organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-Bromo-2-(4-meth­­oxy­phen­yl)-3-methyl-3H-imidazo[4,5-b]pyridine

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco
*Correspondence e-mail: bourichiselma@hotmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 13 July 2017; accepted 20 July 2017; online 25 July 2017)

In the title compound, C14H12BrN3O, the dihedral angle between the mean planes of the imidazo[4,5-b]pyridine ring system and the meth­oxy­phenyl ring is 41.53 (12)°. In the crystal, weak C—H⋯N hydrogen bonds link the mol­ecules into chains along the c-axis direction. Weak ππ stacking inter­actions involving the imidazole and the meth­oxy­phenyl rings further stabilize the crystal packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Derivatives of imidazo­pyridine exhibit several remarkable pharmacological activities. For example they are used as anti­viral (Scribner et al. 2007[Scribner, A., Dennis, R., Hong, J., Lee, S., McIntyre, D., Perrey, D., Feng, D., Fisher, M., Wyvratt, M., Leavitt, M., Liberator, P., Gurnett, A., Brown, C., Mathew, J., Thompson, D., Schmatz, D. & Biftu, T. (2007). Eur. J. Med. Chem. 42, 1334-1357.]), anti­bacterial (Liang et al. 2007[Liang, G. B., Qian, X., Feng, D., Fisher, M., Brown, C. M., Gurnett, A., Leavitt, P. S., Liberator, P. A., Misura, A. S., Tamas, T., Schmatz, D. M., Wyvratt, M. & Biftu, T. (2007). Bioorg. Med. Chem. Lett. 17, 3558-3561.]) and anti-neuroinflammatory agents (Ock et al., 2010[Ock, J., Kim, S., Yi, K. Y., Kim, N. J., Han, H. S., Cho, J. Y. & Suk, K. (2010). Biochem. Pharmacol. 79, 596-609.]). As a continuation of our research on the development of substituted imidazo[4,5-b]pyridine derivatives (Bourichi et al., 2017[Bourichi, S., Kandri Rodi, Y., Jasinski, J. P., Kaur, M., Ouzidan, Y. & Essassi, E. M. (2017). IUCrData, 2, x170899.]), we report here the synthesis and structure of a new imidazo[4,5-b]pyridine derivative synthesized by the reaction of methyl iodide and 6-bromo-2-(4-meth­oxy­phen­yl)-3H-imidazo­pyridine in the presence of a catalytic qu­antity of tetra-n-butyl­ammonium bromide under phase transfer catalysis conditions.

The title compound crystallizes with one independent mol­ecule in the asymmetric unit (Fig. 1[link]). The mol­ecule is slightly twisted, as is evident from the dihedral angle of 41.53 (12)° between the mean planes of the imidazo[4,5-b]pyridine ring system and the meth­oxy­phenyl ring. In the crystal, a single weak C13—H13C⋯N1 inter­molecular inter­action links the mol­ecules into chains along the c-axis direction (Table 1[link], Fig. 2[link]). In addition, weak ππ stacking inter­actions involving the imidazole and the meth­oxy­phenyl rings further stabilize the crystal packing [inter­centroid distance, Cg1⋯Cg3ii = 3.8289 (2) Å, symmetry code: (ii) = 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z; Cg1 and Cg3 are the centroids of the N1/C1/N2/C2/C6 and C7–C12 rings, respectively].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13C⋯N1i 0.96 2.53 3.480 (3) 169
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
Structure of the title compound, showing the atom-numbering scheme and ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
Mol­ecular packing for the title compound, viewed along the b axis. Hydrogen bonds are drawn as dashed lines and H atoms not involved in these inter­actions have been omitted for clarity.

Synthesis and crystallization

To a solution of 6-bromo-2-(4-meth­oxy­phen­yl)-3H-imidazo­pyridine (0.2 g, 0.65 mmol) in DMF (25 ml) was added potassium carbonate (0.12 g, 0.9 mmol). The mixture was stirred magnetically for 5 min and then tetra-n-butyl­ammonium bromide (0.032 g, 0.1 mmol) and methyl iodide (0.10 ml, 0.78 mmol) were added. Stirring was continued at room temperature for 6 h. After removing the salts by filtration, the DMF was evaporated under reduced pressure and the residue obtained was dissolved in di­chloro­methane. The remaining salts were extracted with distilled water and the resulting mixture was chromatographed on a silica-gel column (eluent: ethyl acetate/hexane, 1:3). Colourless crystals were isolated when the solvent was allowed to evaporate (yield 67%, m.p. 164–165° C).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H12BrN3O
Mr 318.18
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 14.8643 (6), 7.6795 (4), 12.0690 (5)
β (°) 108.465 (4)
V3) 1306.75 (11)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.25
Crystal size (mm) 0.26 × 0.24 × 0.12
 
Data collection
Diffractometer Rigaku Oxford Diffraction
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.])
Tmin, Tmax 0.354, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4519, 2477, 2015
Rint 0.026
(sin θ/λ)max−1) 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.107, 1.05
No. of reflections 2477
No. of parameters 175
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.37
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

6-Bromo-2-(4-methoxyphenyl)-3-methyl-3H-imidazo[4,5-b]pyridine top
Crystal data top
C14H12BrN3OF(000) = 640
Mr = 318.18Dx = 1.617 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 14.8643 (6) ÅCell parameters from 1624 reflections
b = 7.6795 (4) Åθ = 3.8–71.4°
c = 12.0690 (5) ŵ = 4.25 mm1
β = 108.465 (4)°T = 293 K
V = 1306.75 (11) Å3Prism, colourless
Z = 40.26 × 0.24 × 0.12 mm
Data collection top
Rigaku Oxford diffraction
diffractometer
2477 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source2015 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 16.0416 pixels mm-1θmax = 71.3°, θmin = 6.3°
ω scansh = 1718
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
k = 97
Tmin = 0.354, Tmax = 1.000l = 1412
4519 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.0898P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.39 e Å3
2477 reflectionsΔρmin = 0.37 e Å3
175 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0104 (5)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.95243 (2)0.30457 (6)0.64922 (3)0.0757 (2)
O10.14946 (16)0.3891 (4)0.0701 (2)0.0741 (7)
N10.57950 (16)0.3218 (3)0.41193 (19)0.0418 (5)
N20.60882 (15)0.4032 (3)0.24692 (17)0.0367 (5)
N30.77969 (16)0.4084 (3)0.31660 (19)0.0468 (5)
C10.54200 (18)0.3648 (3)0.3004 (2)0.0371 (5)
C20.69556 (18)0.3826 (3)0.3305 (2)0.0372 (5)
C30.8520 (2)0.3820 (4)0.4124 (3)0.0506 (7)
H30.91300.39780.40880.061*
C40.8416 (2)0.3316 (4)0.5193 (2)0.0476 (6)
C50.7541 (2)0.3027 (4)0.5315 (2)0.0441 (6)
H50.74720.26580.60170.053*
C60.67646 (19)0.3320 (3)0.4325 (2)0.0386 (6)
C70.43977 (18)0.3688 (4)0.2376 (2)0.0403 (6)
C80.3766 (2)0.4354 (4)0.2917 (2)0.0470 (6)
H80.39970.47820.36750.056*
C90.2809 (2)0.4381 (4)0.2341 (3)0.0542 (7)
H90.23970.48180.27140.065*
C100.2451 (2)0.3758 (4)0.1202 (3)0.0521 (7)
C110.3059 (2)0.3046 (4)0.0662 (3)0.0499 (7)
H110.28220.25890.00880.060*
C120.4027 (2)0.3022 (3)0.1251 (2)0.0446 (6)
H120.44360.25510.08850.053*
C130.5959 (2)0.4800 (4)0.1325 (2)0.0442 (6)
H13A0.65190.54350.13410.066*
H13B0.54250.55760.11310.066*
H13C0.58460.38930.07490.066*
C150.1094 (3)0.3397 (6)0.0496 (4)0.0848 (13)
H15A0.13850.40590.09640.127*
H15B0.04240.36210.07490.127*
H15C0.12020.21790.05780.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0492 (2)0.1056 (4)0.0576 (3)0.01003 (18)0.00400 (16)0.0134 (2)
O10.0440 (11)0.0872 (17)0.0781 (16)0.0058 (12)0.0008 (11)0.0013 (15)
N10.0420 (11)0.0494 (13)0.0327 (10)0.0049 (9)0.0100 (9)0.0067 (9)
N20.0451 (11)0.0371 (11)0.0284 (9)0.0023 (9)0.0123 (8)0.0014 (8)
N30.0477 (12)0.0560 (14)0.0403 (11)0.0020 (11)0.0190 (10)0.0032 (11)
C10.0437 (13)0.0341 (13)0.0319 (11)0.0015 (10)0.0097 (10)0.0027 (10)
C20.0457 (13)0.0356 (13)0.0310 (11)0.0022 (10)0.0133 (10)0.0011 (10)
C30.0449 (14)0.0584 (18)0.0505 (15)0.0022 (13)0.0179 (12)0.0009 (14)
C40.0438 (14)0.0534 (17)0.0393 (13)0.0015 (12)0.0040 (11)0.0009 (12)
C50.0487 (14)0.0497 (16)0.0318 (12)0.0059 (12)0.0095 (11)0.0031 (11)
C60.0447 (13)0.0389 (14)0.0323 (12)0.0045 (10)0.0124 (10)0.0019 (10)
C70.0429 (13)0.0383 (13)0.0371 (12)0.0017 (11)0.0091 (10)0.0075 (11)
C80.0507 (15)0.0496 (16)0.0400 (13)0.0034 (12)0.0134 (11)0.0010 (12)
C90.0485 (15)0.0588 (18)0.0569 (17)0.0002 (14)0.0190 (13)0.0031 (15)
C100.0460 (15)0.0474 (16)0.0561 (17)0.0068 (12)0.0067 (13)0.0070 (14)
C110.0547 (16)0.0498 (17)0.0388 (13)0.0116 (13)0.0058 (12)0.0007 (12)
C120.0521 (15)0.0422 (15)0.0390 (13)0.0050 (12)0.0136 (12)0.0002 (12)
C130.0535 (14)0.0510 (16)0.0296 (11)0.0045 (12)0.0153 (10)0.0041 (11)
C150.061 (2)0.086 (3)0.080 (3)0.012 (2)0.016 (2)0.001 (2)
Geometric parameters (Å, º) top
Br1—C41.892 (3)C7—C81.399 (4)
O1—C101.361 (4)C7—C121.392 (4)
O1—C151.428 (5)C8—H80.9300
N1—C11.325 (3)C8—C91.371 (4)
N1—C61.385 (3)C9—H90.9300
N2—C11.377 (3)C9—C101.393 (4)
N2—C21.371 (3)C10—C111.383 (5)
N2—C131.457 (3)C11—H110.9300
N3—C21.328 (3)C11—C121.388 (4)
N3—C31.321 (4)C12—H120.9300
C1—C71.468 (3)C13—H13A0.9600
C2—C61.404 (3)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C3—C41.402 (4)C15—H15A0.9600
C4—C51.372 (4)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C5—C61.392 (4)
C10—O1—C15118.2 (3)C7—C8—H8119.6
C1—N1—C6104.3 (2)C9—C8—C7120.8 (3)
C1—N2—C13129.2 (2)C9—C8—H8119.6
C2—N2—C1106.3 (2)C8—C9—H9119.8
C2—N2—C13123.7 (2)C8—C9—C10120.4 (3)
C3—N3—C2113.8 (2)C10—C9—H9119.8
N1—C1—N2113.3 (2)O1—C10—C9115.6 (3)
N1—C1—C7124.3 (2)O1—C10—C11124.5 (3)
N2—C1—C7122.4 (2)C11—C10—C9119.9 (3)
N2—C2—C6105.8 (2)C10—C11—H11120.3
N3—C2—N2126.4 (2)C10—C11—C12119.3 (3)
N3—C2—C6127.7 (2)C12—C11—H11120.3
N3—C3—H3118.2C7—C12—H12119.3
N3—C3—C4123.5 (3)C11—C12—C7121.4 (3)
C4—C3—H3118.2C11—C12—H12119.3
C3—C4—Br1118.2 (2)N2—C13—H13A109.5
C5—C4—Br1120.0 (2)N2—C13—H13B109.5
C5—C4—C3121.9 (3)N2—C13—H13C109.5
C4—C5—H5122.0H13A—C13—H13B109.5
C4—C5—C6116.0 (2)H13A—C13—H13C109.5
C6—C5—H5122.0H13B—C13—H13C109.5
N1—C6—C2110.3 (2)O1—C15—H15A109.5
N1—C6—C5132.7 (2)O1—C15—H15B109.5
C5—C6—C2117.1 (2)O1—C15—H15C109.5
C8—C7—C1120.3 (2)H15A—C15—H15B109.5
C12—C7—C1121.4 (3)H15A—C15—H15C109.5
C12—C7—C8118.2 (3)H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13C···N1i0.962.533.480 (3)169
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationBourichi, S., Kandri Rodi, Y., Jasinski, J. P., Kaur, M., Ouzidan, Y. & Essassi, E. M. (2017). IUCrData, 2, x170899.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLiang, G. B., Qian, X., Feng, D., Fisher, M., Brown, C. M., Gurnett, A., Leavitt, P. S., Liberator, P. A., Misura, A. S., Tamas, T., Schmatz, D. M., Wyvratt, M. & Biftu, T. (2007). Bioorg. Med. Chem. Lett. 17, 3558–3561.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOck, J., Kim, S., Yi, K. Y., Kim, N. J., Han, H. S., Cho, J. Y. & Suk, K. (2010). Biochem. Pharmacol. 79, 596–609.  CrossRef PubMed CAS Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationScribner, A., Dennis, R., Hong, J., Lee, S., McIntyre, D., Perrey, D., Feng, D., Fisher, M., Wyvratt, M., Leavitt, M., Liberator, P., Gurnett, A., Brown, C., Mathew, J., Thompson, D., Schmatz, D. & Biftu, T. (2007). Eur. J. Med. Chem. 42, 1334–1357.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds