organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Methyl­pyrazine-2-carboxamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Wichita State University, Wichita, KS 67260, USA, and bCrystallographic laboratory, University of California, San Diego, LaJolla, CA 92093, USA
*Correspondence e-mail: paul.rillema@wichita.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 13 July 2017; accepted 24 July 2017; online 28 July 2017)

The title compound, C6H7N3O, is nearly planar, with a dihedral angle of 2.14 (11)° between the pyrazine ring and the mean plane of the carboxamide group [C—C(=O)—N]. In the crystal, mol­ecules are linked via pairs of N—H⋯O hydrogen bonds forming inversion dimers with an R22(8) ring motif. These dimers are further linked by a pair of N—H⋯N hydrogen bonds, enclosing an R22(10) ring motif, and C—H⋯O hydrogen bonds, forming ribbons lying parallel to the ab plane. The ribbons are linked by offset ππ inter­actions [inter­centroid distance = 3.759 (1) Å], forming two sets of mutually perpendicular slabs parallel to planes (110) and (1-10).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, is an inter­mediate in the preparation of 2-bromo-5-methyl­pyrazine (Madhusudhan et al., 2009[Madhusudhan, G., Vysabhattar, R., Reddy, R. & Narayana, B. (2009). Org. Chem. Ind. J. 5, 274-277.]). The latter compound has been used to synthesize 5,5′-dimethyl-2,2′-bi­pyrazine (Pefkianakis et al., 2008[Pefkianakis, E. K., Tzanetos, N. P. & Kallitsis, J. K. (2008). Chem. Mater. 20, 6254-6262.]) derivatives as bidentate ligands to coordinate to transition metals. The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The bond lengths of the methyl­pyrazine component are similar to those found in methyl 5-methyl-2-pyrazine­carboxyl­ate (Rillema et al., 2017[Rillema, D. P., KomReddy, V., Senaratne, N. K. & Eichhorn, D. M. (2017). IUCrData, 2, x170997.]). The mol­ecule is planar with a dihedral angle of 2.14 (11)° between the pyrazine ring (N2/N3/C2–C5) and the mean plane of the carboxamide group [atoms C2—C1(=O1)—N1].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling and 50% probability displacement ellipsoids.

In the crystal, mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming classical amide–amide inversion dimers with an R22(8) ring motif (Table 1[link] and Fig. 2[link]). These dimers are further linked by pairs of N—H⋯N hydrogen bonds, enclosing R22(10) ring motifs, and C—H⋯O hydrogen bonds, forming ribbons lying parallel to (001); see Table 1[link] and Fig. 2[link]. The ribbons are linked in the a-axis direction by offset ππ inter­actions, forming two sets of mutually perpendicular slabs parallel to (110) and (1[\overline{1}]0), as shown in Fig. 3[link] [CgCgi,ii = 3.759 (1) Å, Cg is the centroid of the pyrazine ring, inter­planar distance = 3.386 (1) Å, slippage = 1.63 Å, symmetry codes: (i) −1 + x, y, z; (ii) 1 + x, y, z].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1i 0.94 (2) 1.96 (2) 2.905 (2) 178 (2)
N1—H1A⋯N2ii 0.92 (2) 2.34 (2) 3.072 (2) 136 (2)
C4—H4⋯O1iii 0.95 2.40 3.339 (3) 168
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x-1, y-1, z.
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]).
[Figure 3]
Figure 3
A view normal to the ab plane of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1[link]).

Synthesis and crystallization

Methyl 5-methyl-2-pyrazine­carboxyl­ate (80.0 g, 0.657 mole) (Rillema et al., 2017[Rillema, D. P., KomReddy, V., Senaratne, N. K. & Eichhorn, D. M. (2017). IUCrData, 2, x170997.]) was added to 600 ml of methanol in a 1 litre round-bottomed flask. The flask was immersed in an ice bath, the contents were cooled to ca 273 K, stirred with a magnetic stirrer and then purged with ammonia gas for 4 h. The reaction progress was monitored by thin-layer chromatography (TLC). After completion of the reaction, the product was separated by filtration and washed with pre-cooled methanol (2 × 30 ml) to give the title compound as a light-brown coloured solid. It was recrystallized by dissolving a small amount in methanol and then allowing the methanol to evaporate slowly, yielding colourless needles.

Refinement

Crystal data, data collection and refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H7N3O
Mr 137.15
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 3.7592 (9), 6.7317 (13), 25.290 (5)
β (°) 93.106 (14)
V3) 639.0 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.22 × 0.11 × 0.09
 
Data collection
Diffractometer Bruker X8 APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.218, 0.259
No. of measured, independent and observed [I > 2σ(I)] reflections 7302, 1182, 849
Rint 0.046
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.104, 1.03
No. of reflections 1182
No. of parameters 100
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.21
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009).

5-Methylpyrazine-2-carboxamide top
Crystal data top
C6H7N3OF(000) = 288
Mr = 137.15Dx = 1.425 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 3.7592 (9) ÅCell parameters from 1367 reflections
b = 6.7317 (13) Åθ = 3.1–24.9°
c = 25.290 (5) ŵ = 0.10 mm1
β = 93.106 (14)°T = 100 K
V = 639.0 (2) Å3Needle, colourless
Z = 40.22 × 0.11 × 0.09 mm
Data collection top
Bruker X8 APEXII
diffractometer
1182 independent reflections
Radiation source: sealed tube, fine-focus849 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 7.9 pixels mm-1θmax = 25.4°, θmin = 3.1°
ω and φ scansh = 44
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 88
Tmin = 0.218, Tmax = 0.259l = 3030
7302 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: mixed
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.1949P]
where P = (Fo2 + 2Fc2)/3
1182 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.20 e Å3
2 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9776 (4)0.95545 (19)0.42480 (5)0.0240 (4)
N10.7790 (5)0.7706 (3)0.49219 (7)0.0237 (5)
H1A0.668 (5)0.654 (3)0.5011 (9)0.034 (6)*
H1B0.853 (6)0.861 (3)0.5190 (8)0.039 (7)*
N20.5554 (4)0.4823 (2)0.42240 (6)0.0179 (4)
N30.6419 (4)0.5310 (2)0.31371 (6)0.0183 (4)
C10.8296 (5)0.8043 (3)0.44120 (7)0.0181 (5)
C20.7022 (5)0.6467 (3)0.40302 (7)0.0155 (5)
C30.7440 (5)0.6691 (3)0.34927 (7)0.0176 (5)
H30.84970.78770.33720.021*
C40.4559 (5)0.3434 (3)0.38712 (7)0.0177 (5)
H40.35360.22410.39940.021*
C50.4955 (5)0.3657 (3)0.33261 (7)0.0164 (5)
C60.3727 (5)0.2094 (3)0.29402 (8)0.0229 (5)
H6A0.19210.26530.26890.034*
H6B0.26960.09840.31310.034*
H6C0.57550.16190.27480.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0332 (9)0.0174 (7)0.0215 (8)0.0117 (6)0.0037 (6)0.0002 (6)
N10.0357 (11)0.0195 (9)0.0161 (9)0.0138 (8)0.0031 (8)0.0022 (8)
N20.0205 (10)0.0153 (8)0.0179 (9)0.0030 (7)0.0007 (7)0.0014 (7)
N30.0186 (9)0.0183 (8)0.0179 (9)0.0014 (7)0.0001 (7)0.0000 (7)
C10.0180 (11)0.0173 (10)0.0190 (11)0.0019 (9)0.0005 (9)0.0005 (8)
C20.0141 (11)0.0146 (10)0.0176 (10)0.0003 (8)0.0014 (8)0.0008 (8)
C30.0166 (11)0.0167 (9)0.0194 (11)0.0029 (8)0.0017 (9)0.0038 (8)
C40.0199 (11)0.0127 (9)0.0206 (11)0.0029 (8)0.0026 (9)0.0005 (8)
C50.0123 (10)0.0168 (10)0.0200 (11)0.0004 (8)0.0009 (8)0.0009 (8)
C60.0225 (12)0.0243 (11)0.0223 (11)0.0050 (9)0.0035 (9)0.0059 (9)
Geometric parameters (Å, º) top
O1—C11.241 (2)C2—C31.385 (3)
N1—H1A0.923 (16)C3—H30.9500
N1—H1B0.941 (16)C4—H40.9500
N1—C11.333 (2)C4—C51.403 (3)
N2—C21.341 (2)C5—C61.491 (3)
N2—C41.332 (2)C6—H6A0.9800
N3—C31.335 (2)C6—H6B0.9800
N3—C51.341 (2)C6—H6C0.9800
C1—C21.496 (3)
H1A—N1—H1B120 (2)C2—C3—H3118.6
C1—N1—H1A118.2 (14)N2—C4—H4118.6
C1—N1—H1B122.3 (14)N2—C4—C5122.85 (17)
C4—N2—C2116.15 (16)C5—C4—H4118.6
C3—N3—C5116.50 (16)N3—C5—C4120.43 (17)
O1—C1—N1123.55 (18)N3—C5—C6118.08 (17)
O1—C1—C2119.96 (16)C4—C5—C6121.48 (17)
N1—C1—C2116.48 (16)C5—C6—H6A109.5
N2—C2—C1118.25 (16)C5—C6—H6B109.5
N2—C2—C3121.26 (17)C5—C6—H6C109.5
C3—C2—C1120.47 (16)H6A—C6—H6B109.5
N3—C3—C2122.80 (17)H6A—C6—H6C109.5
N3—C3—H3118.6H6B—C6—H6C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O1i0.94 (2)1.96 (2)2.905 (2)178 (2)
N1—H1A···N2ii0.92 (2)2.34 (2)3.072 (2)136 (2)
C4—H4···O1iii0.952.403.339 (3)168
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x1, y1, z.
 

Funding information

We are grateful for support from the National Science Foundation (EPSCoR), the Wichita State University Office of Research and the Department of Energy.

References

First citationBruker (2013). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMadhusudhan, G., Vysabhattar, R., Reddy, R. & Narayana, B. (2009). Org. Chem. Ind. J. 5, 274–277.  CAS Google Scholar
First citationPefkianakis, E. K., Tzanetos, N. P. & Kallitsis, J. K. (2008). Chem. Mater. 20, 6254–6262.  CrossRef CAS Google Scholar
First citationRillema, D. P., KomReddy, V., Senaratne, N. K. & Eichhorn, D. M. (2017). IUCrData, 2, x170997.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds