (2) | 0.065 (2) | −0.0043 (19) | 0.0135 (17) | 0.020 (2) |
C5 | 0.0493 (17) | 0.153 (4) | 0.091 (3) | 0.012 (2) | 0.0211 (18) | 0.062 (3) |
S1—C4 | 1.733 (2) | C8—H8A | 0.96 |
S1—C7 | 1.803 (3) | C8—H8B | 0.96 |
S3—C4 | 1.736 (2) | C8—H8C | 0.96 |
S3—C5 | 1.765 (3) | C7—C6 | 1.515 (4) |
O2—C1 | 1.339 (3) | C7—H7A | 0.97 |
O2—C8 | 1.450 (3) | C7—H7B | 0.97 |
O1—C1 | 1.202 (3) | C6—C5 | 1.440 (4) |
C2—C4 | 1.381 (3) | C6—H6A | 0.97 |
C2—C3 | 1.435 (3) | C6—H6B | 0.97 |
C2—C1 | 1.465 (3) | C5—H5A | 0.97 |
N1—C3 | 1.138 (3) | C5—H5B | 0.97 |
C4—S1—C7 | 103.25 (13) | C6—C7—S1 | 114.6 (2) |
C4—S3—C5 | 108.61 (15) | C6—C7—H7A | 108.6 |
C1—O2—C8 | 116.5 (2) | S1—C7—H7A | 108.6 |
C4—C2—C3 | 119.0 (2) | C6—C7—H7B | 108.6 |
C4—C2—C1 | 123.6 (2) | S1—C7—H7B | 108.6 |
C3—C2—C1 | 117.4 (2) | H7A—C7—H7B | 107.6 |
O1—C1—O2 | 124.1 (2) | C5—C6—C7 | 114.1 (3) |
O1—C1—C2 | 124.8 (2) | C5—C6—H6A | 108.7 |
O2—C1—C2 | 111.1 (2) | C7—C6—H6A | 108.7 |
C2—C4—S1 | 121.18 (18) | C5—C6—H6B | 108.7 |
C2—C4—S3 | 116.27 (18) | C7—C6—H6B | 108.7 |
S1—C4—S3 | 122.51 (15) | H6A—C6—H6B | 107.6 |
O2—C8—H8A | 109.5 | C6—C5—S3 | 123.3 (2) |
O2—C8—H8B | 109.5 | C6—C5—H5A | 106.5 |
H8A—C8—H8B | 109.5 | S3—C5—H5A | 106.5 |
O2—C8—H8C | 109.5 | C6—C5—H5B | 106.5 |
H8A—C8—H8C | 109.5 | S3—C5—H5B | 106.5 |
H8B—C8—H8C | 109.5 | H5A—C5—H5B | 106.5 |
N1—C3—C2 | 179.5 (3) | ||
C8—O2—C1—O004 | −1.3 (4) | C1—C2—C4—S3 | −177.10 (18) |
C8—O2—C1—C2 | 177.8 (2) | C7—S1—C4—C2 | −169.9 (2) |
C4—C2—C1—O1 | −8.2 (4) | C7—S1—C4—S3 | 7.9 (2) |
C3—C2—C1—O1 | 170.7 (3) | C5—S3—C4—C2 | −159.8 (2) |
C4—C2—C1—O2 | 172.7 (2) | C5—S3—C4—S1 | 22.4 (3) |
C3—C2—C1—O2 | −8.4 (3) | C4—S1—C7—C6 | −53.9 (3) |
C3—C2—C4—S1 | −178.08 (18) | S1—C7—C6—C5 | 66.7 (4) |
C1—C2—C4—S1 | 0.8 (4) | C7—C6—C5—S3 | −26.9 (6) |
C3—C2—C4—S3 | 4.0 (3) | C4—S3—C5—C6 | −16.1 (5) |
Acknowledgements
We thank Mr F. Saidi, Engineer at the Laboratory of Crystallography, University Constantine 1, for assistance in collecting the X-ray data on the Xcalibur diffractometer.
Funding information
Funding for this research was provided by: Laboratoire de Cristallographie, Departement de Physique, Universite Constantine 1, Algeria.
References
Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England. Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Dolling, W., Frost, K., Heinemann, F. & Hartung, H. (1993). Z. Naturforsch. Teil B, 48, 493–504. Google Scholar
Dong, D., Liu, Y., Zhao, Y., Qi, Y., Wang, Z. & Liu, Q. (2005). Synthesis, pp. 85–91. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gouault-Bironneau, S., Timoshenko, V. M., Grellepois, F. & Portella, C. (2012). J. Fluorine Chem. 134, 164–171. CAS Google Scholar
Ila, H., Junjappa, H. & Barun, O. (2001). J. Organomet. Chem. 624, 34–40. CrossRef CAS Google Scholar
Kolb, M. (1990). Synthesis, pp. 171–190. CrossRef Google Scholar
Kouno, R., Okauchi, T., Nakamura, M., Ichikawa, J. & Minami, T. (1998). J. Org. Chem. 63, 6239–6246. CrossRef CAS Google Scholar
Liu, Q., Che, G., Yu, H., Liu, Y., Zhang, J., Zhang, Q. & Dong, D. (2003). J. Org. Chem. 68, 9148–9150. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Minami, T., Okauchi, T., Matsuki, H., Nakamura, M., Ichikawa, J. & Ishida, M. (1996). J. Org. Chem. 61, 8132–8140. CSD CrossRef CAS Google Scholar
Okuyama, T. (1984). J. Am. Chem. Soc. 106, 7134–7139. CrossRef CAS Google Scholar
Okuyama, T. (1986). Acc. Chem. Res. 19, 370–376. CrossRef CAS Google Scholar
Pan, L., Bi, X. & Liu, Q. (2013). Chem. Soc. Rev. 42, 1251–1286. CrossRef CAS Google Scholar
Samai, S., Nandi, G. C. & Singh, M. S. (2012). Tetrahedron, 68, 1247–1252. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Timoshenko, V. M. & Portella, C. (2009). J. Fluorine Chem. 130, 586–590. CrossRef CAS Google Scholar
Zhao, Y.-L., Chen, L., Liu, Q. & Li, D.-W. (2007). Synlett, pp. 37–42. CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.