organic compounds
(4Z)-4-(2-Oxopropylidene)-2,3,4,5-tetrahydro-1H-1,5-benzodiazepin-2-one
aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: jihadita.chimiste@gmail.com
In the title compound, C12H12N2O2, the seven-membered ring adopts a boat conformation. The orientation of the acetyl substituent on this ring is partly determined by an intramolecular N—H⋯O hydrogen bond. In the crystal, wrinkled sheets stacked along the a-axis direction are formed by pairwise N—H⋯O and C—H⋯O hydrogen bonds. The sheets are connected through additional N—H⋯O and C—H⋯O hydrogen bonds stacking the molecules along the a-axis direction. The structure was refined as a three-component twin.
Keywords: crystal structure; benzodiazepine; hydrogen bond.
CCDC reference: 1562781
Structure description
1,5-Benzodiazepine derivatives are very useful as they are found in many biologically active compounds. Applications of these derivatives include use as anti-inflammatory (Romal et al., 1991), anticonvulsant, antianxiety, and hypnotic agents (Randall et al., 1973; Smiley et al., 1979). As a continuation of our studies on benzodiazepine derivatives (Sebhaoui et al., 2017), we report here the synthesis and the of the title compound that was synthesized by condensation of o-phenylenediamine with dehydroacetic acid (3-acetyl-6-methyl-2H-pyran-2,4(3H)-dione) in refluxing xylene.
In the title molecule, the seven-membered heterocyclic ring adopts a boat conformation. A puckering analysis of this conformation gave the parameters Q(2) = 0.777 (4) Å, Q(3) = 0.257 (4) Å, φ(2) = 209.0 (3)° and φ(3) = 307.6 (9)°. The dihedral angle between the C1–C6 plane and that defined by C1/C6/N1/N2 is 6.0 (2)°. The rotational orientation of the acyl substituent on this ring is partially determined by an intramolecular N1—H1A⋯O2 hydrogen bond (Table 1 and Fig. 1). Pairwise N2—H2A⋯O1 and C12—H12A⋯O1 hydrogen bonds (Table 1 and Fig. 2) form zigzag chains along the b-axis direction that are elaborated into wrinkled sheets stacked in the a-axis direction through N2—H2A⋯O1 and C8—H8B⋯O1 hydrogen bonds (Table 1 and Figs. 3 and 4).
Synthesis and crystallization
A mixture of o-phenylendiamine (80 mmol) and dehydroacetic acid (40 mmol) in 40 ml of xylene was heated under reflux for 2 h and the water was removed with a Dean–Stark trap by azeotropic distillation. After cooling, the residue obtained was washed with ethanol. The solid isolated was recrystallized from N,N-dimethylformamide solution to give colourless crystals of the title compound.
Refinement
Crystal data, data collection and structure . The structure was refined as a three-component twin.
details are summarized in Table 2
|
Structural data
CCDC reference: 1562781
https://doi.org/10.1107/S2414314617010574/sj4127sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617010574/sj4127Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617010574/sj4127Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314617010574/sj4127Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016), CELL_NOW (Sheldrick, 2008a); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).C12H12N2O2 | Z = 2 |
Mr = 216.24 | F(000) = 228 |
Triclinic, P1 | Dx = 1.386 Mg m−3 |
a = 4.5801 (9) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.870 (2) Å | Cell parameters from 8186 reflections |
c = 10.971 (2) Å | θ = 2.4–28.6° |
α = 101.043 (3)° | µ = 0.10 mm−1 |
β = 98.854 (3)° | T = 100 K |
γ = 99.868 (3)° | Thick plate, colourless |
V = 518.20 (18) Å3 | 0.44 × 0.26 × 0.11 mm |
Bruker SMART APEX CCD diffractometer | 26238 independent reflections |
Radiation source: fine-focus sealed tube | 19750 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 28.7°, θmin = 1.9° |
φ and ω scans | h = −6→6 |
Absorption correction: multi-scan (TWINABS; Sheldrick, 2009) | k = −14→14 |
Tmin = 0.96, Tmax = 0.99 | l = −14→14 |
26238 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.090 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.281 | All H-atom parameters refined |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0477P)2 + 1.0312P] where P = (Fo2 + 2Fc2)/3 |
26238 reflections | (Δ/σ)max < 0.001 |
195 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame. Analysis of 1142 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the triclinic system and to be consist of three components. The raw data were processed using the multi-component version of SAINT under control of the 3-component orientation file generated by CELL_NOW. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Refined as a 3-component twin. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.9985 (6) | 0.8467 (3) | 0.5387 (3) | 0.0245 (7) | |
O2 | 0.5860 (6) | 0.4238 (3) | 0.0933 (3) | 0.0260 (7) | |
N1 | 0.4186 (7) | 0.6333 (3) | 0.2127 (3) | 0.0211 (7) | |
H1A | 0.412 (12) | 0.586 (5) | 0.141 (5) | 0.042 (15)* | |
N2 | 0.6861 (7) | 0.8902 (3) | 0.3797 (3) | 0.0208 (7) | |
H2A | 0.816 (13) | 0.965 (6) | 0.395 (5) | 0.053 (17)* | |
C1 | 0.4276 (8) | 0.8655 (4) | 0.2830 (4) | 0.0196 (8) | |
C2 | 0.3141 (9) | 0.9716 (4) | 0.2584 (4) | 0.0228 (8) | |
H2 | 0.412 (10) | 1.056 (5) | 0.312 (4) | 0.024 (11)* | |
C3 | 0.0710 (9) | 0.9579 (4) | 0.1619 (4) | 0.0243 (9) | |
H3 | 0.002 (11) | 1.031 (5) | 0.145 (5) | 0.035 (13)* | |
C4 | −0.0668 (9) | 0.8358 (4) | 0.0887 (4) | 0.0240 (9) | |
H4 | −0.251 (10) | 0.824 (5) | 0.021 (4) | 0.031 (12)* | |
C5 | 0.0461 (9) | 0.7304 (4) | 0.1113 (4) | 0.0222 (8) | |
H5 | −0.044 (11) | 0.646 (5) | 0.060 (5) | 0.034 (13)* | |
C6 | 0.2965 (8) | 0.7433 (4) | 0.2065 (4) | 0.0195 (8) | |
C7 | 0.5517 (8) | 0.6022 (4) | 0.3171 (4) | 0.0200 (8) | |
C8 | 0.5476 (9) | 0.6884 (4) | 0.4413 (4) | 0.0216 (8) | |
H8A | 0.609 (9) | 0.648 (4) | 0.513 (4) | 0.022 (11)* | |
H8B | 0.343 (11) | 0.708 (5) | 0.439 (4) | 0.029 (12)* | |
C9 | 0.7631 (9) | 0.8150 (4) | 0.4580 (4) | 0.0204 (8) | |
C10 | 0.6880 (9) | 0.4980 (4) | 0.3145 (4) | 0.0214 (8) | |
H10 | 0.784 (9) | 0.483 (4) | 0.394 (4) | 0.022 (11)* | |
C11 | 0.7009 (9) | 0.4115 (4) | 0.1992 (4) | 0.0219 (8) | |
C12 | 0.8585 (11) | 0.3019 (4) | 0.2103 (4) | 0.0275 (9) | |
H12A | 0.871 (13) | 0.280 (6) | 0.292 (6) | 0.055 (17)* | |
H12B | 0.759 (13) | 0.228 (6) | 0.140 (6) | 0.059 (18)* | |
H12C | 1.061 (14) | 0.326 (6) | 0.200 (6) | 0.061 (18)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0277 (15) | 0.0222 (14) | 0.0211 (15) | 0.0053 (12) | 0.0020 (11) | 0.0007 (11) |
O2 | 0.0316 (16) | 0.0233 (15) | 0.0218 (15) | 0.0096 (12) | 0.0024 (12) | 0.0010 (12) |
N1 | 0.0251 (17) | 0.0188 (16) | 0.0183 (17) | 0.0053 (13) | 0.0046 (13) | 0.0006 (13) |
N2 | 0.0224 (17) | 0.0182 (16) | 0.0207 (17) | 0.0035 (13) | 0.0047 (13) | 0.0015 (13) |
C1 | 0.0212 (18) | 0.0203 (18) | 0.0179 (18) | 0.0049 (15) | 0.0074 (14) | 0.0025 (14) |
C2 | 0.027 (2) | 0.0208 (19) | 0.022 (2) | 0.0058 (16) | 0.0095 (16) | 0.0015 (16) |
C3 | 0.030 (2) | 0.023 (2) | 0.025 (2) | 0.0127 (17) | 0.0105 (16) | 0.0066 (16) |
C4 | 0.024 (2) | 0.027 (2) | 0.021 (2) | 0.0081 (16) | 0.0056 (16) | 0.0042 (16) |
C5 | 0.0218 (19) | 0.023 (2) | 0.020 (2) | 0.0041 (16) | 0.0058 (15) | 0.0020 (16) |
C6 | 0.0201 (18) | 0.0198 (18) | 0.0197 (19) | 0.0062 (14) | 0.0077 (14) | 0.0022 (15) |
C7 | 0.0202 (18) | 0.0178 (18) | 0.0200 (19) | 0.0002 (14) | 0.0052 (15) | 0.0018 (15) |
C8 | 0.026 (2) | 0.0214 (19) | 0.0184 (19) | 0.0051 (16) | 0.0080 (15) | 0.0028 (15) |
C9 | 0.0251 (19) | 0.0197 (18) | 0.0166 (18) | 0.0067 (15) | 0.0089 (15) | −0.0009 (14) |
C10 | 0.0235 (19) | 0.0197 (18) | 0.021 (2) | 0.0049 (15) | 0.0043 (15) | 0.0040 (15) |
C11 | 0.0222 (19) | 0.0191 (18) | 0.023 (2) | 0.0029 (15) | 0.0040 (15) | 0.0039 (15) |
C12 | 0.036 (2) | 0.023 (2) | 0.026 (2) | 0.0123 (18) | 0.0059 (18) | 0.0049 (17) |
O1—C9 | 1.236 (5) | C4—H4 | 1.01 (5) |
O2—C11 | 1.242 (4) | C5—C6 | 1.395 (5) |
N1—C7 | 1.343 (5) | C5—H5 | 0.96 (5) |
N1—C6 | 1.412 (5) | C7—C10 | 1.382 (6) |
N1—H1A | 0.85 (6) | C7—C8 | 1.503 (5) |
N2—C9 | 1.344 (5) | C8—C9 | 1.511 (5) |
N2—C1 | 1.412 (5) | C8—H8A | 1.00 (4) |
N2—H2A | 0.89 (6) | C8—H8B | 1.00 (5) |
C1—C2 | 1.399 (5) | C10—C11 | 1.440 (6) |
C1—C6 | 1.405 (5) | C10—H10 | 0.97 (4) |
C2—C3 | 1.379 (6) | C11—C12 | 1.509 (6) |
C2—H2 | 0.98 (5) | C12—H12A | 0.97 (6) |
C3—C4 | 1.397 (6) | C12—H12B | 0.98 (6) |
C3—H3 | 0.95 (5) | C12—H12C | 0.95 (6) |
C4—C5 | 1.383 (6) | ||
C7—N1—C6 | 127.0 (3) | N1—C7—C10 | 123.5 (4) |
C7—N1—H1A | 119 (4) | N1—C7—C8 | 116.2 (4) |
C6—N1—H1A | 114 (4) | C10—C7—C8 | 120.3 (4) |
C9—N2—C1 | 127.9 (3) | C7—C8—C9 | 109.8 (3) |
C9—N2—H2A | 113 (4) | C7—C8—H8A | 111 (3) |
C1—N2—H2A | 119 (4) | C9—C8—H8A | 109 (2) |
C2—C1—C6 | 119.5 (4) | C7—C8—H8B | 109 (3) |
C2—C1—N2 | 116.7 (3) | C9—C8—H8B | 106 (3) |
C6—C1—N2 | 123.6 (3) | H8A—C8—H8B | 112 (4) |
C3—C2—C1 | 121.0 (4) | O1—C9—N2 | 122.0 (4) |
C3—C2—H2 | 121 (3) | O1—C9—C8 | 121.6 (4) |
C1—C2—H2 | 118 (3) | N2—C9—C8 | 116.4 (3) |
C2—C3—C4 | 119.5 (4) | C7—C10—C11 | 123.3 (4) |
C2—C3—H3 | 120 (3) | C7—C10—H10 | 119 (3) |
C4—C3—H3 | 121 (3) | C11—C10—H10 | 118 (3) |
C5—C4—C3 | 119.9 (4) | O2—C11—C10 | 122.4 (4) |
C5—C4—H4 | 120 (3) | O2—C11—C12 | 119.9 (4) |
C3—C4—H4 | 120 (3) | C10—C11—C12 | 117.7 (4) |
C4—C5—C6 | 121.2 (4) | C11—C12—H12A | 114 (4) |
C4—C5—H5 | 121 (3) | C11—C12—H12B | 109 (4) |
C6—C5—H5 | 118 (3) | H12A—C12—H12B | 112 (5) |
C5—C6—C1 | 118.7 (4) | C11—C12—H12C | 109 (4) |
C5—C6—N1 | 117.3 (3) | H12A—C12—H12C | 106 (5) |
C1—C6—N1 | 123.8 (3) | H12B—C12—H12C | 107 (5) |
C9—N2—C1—C2 | 148.6 (4) | C7—N1—C6—C1 | 38.2 (6) |
C9—N2—C1—C6 | −36.0 (6) | C6—N1—C7—C10 | −174.5 (4) |
C6—C1—C2—C3 | 1.4 (6) | C6—N1—C7—C8 | 5.3 (5) |
N2—C1—C2—C3 | 177.0 (3) | N1—C7—C8—C9 | −72.2 (4) |
C1—C2—C3—C4 | 0.9 (6) | C10—C7—C8—C9 | 107.6 (4) |
C2—C3—C4—C5 | −1.7 (6) | C1—N2—C9—O1 | 179.2 (4) |
C3—C4—C5—C6 | 0.1 (6) | C1—N2—C9—C8 | −0.1 (6) |
C4—C5—C6—C1 | 2.2 (6) | C7—C8—C9—O1 | −111.1 (4) |
C4—C5—C6—N1 | −172.4 (3) | C7—C8—C9—N2 | 68.3 (5) |
C2—C1—C6—C5 | −3.0 (5) | N1—C7—C10—C11 | −0.2 (6) |
N2—C1—C6—C5 | −178.2 (3) | C8—C7—C10—C11 | −179.9 (3) |
C2—C1—C6—N1 | 171.3 (3) | C7—C10—C11—O2 | −0.9 (6) |
N2—C1—C6—N1 | −4.0 (6) | C7—C10—C11—C12 | 179.7 (4) |
C7—N1—C6—C5 | −147.5 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2 | 0.85 (6) | 2.06 (6) | 2.693 (5) | 131 (5) |
N1—H1A···O2i | 0.85 (6) | 2.55 (5) | 3.291 (5) | 146 (5) |
N2—H2A···O1ii | 0.89 (6) | 2.02 (6) | 2.876 (4) | 161 (6) |
C8—H8B···O1iii | 1.00 (5) | 2.58 (5) | 3.469 (5) | 149 (4) |
C12—H12A···O1iv | 0.97 (6) | 2.57 (6) | 3.483 (5) | 157 (5) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+2, −z+1; (iii) x−1, y, z; (iv) −x+2, −y+1, −z+1. |
Acknowledgements
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.
References
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Randall, L. O. & Kappel, B. (1973). Benzodiazepines, edited by S. Garattini, E. Mussini & L. O. Randall, p. 27. New York: Raven Press. Google Scholar
Roma, G., Grossi, G., Di Braccio, M., Ghia, M. & Mattioli, F. (1991). Eur. J. Med. Chem. 26, 489–496. CrossRef CAS Google Scholar
Sebhaoui, J., El Bakri, Y., Rayni, I., El Bourakadi, K., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170493. Google Scholar
Sheldrick, G. M. (2008a). CELL_NOW. University of Göttingen, Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2009). TWINABS. University of Göttingen, Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smiley, R. K. (1979). Comprehensive Organic Chemistry, edited by D. Barton & W. D. Ollis, Vol. 4, p. 600. Oxford: Pergamon. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.