metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[μ-1,4-Bis(di­phenyl­phosphan­yl)butane-κ2P:P′]­bis­­{(4-benzyl-2-neo­pentyl-1,2,4-triazol-3-yl­­idene)[(1,2,5,6-η)-cyclo­octa-1,5-diene]iridium(I)} bis­­(tetra­fluoro­borate) di­chloro­methane disolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Millersville University, Millersville, PA 17551, USA, and bDepartment of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85716, USA
*Correspondence e-mail: edward.rajaseelan@millersville.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 22 June 2017; accepted 23 July 2017; online 28 July 2017)

The title compound, [Ir2(C14H19N3)2(C8H12)2(C28H28P2)](BF4)2·2CH2Cl2, has triclinic (P-1) symmetry and the dication lies about an inversion center located at the mid-point of the butane chain of the phosphine ligand. The IrI ion has a distorted square-planar coordination geometry. The N-heterocyclic carbene ligand has an extended S-shaped conformation. The diphosphine ligand acts as a bridge between the two metal centers. This is the first structural report of a complex where the square-planar iridium centers are bridged by a phosphine ligand, and it is of inter­est with respect to catalysis in transfer hydrogenation reactions. Parts of the triazole and cyclo­octa­diene ligands and the tetra­fluoro­borate anion are disordered over two sets of sites.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

N-heterocyclic carbene complexes are of inter­est because of their catalytic properties in transfer hydrogenation reactions. The title compound is the first example of a dimer bridged by a chelating phosphine ligand. Transfer hydrogenation of ketones and imines is an encouraging example of an efficient and benign chemical transformation that exemplifies some of the key aspects of green chemistry. N-heterocyclic carbene (NHC) ligands can be tuned sterically and electronically by having different alkyl groups on the nitro­gen atoms (Gusev, 2009[Gusev, D. G. (2009). Organometallics, 28, 6458-6461.]). Many related NHC rhodium and iridium complexes have been synthesized and structurally characterized (Köcher & Herrmann 1997[Köcher, C. & Herrmann, W. A. (1997). J. Organomet. Chem. 532, 261-265.]; Wang & Lin 1998[Wang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972-975.]; Chianese et al. 2004[Chianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461-2468.]; Herrmann et al. 2006[Herrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437-2448.]; Nichol et al. 2009[Nichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320-4328.], 2010[Nichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.], 2011[Nichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860-m1861.], 2012[Nichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158-m159.]; Lu et al. 2011[Lu, W. Y., Cavell, K. J., Wixey, J. S. & Kariuki, B. (2011). Organometallics, 30, 5649-5655.]; Huttenstine et al. 2011[Huttenstine, A. L., Rajaseelan, E., Oliver, A. G. & Rood, J. A. (2011). Acta Cryst. E67, m1274-m1275.]). Their catalytic activity in transfer hydrogenation reactions have been studied and reported (Hillier et al. 2001[Hillier, A. C., Lee, H. M., Stevens, E. D. & Nolan, S. P. (2001). Organometallics, 20, 4246-4252.]; Albrecht et al. 2002[Albrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596-3604.]; Gnanamgari et al. 2007[Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226-1230.]).

The title dinuclear ionic complex (Fig. 1[link]) comprises two IrI cations, two cyclo­octa­diene ligands, two N-heterocyclic carbene ligands, a diphosphine ligand, two tetra­fluoro­borate counter-anions, and two di­chloro­methane solvent mol­ecules. As shown in Fig. 2[link], the two IrI cations are bridged by the diphosphine ligand and the coordination sphere of each IrI cation is completed through bonds to cyclo­octa­diene and the carbene, resulting in a distorted square-planar geometry. Charge balance is achieved by two non-coordinating tetra­fluoro­borate anions. The carbene atom, C1, deviates from the expected sp2 hybridization in that the N1—C1—N3 bond angle is 103.4 (5)o. Other selected bond lengths [Å] and angles [o] in the structure are: Ir1—P1 2.3257 (13) Å, Ir1—C1 2.041 (6) Å, and C1—Ir1—P1 89.58 (17)o.

[Figure 1]
Figure 1
The structure of the half mol­ecule of the title complex, showing the atom labelling and 30% probability displacement ellipsoids.
[Figure 2]
Figure 2
The full structure of the title complex with BF4 counter-ions and CH2Cl2 solvent mol­ecules.

Synthesis and crystallization

Unless otherwise stated, all chemicals were purchased from Sigma–Aldrich and used without further purification, in the dark, and under a nitro­gen atmosphere. 1-Neopentyl-1,2,4-triazole (2.2 g, 16 mmol) and benzyl bromide (4.0 g, 23 mmol) were refluxed in toluene (15 ml) for 3 d. After cooling, ether (50 ml) was added and the white solid [1] that formed was filtered, washed with ether and air dried (71%). Transmetallation in CH2Cl2 (10 ml) with [1] (0.0923 g, 0.298 mmol), Ag2O (0.0345 g, 0.149 mmol), and [Ir(cod)Cl]2 (0.100 g, 0.149 mmol), gave a bright-yellow solid [2] (82%). In a round-bottom flask, [2] (0.168 g, 0.298 mmol), 1,4-bis­(di­phenyl­phosphino)butane (0.0635 g, 0.149 mmol), and AgBF4 (0.0580 g, 0.298 mmol) were dissolved in CH2Cl2 (15 ml) and stirred for 2 h to obtain a bright-red solid [3] (99%) (Fig. 3[link]). X-ray quality crystals of [3] were grown from CH2Cl2/pentane by slow diffusion.

[Figure 3]
Figure 3
Scheme showing the various steps in the synthesis of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. C and H atoms of the benzyl fragment of the triazole ligand are disordered over two sets of sites with occupancy ratios fixed at 0.5766:0.4234 for the C9 atom and the adjacent atoms of the C8 methyl­ene group and refined to 0.523 (7):0.477 (7) for the CH groups. The atoms of the CH2 and CH groups of the cyclo­octa­diene ligand were similarly disordered with refined occupancies 0.541 (16):0.459 (16) while the F atoms of the tetra­fluoro­borate anion were also disordered over two sets of sites with occupancies 0.731 (16) and 0.269 (16).

Table 1
Experimental details

Crystal data
Chemical formula [Ir2(C14H19N3)2(C8H12)2(C28H28P2)](BF4)2·2CH2Cl2
Mr 1829.31
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 10.3518 (5), 11.5088 (5), 17.2483 (8)
α, β, γ (°) 73.540 (1), 87.276 (1), 72.616 (1)
V3) 1879.13 (15)
Z 1
Radiation type Mo Kα
μ (mm−1) 3.79
Crystal size (mm) 0.3 × 0.15 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.565, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 37976, 7733, 7082
Rint 0.029
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.06
No. of reflections 7733
No. of parameters 520
No. of restraints 228
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.57, −1.27
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

[µ-1,4-Bis(diphenylphosphanyl)butane-κ2P:P']bis{(4-benzyl-2-neopentyl-1,2,4-triazol-3-ylidene)[(1,2,5,6-η)-cycloocta-1,5-diene]iridium(I)} bis(tetrafluoroborate) dichloromethane disolvate top
Crystal data top
[Ir2(C14H19N3)2(C8H12)2(C28H28P2)](BF4)2·2CH2Cl2Z = 1
Mr = 1829.31F(000) = 914
Triclinic, P1Dx = 1.617 Mg m3
a = 10.3518 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.5088 (5) ÅCell parameters from 9923 reflections
c = 17.2483 (8) Åθ = 2.4–26.4°
α = 73.540 (1)°µ = 3.79 mm1
β = 87.276 (1)°T = 100 K
γ = 72.616 (1)°Block, clear pink
V = 1879.13 (15) Å30.3 × 0.15 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
7082 reflections with I > 2σ(I)
φ and ω scansRint = 0.029
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 26.5°, θmin = 2.0°
Tmin = 0.565, Tmax = 0.745h = 1212
37976 measured reflectionsk = 1414
7733 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0717P)2 + 4.7665P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
7733 reflectionsΔρmax = 2.57 e Å3
520 parametersΔρmin = 1.27 e Å3
228 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir10.18525 (2)0.41927 (2)0.29265 (2)0.02912 (8)
P10.37397 (14)0.47225 (13)0.32136 (8)0.0334 (3)
Cl10.9205 (3)0.0758 (3)0.0963 (2)0.1082 (9)
Cl20.7401 (3)0.0632 (3)0.07378 (15)0.0934 (7)
F10.6795 (11)0.1208 (10)0.3272 (6)0.062 (2)0.731 (16)
N30.3615 (5)0.2971 (5)0.1699 (4)0.0471 (7)
N10.3665 (5)0.1627 (5)0.2837 (4)0.0495 (7)
F30.7015 (12)0.3137 (9)0.4023 (7)0.075 (3)0.731 (16)
C10.3074 (6)0.2862 (6)0.2429 (4)0.0467 (7)
N20.4563 (5)0.1863 (5)0.1644 (4)0.0504 (7)
C30.3355 (6)0.4109 (6)0.1036 (4)0.0439 (13)
H3A0.41920.43690.09520.053*
H3B0.26510.47890.11950.053*
C40.2893 (7)0.4028 (8)0.0223 (4)0.0572 (17)
C150.0631 (6)0.4869 (6)0.3879 (3)0.0380 (12)
H150.11860.48780.43350.046*
C160.0418 (6)0.4187 (6)0.4151 (3)0.0413 (12)
H16A0.00010.33960.45820.050*0.541 (16)
H16B0.11620.47270.43910.050*0.541 (16)
H16C0.13270.47860.39660.050*0.459 (16)
H16D0.03900.39020.47500.050*0.459 (16)
C180.0132 (7)0.3455 (8)0.2892 (5)0.061 (2)
H180.03240.25910.28160.073*0.541 (16)
H18A0.04820.26620.27190.073*0.459 (16)
C190.0046 (6)0.4432 (7)0.2237 (4)0.0515 (16)
H190.03210.41000.17580.062*0.541 (16)
H19A0.01450.42750.16930.062*0.459 (16)
C220.0510 (6)0.5908 (5)0.3191 (3)0.0400 (12)
H220.09880.65160.32530.048*
C230.3886 (3)0.6202 (3)0.25080 (18)0.0337 (10)
C240.2894 (3)0.6885 (3)0.1897 (2)0.0359 (11)
H240.21590.65760.18420.043*
C250.2978 (3)0.8021 (3)0.13685 (18)0.0439 (13)
H250.23010.84880.09510.053*
C260.4054 (4)0.8473 (3)0.1450 (2)0.0435 (13)
H260.41110.92490.10890.052*
C270.5045 (3)0.7789 (3)0.2061 (2)0.0416 (12)
H270.57800.80980.21160.050*
C280.4961 (3)0.6654 (3)0.25896 (18)0.0377 (11)
H280.56390.61870.30070.045*
C290.5353 (3)0.3556 (3)0.3152 (3)0.0454 (14)
C300.6111 (4)0.3689 (4)0.2463 (2)0.0517 (16)
H300.58510.44510.20310.062*
C310.7250 (4)0.2708 (5)0.2404 (3)0.075 (3)
H310.77680.27990.19330.090*
C320.7630 (4)0.1593 (4)0.3035 (4)0.101 (4)
H320.84090.09230.29960.121*
C330.6872 (5)0.1460 (3)0.3724 (4)0.108 (5)
H330.71320.06980.41550.129*
C340.5734 (5)0.2441 (4)0.3782 (3)0.070 (2)
H340.52150.23500.42530.084*
C350.3783 (7)0.4879 (7)0.4234 (3)0.0486 (15)
H35A0.29890.55940.42740.058*
H35B0.36540.41000.46140.058*
C360.5029 (8)0.5092 (8)0.4540 (3)0.0576 (19)
H36A0.50610.59620.42610.069*
H36B0.58600.44830.44190.069*
F20.6024 (10)0.1457 (9)0.4512 (5)0.097 (3)0.731 (16)
C210.0693 (7)0.6506 (6)0.2601 (4)0.0536 (16)
H21A0.07410.74060.23510.064*0.541 (16)
H21B0.15220.64940.29100.064*0.541 (16)
H21C0.14580.70010.28540.064*0.459 (16)
H21D0.04590.70980.21160.064*0.459 (16)
C20.4564 (6)0.1088 (6)0.2333 (5)0.0513 (7)
H20.51240.02320.24850.062*
F40.8182 (10)0.2001 (11)0.4370 (7)0.112 (3)0.731 (16)
B10.6976 (7)0.1936 (6)0.4059 (4)0.0453 (13)
C60.2319 (9)0.5392 (9)0.0307 (5)0.075 (2)
H6A0.15310.58360.00540.112*
H6B0.20450.53860.08410.112*
H6C0.30140.58290.03650.112*
C80.3409 (8)0.0996 (6)0.3659 (5)0.069 (2)
H8BC0.31720.16170.39780.082*0.4234
H8BD0.42440.03230.39100.082*0.4234
H8AA0.28700.16350.39230.082*0.5766
H8AB0.42800.05460.39700.082*0.5766
C70.4088 (9)0.3341 (10)0.0205 (5)0.072 (2)
H7A0.48070.37480.02550.108*
H7B0.37810.33860.07440.108*
H7C0.44370.24500.01120.108*
C50.1801 (8)0.3342 (11)0.0362 (5)0.081 (3)
H5A0.22010.24540.06720.122*
H5B0.14370.33780.01610.122*
H5C0.10690.37570.06640.122*
C9A0.2192 (12)0.0373 (11)0.3687 (8)0.0662 (12)0.4234
C10A0.2247 (12)0.0325 (12)0.3140 (7)0.0661 (12)0.477 (7)
H10A0.28750.02940.27210.079*0.477 (7)
C11A0.1383 (13)0.1066 (10)0.3208 (6)0.0661 (12)0.477 (7)
H11A0.14210.15430.28350.079*0.477 (7)
C12A0.0464 (12)0.1111 (10)0.3822 (7)0.0662 (12)0.477 (7)
H12A0.01260.16180.38690.079*0.477 (7)
C13A0.0409 (11)0.0413 (10)0.4368 (6)0.0662 (12)0.477 (7)
H13A0.02190.04430.47880.079*0.477 (7)
C14A0.1273 (12)0.0329 (10)0.4301 (7)0.0661 (13)0.477 (7)
H14A0.12350.08060.46740.079*0.477 (7)
C1S0.7754 (10)0.0288 (10)0.1289 (7)0.083 (3)
H1SA0.78920.02010.18680.099*
H1SB0.69680.10530.12380.099*
C110.1129 (18)0.0748 (14)0.3012 (11)0.0661 (12)0.523 (7)
H110.06190.07900.25820.079*0.523 (7)
C100.1955 (17)0.0033 (15)0.2921 (11)0.0661 (12)0.523 (7)
H100.20750.05370.23980.079*0.523 (7)
C120.1145 (17)0.1523 (14)0.3881 (10)0.0660 (12)0.523 (7)
H120.05870.20700.40000.079*0.523 (7)
C140.2577 (16)0.0702 (13)0.4341 (10)0.0663 (13)0.523 (7)
H140.30700.07220.47980.080*0.523 (7)
C130.1813 (16)0.1512 (14)0.4447 (11)0.0663 (12)0.523 (7)
H130.17960.20770.49680.080*0.523 (7)
C170.1010 (11)0.3856 (12)0.3496 (7)0.045 (3)0.541 (16)
H17A0.17520.45960.31960.054*0.541 (16)
H17B0.13920.31470.37380.054*0.541 (16)
C200.0713 (15)0.5901 (13)0.1928 (9)0.055 (4)0.541 (16)
H20A0.02610.62990.14520.066*0.541 (16)
H20B0.16610.60360.17610.066*0.541 (16)
C20A0.1114 (12)0.5542 (14)0.2355 (10)0.042 (4)0.459 (16)
H20C0.16620.59600.18410.050*0.459 (16)
H20D0.17040.52040.27700.050*0.459 (16)
C17A0.0199 (13)0.3041 (13)0.3827 (9)0.042 (4)0.459 (16)
H17C0.10230.27610.38890.051*0.459 (16)
H17D0.05640.23280.41310.051*0.459 (16)
F1A0.733 (3)0.123 (3)0.3307 (15)0.054 (5)0.269 (16)
F4A0.740 (3)0.1544 (18)0.4651 (11)0.079 (6)0.269 (16)
F3A0.749 (2)0.3176 (18)0.4242 (15)0.056 (5)0.269 (16)
F2A0.5535 (19)0.1685 (19)0.4151 (16)0.076 (6)0.269 (16)
C90.2672 (11)0.0085 (9)0.3663 (8)0.052 (3)0.5766
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.03192 (12)0.03271 (12)0.02558 (12)0.01251 (8)0.00290 (7)0.00892 (8)
P10.0385 (7)0.0366 (7)0.0277 (6)0.0193 (5)0.0084 (5)0.0029 (5)
Cl10.0738 (15)0.137 (2)0.116 (2)0.0331 (16)0.0187 (14)0.0393 (19)
Cl20.127 (2)0.0869 (15)0.0653 (13)0.0450 (15)0.0017 (13)0.0063 (11)
F10.081 (6)0.042 (3)0.053 (3)0.012 (5)0.013 (4)0.004 (2)
N30.0329 (13)0.0434 (14)0.0710 (18)0.0071 (11)0.0022 (12)0.0292 (13)
N10.0349 (13)0.0440 (14)0.0730 (18)0.0065 (11)0.0044 (13)0.0263 (13)
F30.100 (7)0.059 (4)0.084 (7)0.046 (4)0.030 (5)0.029 (4)
C10.0324 (13)0.0432 (14)0.0705 (18)0.0078 (11)0.0037 (13)0.0282 (13)
N20.0350 (13)0.0453 (14)0.0741 (18)0.0056 (11)0.0019 (13)0.0278 (13)
C30.039 (3)0.054 (3)0.047 (3)0.016 (3)0.004 (2)0.025 (3)
C40.048 (3)0.092 (5)0.051 (4)0.030 (3)0.007 (3)0.041 (4)
C150.050 (3)0.047 (3)0.030 (3)0.024 (3)0.015 (2)0.024 (2)
C160.044 (3)0.053 (3)0.037 (3)0.025 (3)0.014 (2)0.019 (2)
C180.055 (4)0.102 (6)0.074 (5)0.061 (4)0.031 (3)0.063 (5)
C190.031 (3)0.069 (4)0.062 (4)0.005 (3)0.016 (3)0.038 (4)
C220.051 (3)0.033 (3)0.041 (3)0.012 (2)0.008 (2)0.021 (2)
C230.044 (3)0.032 (2)0.029 (2)0.015 (2)0.003 (2)0.010 (2)
C240.041 (3)0.035 (3)0.031 (3)0.011 (2)0.004 (2)0.009 (2)
C250.058 (3)0.037 (3)0.031 (3)0.008 (3)0.001 (2)0.007 (2)
C260.062 (4)0.032 (3)0.037 (3)0.018 (3)0.016 (3)0.008 (2)
C270.053 (3)0.044 (3)0.038 (3)0.026 (3)0.011 (2)0.017 (2)
C280.043 (3)0.041 (3)0.035 (3)0.019 (2)0.005 (2)0.014 (2)
C290.038 (3)0.039 (3)0.061 (4)0.019 (2)0.020 (3)0.006 (3)
C300.039 (3)0.045 (3)0.076 (5)0.011 (2)0.016 (3)0.022 (3)
C310.039 (3)0.072 (5)0.126 (8)0.005 (3)0.021 (4)0.052 (5)
C320.045 (4)0.052 (5)0.209 (13)0.008 (4)0.062 (6)0.052 (6)
C330.056 (5)0.041 (4)0.205 (13)0.017 (4)0.066 (7)0.014 (6)
C340.052 (4)0.042 (3)0.103 (6)0.021 (3)0.036 (4)0.014 (4)
C350.068 (4)0.068 (4)0.024 (3)0.049 (3)0.008 (2)0.002 (2)
C360.078 (5)0.088 (5)0.026 (3)0.065 (4)0.010 (3)0.002 (3)
F20.089 (6)0.097 (6)0.081 (5)0.020 (4)0.011 (4)0.038 (4)
C210.053 (4)0.044 (3)0.052 (4)0.002 (3)0.004 (3)0.011 (3)
C20.0359 (13)0.0451 (14)0.0750 (18)0.0055 (12)0.0033 (13)0.0265 (13)
F40.072 (5)0.148 (8)0.118 (7)0.031 (5)0.033 (4)0.038 (6)
B10.049 (3)0.032 (3)0.050 (3)0.006 (2)0.005 (2)0.008 (2)
C60.066 (5)0.112 (7)0.043 (4)0.020 (5)0.003 (3)0.025 (4)
C80.079 (5)0.035 (3)0.080 (5)0.015 (3)0.032 (4)0.006 (3)
C70.069 (5)0.106 (7)0.064 (5)0.038 (5)0.022 (4)0.050 (5)
C50.065 (5)0.156 (9)0.066 (5)0.064 (5)0.019 (4)0.068 (6)
C9A0.070 (3)0.049 (3)0.077 (3)0.017 (2)0.002 (2)0.014 (2)
C10A0.070 (3)0.049 (3)0.077 (3)0.017 (2)0.002 (2)0.014 (2)
C11A0.070 (3)0.049 (3)0.077 (3)0.017 (2)0.002 (2)0.014 (2)
C12A0.070 (3)0.049 (3)0.077 (3)0.018 (2)0.002 (2)0.014 (2)
C13A0.070 (3)0.049 (3)0.077 (3)0.017 (2)0.002 (2)0.014 (2)
C14A0.070 (3)0.049 (3)0.077 (3)0.017 (2)0.002 (2)0.014 (2)
C1S0.075 (6)0.079 (6)0.087 (7)0.015 (5)0.011 (5)0.022 (5)
C110.070 (3)0.049 (3)0.077 (3)0.017 (2)0.002 (2)0.014 (2)
C100.070 (3)0.049 (3)0.077 (3)0.017 (2)0.002 (2)0.014 (2)
C120.070 (3)0.049 (3)0.077 (3)0.018 (2)0.002 (2)0.014 (2)
C140.070 (3)0.049 (3)0.077 (3)0.018 (2)0.002 (2)0.014 (2)
C130.070 (3)0.049 (3)0.077 (3)0.018 (2)0.002 (2)0.013 (2)
C170.034 (6)0.059 (8)0.050 (7)0.021 (6)0.011 (5)0.021 (6)
C200.050 (7)0.058 (8)0.042 (8)0.000 (6)0.008 (6)0.007 (6)
C20A0.021 (5)0.055 (8)0.040 (8)0.003 (5)0.008 (5)0.012 (7)
C17A0.033 (7)0.049 (8)0.058 (8)0.025 (6)0.012 (6)0.022 (6)
F1A0.062 (12)0.035 (7)0.051 (6)0.005 (9)0.001 (7)0.001 (5)
F4A0.125 (14)0.057 (9)0.055 (7)0.040 (9)0.010 (7)0.001 (6)
F3A0.066 (11)0.030 (5)0.051 (10)0.001 (5)0.016 (7)0.001 (4)
F2A0.059 (6)0.064 (9)0.089 (13)0.010 (5)0.004 (6)0.008 (8)
C90.043 (5)0.028 (5)0.065 (7)0.005 (4)0.024 (5)0.016 (5)
Geometric parameters (Å, º) top
Ir1—P12.3257 (13)C34—H340.9500
Ir1—C12.041 (6)C35—H35A0.9900
Ir1—C152.200 (5)C35—H35B0.9900
Ir1—C182.200 (5)C35—C361.526 (8)
Ir1—C192.169 (5)C36—C36i1.541 (11)
Ir1—C222.202 (5)C36—H36A0.9900
P1—C231.834 (3)C36—H36B0.9900
P1—C291.824 (3)F2—B11.317 (10)
P1—C351.824 (6)C21—H21A0.9900
Cl1—C1S1.760 (10)C21—H21B0.9900
Cl2—C1S1.731 (11)C21—H21C0.9900
F1—B11.366 (11)C21—H21D0.9900
N3—C11.342 (9)C21—C201.518 (15)
N3—N21.383 (7)C21—C20A1.475 (16)
N3—C31.437 (8)C2—H20.9500
N1—C11.357 (8)F4—B11.355 (10)
N1—C21.375 (8)B1—F1A1.42 (2)
N1—C81.451 (10)B1—F4A1.36 (2)
F3—B11.390 (10)B1—F3A1.31 (2)
N2—C21.268 (9)B1—F2A1.44 (2)
C3—H3A0.9900C6—H6A0.9800
C3—H3B0.9900C6—H6B0.9800
C3—C41.538 (8)C6—H6C0.9800
C4—C61.528 (12)C8—H8BC0.9900
C4—C71.536 (10)C8—H8BD0.9900
C4—C51.536 (10)C8—H8AA0.9900
C15—H151.0000C8—H8AB0.9900
C15—C161.505 (7)C8—C9A1.618 (11)
C15—C221.404 (8)C8—C91.467 (13)
C16—H16A0.9900C7—H7A0.9800
C16—H16B0.9900C7—H7B0.9800
C16—H16C0.9900C7—H7C0.9800
C16—H16D0.9900C5—H5A0.9800
C16—C171.499 (13)C5—H5B0.9800
C16—C17A1.527 (14)C5—H5C0.9800
C18—H181.0000C9A—C10A1.3900
C18—H18A1.0000C9A—C14A1.3900
C18—C191.334 (11)C10A—H10A0.9500
C18—C171.589 (12)C10A—C11A1.3900
C18—C17A1.597 (15)C11A—H11A0.9500
C19—H191.0000C11A—C12A1.3900
C19—H19A1.0000C12A—H12A0.9500
C19—C201.579 (14)C12A—C13A1.3900
C19—C20A1.523 (13)C13A—H13A0.9500
C22—H221.0000C13A—C14A1.3900
C22—C211.507 (9)C14A—H14A0.9500
C23—C241.3900C1S—H1SA0.9900
C23—C281.3900C1S—H1SB0.9900
C24—H240.9500C11—H110.9500
C24—C251.3900C11—C101.39 (2)
C25—H250.9500C11—C121.51 (2)
C25—C261.3900C10—H100.9500
C26—H260.9500C10—C91.53 (2)
C26—C271.3900C12—H120.9500
C27—H270.9500C12—C131.23 (2)
C27—C281.3900C14—H140.9500
C28—H280.9500C14—C131.36 (2)
C29—C301.3900C14—C91.281 (19)
C29—C341.3900C13—H130.9500
C30—H300.9500C17—H17A0.9900
C30—C311.3900C17—H17B0.9900
C31—H310.9500C20—H20A0.9900
C31—C321.3900C20—H20B0.9900
C32—H320.9500C20A—H20C0.9900
C32—C331.3900C20A—H20D0.9900
C33—H330.9500C17A—H17C0.9900
C33—C341.3900C17A—H17D0.9900
C1—Ir1—P189.58 (17)C36—C35—H35B107.5
C1—Ir1—C15155.3 (3)C35—C36—C36i109.7 (6)
C1—Ir1—C1891.4 (2)C35—C36—H36A109.7
C1—Ir1—C1994.6 (2)C35—C36—H36B109.7
C1—Ir1—C22167.4 (3)C36i—C36—H36A109.7
C15—Ir1—P194.96 (16)C36i—C36—H36B109.7
C15—Ir1—C2237.2 (2)H36A—C36—H36B108.2
C18—Ir1—P1169.1 (2)C22—C21—H21A108.1
C18—Ir1—C1579.8 (2)C22—C21—H21B108.1
C18—Ir1—C2291.2 (3)C22—C21—H21C109.3
C19—Ir1—P1155.1 (2)C22—C21—H21D109.3
C19—Ir1—C1591.5 (2)C22—C21—C20116.7 (6)
C19—Ir1—C1835.6 (3)H21A—C21—H21B107.3
C19—Ir1—C2280.5 (2)H21C—C21—H21D108.0
C22—Ir1—P190.23 (16)C20—C21—H21A108.1
C23—P1—Ir1113.07 (11)C20—C21—H21B108.1
C29—P1—Ir1114.12 (14)C20A—C21—C22111.6 (7)
C29—P1—C23103.84 (18)C20A—C21—H21C109.3
C35—P1—Ir1113.3 (2)C20A—C21—H21D109.3
C35—P1—C23107.4 (2)N1—C2—H2123.8
C35—P1—C29104.2 (3)N2—C2—N1112.4 (6)
C1—N3—N2112.9 (5)N2—C2—H2123.8
C1—N3—C3126.3 (5)F1—B1—F3104.7 (9)
N2—N3—C3120.6 (5)F2—B1—F1111.6 (8)
C1—N1—C2107.6 (6)F2—B1—F3114.1 (9)
C1—N1—C8126.2 (6)F2—B1—F4107.4 (8)
C2—N1—C8126.2 (6)F4—B1—F1110.2 (8)
N3—C1—Ir1131.2 (5)F4—B1—F3108.8 (8)
N3—C1—N1103.4 (5)F1A—B1—F2A113.7 (13)
N1—C1—Ir1124.9 (5)F4A—B1—F1A107.3 (15)
C2—N2—N3103.6 (5)F4A—B1—F2A104.4 (16)
N3—C3—H3A108.2F3A—B1—F1A116.6 (17)
N3—C3—H3B108.2F3A—B1—F4A107.5 (14)
N3—C3—C4116.5 (5)F3A—B1—F2A106.4 (14)
H3A—C3—H3B107.3C4—C6—H6A109.5
C4—C3—H3A108.2C4—C6—H6B109.5
C4—C3—H3B108.2C4—C6—H6C109.5
C6—C4—C3106.7 (6)H6A—C6—H6B109.5
C6—C4—C7108.3 (7)H6A—C6—H6C109.5
C6—C4—C5110.5 (7)H6B—C6—H6C109.5
C7—C4—C3111.5 (6)N1—C8—H8BC109.3
C5—C4—C3109.8 (6)N1—C8—H8BD109.3
C5—C4—C7110.0 (7)N1—C8—H8AA109.5
Ir1—C15—H15113.5N1—C8—H8AB109.5
C16—C15—Ir1111.3 (3)N1—C8—C9A111.7 (7)
C16—C15—H15113.5N1—C8—C9110.6 (8)
C22—C15—Ir171.5 (3)H8BC—C8—H8BD107.9
C22—C15—H15113.5H8AA—C8—H8AB108.1
C22—C15—C16125.8 (6)C9A—C8—H8BC109.3
C15—C16—H16A108.6C9A—C8—H8BD109.3
C15—C16—H16B108.6C9—C8—H8AA109.5
C15—C16—H16C109.1C9—C8—H8AB109.5
C15—C16—H16D109.1C4—C7—H7A109.5
C15—C16—C17A112.6 (6)C4—C7—H7B109.5
H16A—C16—H16B107.5C4—C7—H7C109.5
H16C—C16—H16D107.8H7A—C7—H7B109.5
C17—C16—C15114.8 (6)H7A—C7—H7C109.5
C17—C16—H16A108.6H7B—C7—H7C109.5
C17—C16—H16B108.6C4—C5—H5A109.5
C17A—C16—H16C109.1C4—C5—H5B109.5
C17A—C16—H16D109.1C4—C5—H5C109.5
Ir1—C18—H18118.1H5A—C5—H5B109.5
Ir1—C18—H18A107.2H5A—C5—H5C109.5
C19—C18—Ir171.0 (3)H5B—C5—H5C109.5
C19—C18—H18118.1C10A—C9A—C8116.0 (8)
C19—C18—H18A107.2C10A—C9A—C14A120.0
C19—C18—C17109.8 (8)C14A—C9A—C8123.1 (8)
C19—C18—C17A145.3 (8)C9A—C10A—H10A120.0
C17—C18—Ir1112.9 (5)C9A—C10A—C11A120.0
C17—C18—H18118.1C11A—C10A—H10A120.0
C17A—C18—Ir1102.2 (5)C10A—C11A—H11A120.0
C17A—C18—H18A107.2C12A—C11A—C10A120.0
Ir1—C19—H19108.9C12A—C11A—H11A120.0
Ir1—C19—H19A118.9C11A—C12A—H12A120.0
C18—C19—Ir173.5 (4)C11A—C12A—C13A120.0
C18—C19—H19108.9C13A—C12A—H12A120.0
C18—C19—H19A118.9C12A—C13A—H13A120.0
C18—C19—C20139.3 (9)C12A—C13A—C14A120.0
C18—C19—C20A107.0 (9)C14A—C13A—H13A120.0
C20—C19—Ir1107.7 (6)C9A—C14A—H14A120.0
C20—C19—H19108.9C13A—C14A—C9A120.0
C20A—C19—Ir1110.9 (6)C13A—C14A—H14A120.0
C20A—C19—H19A118.9Cl1—C1S—H1SA109.1
Ir1—C22—H22114.0Cl1—C1S—H1SB109.1
C15—C22—Ir171.3 (3)Cl2—C1S—Cl1112.4 (6)
C15—C22—H22114.0Cl2—C1S—H1SA109.1
C15—C22—C21125.0 (6)Cl2—C1S—H1SB109.1
C21—C22—Ir1110.5 (4)H1SA—C1S—H1SB107.9
C21—C22—H22114.0C10—C11—H11124.3
C24—C23—P1119.40 (18)C10—C11—C12111.3 (15)
C24—C23—C28120.0C12—C11—H11124.3
C28—C23—P1120.59 (18)C11—C10—H10119.9
C23—C24—H24120.0C11—C10—C9120.3 (14)
C25—C24—C23120.0C9—C10—H10119.9
C25—C24—H24120.0C11—C12—H12117.0
C24—C25—H25120.0C13—C12—C11125.9 (16)
C26—C25—C24120.0C13—C12—H12117.0
C26—C25—H25120.0C13—C14—H14118.0
C25—C26—H26120.0C9—C14—H14118.0
C25—C26—C27120.0C9—C14—C13124.0 (16)
C27—C26—H26120.0C12—C13—C14121.1 (17)
C26—C27—H27120.0C12—C13—H13119.5
C28—C27—C26120.0C14—C13—H13119.5
C28—C27—H27120.0C16—C17—C18109.8 (7)
C23—C28—H28120.0C16—C17—H17A109.7
C27—C28—C23120.0C16—C17—H17B109.7
C27—C28—H28120.0C18—C17—H17A109.7
C30—C29—P1122.0 (2)C18—C17—H17B109.7
C30—C29—C34120.0H17A—C17—H17B108.2
C34—C29—P1117.6 (2)C19—C20—H20A109.8
C29—C30—H30120.0C19—C20—H20B109.8
C31—C30—C29120.0C21—C20—C19109.4 (9)
C31—C30—H30120.0C21—C20—H20A109.8
C30—C31—H31120.0C21—C20—H20B109.8
C30—C31—C32120.0H20A—C20—H20B108.2
C32—C31—H31120.0C19—C20A—H20C108.5
C31—C32—H32120.0C19—C20A—H20D108.5
C33—C32—C31120.0C21—C20A—C19114.9 (9)
C33—C32—H32120.0C21—C20A—H20C108.5
C32—C33—H33120.0C21—C20A—H20D108.5
C32—C33—C34120.0H20C—C20A—H20D107.5
C34—C33—H33120.0C16—C17A—C18107.9 (9)
C29—C34—H34120.0C16—C17A—H17C110.1
C33—C34—C29120.0C16—C17A—H17D110.1
C33—C34—H34120.0C18—C17A—H17C110.1
P1—C35—H35A107.5C18—C17A—H17D110.1
P1—C35—H35B107.5H17C—C17A—H17D108.4
H35A—C35—H35B107.0C8—C9—C10125.0 (10)
C36—C35—P1119.3 (5)C14—C9—C8117.9 (12)
C36—C35—H35A107.5C14—C9—C10117.1 (13)
Symmetry code: (i) x+1, y+1, z+1.
 

Funding information

KI gratefully acknowledges support by a Neimeyer–Hodgson research grant and a Millersville University student research grant.

References

First citationAlbrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596–3604.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461–2468.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226–1230.  Web of Science CrossRef CAS Google Scholar
First citationGusev, D. G. (2009). Organometallics, 28, 6458–6461.  Web of Science CrossRef CAS Google Scholar
First citationHerrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437–2448.  Web of Science CSD CrossRef CAS Google Scholar
First citationHillier, A. C., Lee, H. M., Stevens, E. D. & Nolan, S. P. (2001). Organometallics, 20, 4246–4252.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuttenstine, A. L., Rajaseelan, E., Oliver, A. G. & Rood, J. A. (2011). Acta Cryst. E67, m1274–m1275.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKöcher, C. & Herrmann, W. A. (1997). J. Organomet. Chem. 532, 261–265.  Google Scholar
First citationLu, W. Y., Cavell, K. J., Wixey, J. S. & Kariuki, B. (2011). Organometallics, 30, 5649–5655.  Web of Science CSD CrossRef CAS Google Scholar
First citationNichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320–4328.  Web of Science CSD CrossRef Google Scholar
First citationNichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860–m1861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158–m159.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972–975.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds