organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Methyl 5-methyl­pyrazine-2-carboxyl­ate

aDepartment of Chemistry, Wichita State University, Wichita, KS 67260, USA
*Correspondence e-mail: paul.rillema@wichita.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 28 June 2017; accepted 5 July 2017; online 13 July 2017)

In the structure of methyl 5-methyl-2-pyrazine­carboxyl­ate, C7H8N2O2, the non-H atoms of the mol­ecule are nearly planar, with a dihedral angle of 5.4 (1)° between the plane of the pyrazine ring and the plane defined by C—C(O)—O. In the crystal, molecules are linked via C—H⋯N and C—H⋯O hydrogen bonds, forming layers parallel to (100).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, Fig. 1[link], is an inter­mediate in the preparation of 5,5′-dimethyl-2,2′-bi­pyrazine derivatives used to coordinate to transition metals for use in solar energy conversion studies (Toma et al., 2004[Toma, L. M, Eller, C., Rillema, P. D., Ruiz-Pérez, C. & Julve, M. (2004). Inorg. Chim. Acta, 357, 2609-2614.]; Rillema et al., 2007[Rillema, D. P., Kirgan, R. A., Smucker, B. & Moore, C. (2007). Acta Cryst. E63, m1404-m1405.]; Kirgan et al., 2007[Kirgan, R. A., Simpson, M., Moore, C., Day, J., Bui, L., Tanner, C. & Rillema, D. P. (2007). Inorg. Chem. 46, 6464-6472.]). The bond lengths of the methyl pyrazine component are similar to those found in 5,5-dimethyl-2,2′-bi­pyrazine (Eller et al., 2004[Eller, C., Smucker, B. W., Kirgan, R., Eichhorn, D. M. & Rillema, D. P. (2004). Acta Cryst. E60, o433-o434.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with atom labels and 50% probability displacement ellipsoids.

Two identical mol­ecules are located in the unit cell related to each other by a twofold screw axis. In the crystal, mol­ecules are linked by C—H⋯N and C—H⋯O hydrogen bonds (Table 1[link]), forming sheets parallel to the (100) plane, Fig. 2[link]. The sheets are further linked by C—H⋯N and C—H⋯O hydrogen bonds, forming a three-dimensional network, Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1i—H1Ai⋯N2i 0.98 2.72 3.592 148
C1i—H1Bi⋯O1i 0.98 2.55 3.455 154
C3i—H3i⋯O1i 0.95 2.41 3.299 155
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z].
[Figure 2]
Figure 2
A view normal to the (100) plane of the crystal packing of the title compound. C—H⋯N (blue) and C—H⋯O (red) hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
A view of the plane (101) of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

The procedure followed one reported earlier (Madhusudhan et al. 2009[Madhusudhan, G., Vysabhattar, R., Reddy, R. & Narayana, B. (2009). Org. Chem. Ind. J. 5, 274-277.]) To a stirred solution of 5–methyl­pyrazine-2-carb­oxy­lic acid (50 g, 0.362 mol) in methanol (150 ml) at 0–5° C, concentrated sulfuric acid (4 ml) was added dropwise. After addition of sulfuric acid was complete, the reaction mixture was stirred at 65° C for 8 h. Then the solution was cooled to room temperature and excess methanol was removed from the solution by rotary evaporation at 30° C. The crude compound was partitioned between water (200 ml) and toluene (300 ml). The water layer was separated from the toluene layer and extracted with toluene (3 × 200 ml). The combined organic layers were washed with 2% aqueous sodium hydroxide solution (50 ml), dried over sodium sulfate, filtered and concentrated under vacuum at below 50° C to give the desired compound as a light-brown colored solid; 82% yield: The crystals were grown using the vapor diffusion technique. The inner vial contained methyl 5-methyl-2-pyrazine­carboxyl­ate in di­chloro­methane (DCM) and the outer vial contained methanol. The crystals were harvested from the inner vial after 36 h.

Refinement

Crystal data, data collection and refinement details are summarized in Table 2[link]. One low angle reflection with Fo <<< Fc may have been affected by the beamstop and was omitted from the final cycles of refinement.

Table 2
Experimental details

Crystal data
Chemical formula C7H8N2O2
Mr 152.15
Crystal system, space group Monoclinic, P21
Temperature (K) 150
a, b, c (Å) 3.8872 (1), 6.8386 (3), 13.6279 (5)
β (°) 93.303 (2)
V3) 361.67 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.66 × 0.65 × 0.56
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Numerical (SADABS; Bruker, 2012[Bruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.925, 0.976
No. of measured, independent and observed [I > 2σ(I)] reflections 9931, 1556, 1495
Rint 0.015
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.083, 1.14
No. of reflections 1556
No. of parameters 102
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.17
Absolute structure Flack x determined using 659 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al, 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.0 (2)
Computer programs: SMART and SAINT (Bruker, 2012[Bruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Methyl 5-methylpyrazine-2-carboxylate top
Crystal data top
C7H8N2O2F(000) = 160
Mr = 152.15Dx = 1.397 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 3.8872 (1) ÅCell parameters from 7189 reflections
b = 6.8386 (3) Åθ = 3.0–27.0°
c = 13.6279 (5) ŵ = 0.11 mm1
β = 93.303 (2)°T = 150 K
V = 361.67 (2) Å3Block, clear colourless
Z = 20.66 × 0.65 × 0.56 mm
Data collection top
Bruker APEXII CCD
diffractometer
1556 independent reflections
Radiation source: sealed X-ray tube1495 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 5.6 pixels mm-1θmax = 27.1°, θmin = 3.3°
φ and ω scansh = 44
Absorption correction: numerical
(SADABS; Bruker, 2012)
k = 88
Tmin = 0.925, Tmax = 0.976l = 1717
9931 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.0328P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083(Δ/σ)max < 0.001
S = 1.14Δρmax = 0.20 e Å3
1556 reflectionsΔρmin = 0.17 e Å3
102 parametersAbsolute structure: Flack x determined using 659 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al, 2013)
1 restraintAbsolute structure parameter: 0.0 (2)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.2766 (3)0.74768 (19)0.59049 (8)0.0235 (3)
O10.5934 (4)0.8742 (2)0.71764 (10)0.0338 (4)
N20.3528 (4)0.4025 (2)0.89293 (10)0.0223 (3)
N10.1414 (4)0.4246 (2)0.69310 (10)0.0211 (3)
C60.4125 (4)0.7469 (3)0.68198 (12)0.0204 (4)
C40.3192 (4)0.5692 (2)0.73882 (12)0.0182 (4)
C30.0722 (4)0.2702 (3)0.74819 (12)0.0216 (4)
H30.05250.16420.71840.026*
C20.1754 (4)0.2572 (2)0.84819 (12)0.0194 (4)
C10.0880 (5)0.0836 (3)0.90848 (13)0.0267 (4)
H1A0.29960.02830.93970.040*
H1B0.02710.01510.86600.040*
H1C0.06600.12380.95930.040*
C50.4222 (5)0.5576 (3)0.83769 (12)0.0222 (4)
H50.54660.66390.86730.027*
C70.3671 (5)0.9159 (3)0.53238 (13)0.0288 (4)
H7A0.23830.91150.46850.043*
H7B0.61480.91360.52250.043*
H7C0.30931.03610.56690.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0286 (6)0.0210 (6)0.0206 (6)0.0053 (5)0.0005 (5)0.0025 (5)
O10.0461 (9)0.0243 (7)0.0299 (7)0.0160 (7)0.0087 (6)0.0030 (6)
N20.0241 (7)0.0227 (7)0.0197 (6)0.0011 (7)0.0008 (5)0.0011 (6)
N10.0240 (7)0.0191 (7)0.0200 (7)0.0038 (6)0.0006 (6)0.0012 (6)
C60.0219 (8)0.0176 (8)0.0215 (8)0.0000 (7)0.0004 (6)0.0005 (7)
C40.0178 (8)0.0162 (8)0.0207 (8)0.0001 (6)0.0012 (6)0.0011 (6)
C30.0242 (9)0.0184 (8)0.0220 (8)0.0050 (7)0.0003 (6)0.0018 (7)
C20.0165 (8)0.0194 (8)0.0225 (8)0.0002 (7)0.0018 (6)0.0009 (7)
C10.0286 (10)0.0258 (10)0.0253 (9)0.0047 (8)0.0017 (7)0.0079 (7)
C50.0249 (9)0.0187 (8)0.0225 (8)0.0023 (7)0.0018 (7)0.0029 (7)
C70.0343 (10)0.0257 (9)0.0264 (9)0.0040 (9)0.0016 (7)0.0085 (8)
Geometric parameters (Å, º) top
O2—C61.3259 (19)C3—C21.401 (2)
O2—C71.451 (2)C2—C11.494 (2)
O1—C61.203 (2)C1—H1A0.9800
N2—C21.337 (2)C1—H1B0.9800
N2—C51.337 (2)C1—H1C0.9800
N1—C41.339 (2)C5—H50.9500
N1—C31.332 (2)C7—H7A0.9800
C6—C41.497 (2)C7—H7B0.9800
C4—C51.386 (2)C7—H7C0.9800
C3—H30.9500
C6—O2—C7114.85 (14)C2—C1—H1A109.5
C2—N2—C5116.65 (14)C2—C1—H1B109.5
C3—N1—C4116.01 (13)C2—C1—H1C109.5
O2—C6—C4113.23 (14)H1A—C1—H1B109.5
O1—C6—O2124.67 (16)H1A—C1—H1C109.5
O1—C6—C4122.10 (15)H1B—C1—H1C109.5
N1—C4—C6119.51 (14)N2—C5—C4122.43 (16)
N1—C4—C5121.52 (15)N2—C5—H5118.8
C5—C4—C6118.97 (14)C4—C5—H5118.8
N1—C3—H3118.6O2—C7—H7A109.5
N1—C3—C2122.86 (15)O2—C7—H7B109.5
C2—C3—H3118.6O2—C7—H7C109.5
N2—C2—C3120.52 (15)H7A—C7—H7B109.5
N2—C2—C1117.89 (14)H7A—C7—H7C109.5
C3—C2—C1121.59 (15)H7B—C7—H7C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1i—H1Ai···N2i0.982.723.592148
C1i—H1Bi···O1i0.982.553.455154
C3i—H3i···O1i0.952.413.299155
Symmetry code: (i) x, y+1/2, z.
 

Acknowledgements

We ae grateful for support from the National Science Foundation (EPSCoR), the Wichita State University Office of Research and the Department of Energy.

References

First citationBruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEller, C., Smucker, B. W., Kirgan, R., Eichhorn, D. M. & Rillema, D. P. (2004). Acta Cryst. E60, o433–o434.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKirgan, R. A., Simpson, M., Moore, C., Day, J., Bui, L., Tanner, C. & Rillema, D. P. (2007). Inorg. Chem. 46, 6464–6472.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMadhusudhan, G., Vysabhattar, R., Reddy, R. & Narayana, B. (2009). Org. Chem. Ind. J. 5, 274–277.  CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRillema, D. P., Kirgan, R. A., Smucker, B. & Moore, C. (2007). Acta Cryst. E63, m1404–m1405.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationToma, L. M, Eller, C., Rillema, P. D., Ruiz-Pérez, C. & Julve, M. (2004). Inorg. Chim. Acta, 357, 2609–2614.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds