organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(4Z)-4-(2-Oxo­propyl­­idene)-2,3,4,5-tetra­hydro-1H-1,5-benzodiazepin-2-one

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: jihadita.chimiste@gmail.com

Edited by J. Simpson, University of Otago, New Zealand (Received 4 July 2017; accepted 17 July 2017; online 21 July 2017)

In the title compound, C12H12N2O2, the seven-membered ring adopts a boat conformation. The orientation of the acetyl substituent on this ring is partly determined by an intra­molecular N—H⋯O hydrogen bond. In the crystal, wrinkled sheets stacked along the a-axis direction are formed by pairwise N—H⋯O and C—H⋯O hydrogen bonds. The sheets are connected through additional N—H⋯O and C—H⋯O hydrogen bonds stacking the mol­ecules along the a-axis direction. The structure was refined as a three-component twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,5-Benzodiazepine derivatives are very useful as they are found in many biologically active compounds. Applications of these derivatives include use as anti-inflammatory (Romal et al., 1991[Roma, G., Grossi, G., Di Braccio, M., Ghia, M. & Mattioli, F. (1991). Eur. J. Med. Chem. 26, 489-496.]), anti­convulsant, anti­anxiety, and hypnotic agents (Randall et al., 1973[Randall, L. O. & Kappel, B. (1973). Benzodiazepines, edited by S. Garattini, E. Mussini & L. O. Randall, p. 27. New York: Raven Press.]; Smiley et al., 1979[Smiley, R. K. (1979). Comprehensive Organic Chemistry, edited by D. Barton & W. D. Ollis, Vol. 4, p. 600. Oxford: Pergamon.]). As a continuation of our studies on benzodiazepine derivatives (Sebhaoui et al., 2017[Sebhaoui, J., El Bakri, Y., Rayni, I., El Bourakadi, K., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170493.]), we report here the synthesis and the crystal structure of the title compound that was synthesized by condensation of o-phenyl­enedi­amine with de­hydro­acetic acid (3-acetyl-6-methyl-2H-pyran-2,4(3H)-dione) in refluxing xylene.

In the title mol­ecule, the seven-membered heterocyclic ring adopts a boat conformation. A puckering analysis of this conformation gave the parameters Q(2) = 0.777 (4) Å, Q(3) = 0.257 (4) Å, φ(2) = 209.0 (3)° and φ(3) = 307.6 (9)°. The dihedral angle between the C1–C6 plane and that defined by C1/C6/N1/N2 is 6.0 (2)°. The rotational orientation of the acyl substituent on this ring is partially determined by an intra­molecular N1—H1A⋯O2 hydrogen bond (Table 1[link] and Fig. 1[link]). Pairwise N2—H2A⋯O1 and C12—H12A⋯O1 hydrogen bonds (Table 1[link] and Fig. 2[link]) form zigzag chains along the b-axis direction that are elaborated into wrinkled sheets stacked in the a-axis direction through N2—H2A⋯O1 and C8—H8B⋯O1 hydrogen bonds (Table 1[link] and Figs. 3[link] and 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.85 (6) 2.06 (6) 2.693 (5) 131 (5)
N1—H1A⋯O2i 0.85 (6) 2.55 (5) 3.291 (5) 146 (5)
N2—H2A⋯O1ii 0.89 (6) 2.02 (6) 2.876 (4) 161 (6)
C8—H8B⋯O1iii 1.00 (5) 2.58 (5) 3.469 (5) 149 (4)
C12—H12A⋯O1iv 0.97 (6) 2.57 (6) 3.483 (5) 157 (5)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+2, -z+1; (iii) x-1, y, z; (iv) -x+2, -y+1, -z+1.
[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 50% probability ellipsoids. The intra­molecular hydrogen bond is shown by a dashed line.
[Figure 2]
Figure 2
Detail of the inter­molecular N—H⋯O and C—H⋯O hydrogen bonding (blue and black dashed lines, respectively). [Symmetry codes: (i) −x + 1, −y + 1, −z; (ii) −x + 2, −y + 2, −z + 1; (iii) −x, y, z; (iv) −x + 2, −y + 1, −z.]
[Figure 3]
Figure 3
Packing viewed along the a-axis direction, showing the wrinkled sheets of mol­ecules in the bc plane.
[Figure 4]
Figure 4
Overall packing viewed along a.

Synthesis and crystallization

A mixture of o-phenyl­endi­amine (80 mmol) and de­hydro­acetic acid (40 mmol) in 40 ml of xylene was heated under reflux for 2 h and the water was removed with a Dean–Stark trap by azeotropic distillation. After cooling, the residue obtained was washed with ethanol. The solid isolated was recrystallized from N,N-di­methyl­formamide solution to give colourless crystals of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The structure was refined as a three-component twin.

Table 2
Experimental details

Crystal data
Chemical formula C12H12N2O2
Mr 216.24
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 4.5801 (9), 10.870 (2), 10.971 (2)
α, β, γ (°) 101.043 (3), 98.854 (3), 99.868 (3)
V3) 518.20 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.44 × 0.26 × 0.11
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (TWINABS; Sheldrick, 2009[Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.])
Tmin, Tmax 0.96, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 26238, 26238, 19750
Rint 0.041
(sin θ/λ)max−1) 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.090, 0.281, 1.03
No. of reflections 26238
No. of parameters 195
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.34, −0.36
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), CELL_NOW (Sheldrick, 2008a[Sheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Göttingen, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016), CELL_NOW (Sheldrick, 2008a); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

(4Z)-4-(2-Oxopropylidene)-2,3,4,5-tetrahydro-1H-1,5-benzodiazepin-2-one top
Crystal data top
C12H12N2O2Z = 2
Mr = 216.24F(000) = 228
Triclinic, P1Dx = 1.386 Mg m3
a = 4.5801 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.870 (2) ÅCell parameters from 8186 reflections
c = 10.971 (2) Åθ = 2.4–28.6°
α = 101.043 (3)°µ = 0.10 mm1
β = 98.854 (3)°T = 100 K
γ = 99.868 (3)°Thick plate, colourless
V = 518.20 (18) Å30.44 × 0.26 × 0.11 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
26238 independent reflections
Radiation source: fine-focus sealed tube19750 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 8.3333 pixels mm-1θmax = 28.7°, θmin = 1.9°
φ and ω scansh = 66
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2009)
k = 1414
Tmin = 0.96, Tmax = 0.99l = 1414
26238 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.090Hydrogen site location: difference Fourier map
wR(F2) = 0.281All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0477P)2 + 1.0312P]
where P = (Fo2 + 2Fc2)/3
26238 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.36 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame. Analysis of 1142 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the triclinic system and to be consist of three components. The raw data were processed using the multi-component version of SAINT under control of the 3-component orientation file generated by CELL_NOW.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Refined as a 3-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9985 (6)0.8467 (3)0.5387 (3)0.0245 (7)
O20.5860 (6)0.4238 (3)0.0933 (3)0.0260 (7)
N10.4186 (7)0.6333 (3)0.2127 (3)0.0211 (7)
H1A0.412 (12)0.586 (5)0.141 (5)0.042 (15)*
N20.6861 (7)0.8902 (3)0.3797 (3)0.0208 (7)
H2A0.816 (13)0.965 (6)0.395 (5)0.053 (17)*
C10.4276 (8)0.8655 (4)0.2830 (4)0.0196 (8)
C20.3141 (9)0.9716 (4)0.2584 (4)0.0228 (8)
H20.412 (10)1.056 (5)0.312 (4)0.024 (11)*
C30.0710 (9)0.9579 (4)0.1619 (4)0.0243 (9)
H30.002 (11)1.031 (5)0.145 (5)0.035 (13)*
C40.0668 (9)0.8358 (4)0.0887 (4)0.0240 (9)
H40.251 (10)0.824 (5)0.021 (4)0.031 (12)*
C50.0461 (9)0.7304 (4)0.1113 (4)0.0222 (8)
H50.044 (11)0.646 (5)0.060 (5)0.034 (13)*
C60.2965 (8)0.7433 (4)0.2065 (4)0.0195 (8)
C70.5517 (8)0.6022 (4)0.3171 (4)0.0200 (8)
C80.5476 (9)0.6884 (4)0.4413 (4)0.0216 (8)
H8A0.609 (9)0.648 (4)0.513 (4)0.022 (11)*
H8B0.343 (11)0.708 (5)0.439 (4)0.029 (12)*
C90.7631 (9)0.8150 (4)0.4580 (4)0.0204 (8)
C100.6880 (9)0.4980 (4)0.3145 (4)0.0214 (8)
H100.784 (9)0.483 (4)0.394 (4)0.022 (11)*
C110.7009 (9)0.4115 (4)0.1992 (4)0.0219 (8)
C120.8585 (11)0.3019 (4)0.2103 (4)0.0275 (9)
H12A0.871 (13)0.280 (6)0.292 (6)0.055 (17)*
H12B0.759 (13)0.228 (6)0.140 (6)0.059 (18)*
H12C1.061 (14)0.326 (6)0.200 (6)0.061 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0277 (15)0.0222 (14)0.0211 (15)0.0053 (12)0.0020 (11)0.0007 (11)
O20.0316 (16)0.0233 (15)0.0218 (15)0.0096 (12)0.0024 (12)0.0010 (12)
N10.0251 (17)0.0188 (16)0.0183 (17)0.0053 (13)0.0046 (13)0.0006 (13)
N20.0224 (17)0.0182 (16)0.0207 (17)0.0035 (13)0.0047 (13)0.0015 (13)
C10.0212 (18)0.0203 (18)0.0179 (18)0.0049 (15)0.0074 (14)0.0025 (14)
C20.027 (2)0.0208 (19)0.022 (2)0.0058 (16)0.0095 (16)0.0015 (16)
C30.030 (2)0.023 (2)0.025 (2)0.0127 (17)0.0105 (16)0.0066 (16)
C40.024 (2)0.027 (2)0.021 (2)0.0081 (16)0.0056 (16)0.0042 (16)
C50.0218 (19)0.023 (2)0.020 (2)0.0041 (16)0.0058 (15)0.0020 (16)
C60.0201 (18)0.0198 (18)0.0197 (19)0.0062 (14)0.0077 (14)0.0022 (15)
C70.0202 (18)0.0178 (18)0.0200 (19)0.0002 (14)0.0052 (15)0.0018 (15)
C80.026 (2)0.0214 (19)0.0184 (19)0.0051 (16)0.0080 (15)0.0028 (15)
C90.0251 (19)0.0197 (18)0.0166 (18)0.0067 (15)0.0089 (15)0.0009 (14)
C100.0235 (19)0.0197 (18)0.021 (2)0.0049 (15)0.0043 (15)0.0040 (15)
C110.0222 (19)0.0191 (18)0.023 (2)0.0029 (15)0.0040 (15)0.0039 (15)
C120.036 (2)0.023 (2)0.026 (2)0.0123 (18)0.0059 (18)0.0049 (17)
Geometric parameters (Å, º) top
O1—C91.236 (5)C4—H41.01 (5)
O2—C111.242 (4)C5—C61.395 (5)
N1—C71.343 (5)C5—H50.96 (5)
N1—C61.412 (5)C7—C101.382 (6)
N1—H1A0.85 (6)C7—C81.503 (5)
N2—C91.344 (5)C8—C91.511 (5)
N2—C11.412 (5)C8—H8A1.00 (4)
N2—H2A0.89 (6)C8—H8B1.00 (5)
C1—C21.399 (5)C10—C111.440 (6)
C1—C61.405 (5)C10—H100.97 (4)
C2—C31.379 (6)C11—C121.509 (6)
C2—H20.98 (5)C12—H12A0.97 (6)
C3—C41.397 (6)C12—H12B0.98 (6)
C3—H30.95 (5)C12—H12C0.95 (6)
C4—C51.383 (6)
C7—N1—C6127.0 (3)N1—C7—C10123.5 (4)
C7—N1—H1A119 (4)N1—C7—C8116.2 (4)
C6—N1—H1A114 (4)C10—C7—C8120.3 (4)
C9—N2—C1127.9 (3)C7—C8—C9109.8 (3)
C9—N2—H2A113 (4)C7—C8—H8A111 (3)
C1—N2—H2A119 (4)C9—C8—H8A109 (2)
C2—C1—C6119.5 (4)C7—C8—H8B109 (3)
C2—C1—N2116.7 (3)C9—C8—H8B106 (3)
C6—C1—N2123.6 (3)H8A—C8—H8B112 (4)
C3—C2—C1121.0 (4)O1—C9—N2122.0 (4)
C3—C2—H2121 (3)O1—C9—C8121.6 (4)
C1—C2—H2118 (3)N2—C9—C8116.4 (3)
C2—C3—C4119.5 (4)C7—C10—C11123.3 (4)
C2—C3—H3120 (3)C7—C10—H10119 (3)
C4—C3—H3121 (3)C11—C10—H10118 (3)
C5—C4—C3119.9 (4)O2—C11—C10122.4 (4)
C5—C4—H4120 (3)O2—C11—C12119.9 (4)
C3—C4—H4120 (3)C10—C11—C12117.7 (4)
C4—C5—C6121.2 (4)C11—C12—H12A114 (4)
C4—C5—H5121 (3)C11—C12—H12B109 (4)
C6—C5—H5118 (3)H12A—C12—H12B112 (5)
C5—C6—C1118.7 (4)C11—C12—H12C109 (4)
C5—C6—N1117.3 (3)H12A—C12—H12C106 (5)
C1—C6—N1123.8 (3)H12B—C12—H12C107 (5)
C9—N2—C1—C2148.6 (4)C7—N1—C6—C138.2 (6)
C9—N2—C1—C636.0 (6)C6—N1—C7—C10174.5 (4)
C6—C1—C2—C31.4 (6)C6—N1—C7—C85.3 (5)
N2—C1—C2—C3177.0 (3)N1—C7—C8—C972.2 (4)
C1—C2—C3—C40.9 (6)C10—C7—C8—C9107.6 (4)
C2—C3—C4—C51.7 (6)C1—N2—C9—O1179.2 (4)
C3—C4—C5—C60.1 (6)C1—N2—C9—C80.1 (6)
C4—C5—C6—C12.2 (6)C7—C8—C9—O1111.1 (4)
C4—C5—C6—N1172.4 (3)C7—C8—C9—N268.3 (5)
C2—C1—C6—C53.0 (5)N1—C7—C10—C110.2 (6)
N2—C1—C6—C5178.2 (3)C8—C7—C10—C11179.9 (3)
C2—C1—C6—N1171.3 (3)C7—C10—C11—O20.9 (6)
N2—C1—C6—N14.0 (6)C7—C10—C11—C12179.7 (4)
C7—N1—C6—C5147.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.85 (6)2.06 (6)2.693 (5)131 (5)
N1—H1A···O2i0.85 (6)2.55 (5)3.291 (5)146 (5)
N2—H2A···O1ii0.89 (6)2.02 (6)2.876 (4)161 (6)
C8—H8B···O1iii1.00 (5)2.58 (5)3.469 (5)149 (4)
C12—H12A···O1iv0.97 (6)2.57 (6)3.483 (5)157 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+2, z+1; (iii) x1, y, z; (iv) x+2, y+1, z+1.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRandall, L. O. & Kappel, B. (1973). Benzodiazepines, edited by S. Garattini, E. Mussini & L. O. Randall, p. 27. New York: Raven Press.  Google Scholar
First citationRoma, G., Grossi, G., Di Braccio, M., Ghia, M. & Mattioli, F. (1991). Eur. J. Med. Chem. 26, 489–496.  CrossRef CAS Google Scholar
First citationSebhaoui, J., El Bakri, Y., Rayni, I., El Bourakadi, K., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170493.  Google Scholar
First citationSheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmiley, R. K. (1979). Comprehensive Organic Chemistry, edited by D. Barton & W. D. Ollis, Vol. 4, p. 600. Oxford: Pergamon.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds