organic compounds
9-Amino-5,7-dibromo-1,2,3,4-tetrahydroacridine hemihydrate
aDepartment of Physics, Faculty of Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Faculty of Art and Science, Düzce University, 81620, Düzce, Turkey, dDepatment of Chemistry, Faculty of Art and Science, Sakarya University, Serdivan, 54187, Sakarya, Turkey, eDepartment of Maths and Science Education, Faculty of Education, Kırıkkale University, Yahşihan, 71450, Kırıkkale, Turkey, fDepartment of Chemistry, Faculty of Art and Science, Sakarya University, Serdivan, 54187, Sakarya, Turkey, and gDepartment of Physics, Faculty of Arts and Sciences, Sinop University, 57010 Sinop, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr
The 13H12Br2N2·0.5H2O, includes two molecules of 5,7-dibromo-1,2,3,4-tetrahydroacridin-9-amine and one water molecule. In the crystal, C—H⋯O, N—H⋯N, N—H⋯O and O—H⋯N hydrogen bonds connect the molecules, forming a two-dimensional network parallel to (010). The two-dimensional sheets are further assembled into a three-dimensional structure through C—H⋯π and π–π stacking interactions [centroid–centroid distance = 3.719 (2) Å].
of the title compound, CKeywords: crystal structure; 1,2,3,4-tetrahydroacridine ring system; cyclohexane ring; hydrogen bonding.
CCDC reference: 1556696
Structure description
Various synthetic methods such as the Skraup, Friedländer, Doebner-von Millet and Combes syntheses have developed due to the importance of the synthesis of bioactive heterocycles with N functions such as indole (Ökten et al., 2015), quinoline (Ökten et al., 2013), acridine (Zong et al., 2006) and tacrine (Yang et al., 2007). The Friedländer reaction is one of the most well known for the synthesis of polysubstituted heteroaromatic compounds (Peçanha et al., 2001; Zong et al., 2006; Tang et al., 2012). 9-Amino-1,2,3,4-tetrahydroacridine, known as tacrine, was the first AChE inhibitor to be investigated as an AD drug (Cheng, 1994). Although beneficial effects of tacrines on AD symptoms, it exhibited several adverse effects which in some cases causes some problems (Brinton & Yamazaki, 1998). As a result of that, many other AChE inhibitors have been studied and researchers still continue to improve the pharmacological profile of novel drug candidates (Rampa et al., 2000).
Halogenated aromatics including a quinoline skeleton are used as precursors for various multifunctional et al., 2013), couplings (Zemtsova et al., 2015), and metal-assisted substitutions (Ökten et al., 2013; Eisch, 1962). In addition, this class of aromatic compounds, used as starting materials for numerous compounds with pharmacological properties, has been of interest to chemists (Zong et al., 2006; Das & Parida, 2006). In this study we present the structure of 9-amino-5,7-dibromo-1,2,3,4-tetrahydroacridine hemihydrate.
undergoing metal–halogen exchanges (ÖktenAs shown in Fig. 1, the includes two molecules (A and B) of 9-amino-5,7-dibromo-1,2,3,4-tetrahydroacridine and a water molecule. The cyclohexane rings display a half-boat conformation, with atoms C12 and C24 as flap atoms and puckering parameters QT = 0.498 (5) Å, θ = 127.5 (4)°, φ = 38.6 (6)° for ring C8–C13, and QT = 0.495 (5) Å, θ = 128.2 (5)°, φ = 18.7 (6)° for ring C21–C26. The observed bond lengths are comparable to those reported for similar compounds (Glöcklhofer et al., 2014; Sparrow et al., 2012; Akkurt et al., 2010; Çelik et al., 2017).
In the crystal, adjacent molecules are linked by C—H⋯O, N—H⋯N, N—H⋯O and O—H⋯N hydrogen bonds (Table 1), forming a two-dimensional network parallel to (010) (Table 1; Figs. 2 and 3). The parallel layers are then assembled into a three-dimensional network through C—H⋯π (Table 1) and π–π stacking interactions [Cg⋯Cgi = 3.719 (2) Å; Cg is the centroid of the C1–C6 benzene ring of molecule A; symmetry code: (i) 2 − x, 1 − y, −z] between the layers.
Synthesis and crystallization
According to the reported procedure (Ekiz et al., 2016), 9-amino-5,7-dibromo-1,2,3,4-tetrahydroacridine was prepared by the Friedländer quinoline reaction of cyclohexanone and brominated 2-amino-3,5-dibromobenzonitrile in the presence of InCl3 as The recrystallization in CHCl3/hexane (1:1 v/v) gave yellow block-shaped crystals suitable for X-ray analysis.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 1556696
https://doi.org/10.1107/S2414314617010112/rz4018sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617010112/rz4018Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617010112/rz4018Isup3.cml
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).C13H12Br2N2·0.5H2O | Z = 4 |
Mr = 365.05 | F(000) = 716 |
Triclinic, P1 | Dx = 1.860 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.404 (2) Å | Cell parameters from 9584 reflections |
b = 11.163 (2) Å | θ = 3.5–28.3° |
c = 13.263 (3) Å | µ = 6.20 mm−1 |
α = 80.607 (9)° | T = 296 K |
β = 75.713 (9)° | Block, yellow |
γ = 76.407 (9)° | 0.16 × 0.13 × 0.12 mm |
V = 1303.3 (5) Å3 |
Bruker APEXII CCD diffractometer | 4883 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.055 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | θmax = 28.4°, θmin = 3.1° |
Tmin = 0.409, Tmax = 0.746 | h = −12→12 |
66562 measured reflections | k = −14→14 |
6486 independent reflections | l = −17→17 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.0191P)2 + 2.4473P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.080 | (Δ/σ)max = 0.001 |
S = 1.09 | Δρmax = 0.63 e Å−3 |
6486 reflections | Δρmin = −0.83 e Å−3 |
335 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
3 restraints | Extinction coefficient: 0.0038 (3) |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. The amino and water H atoms were located in a difference Fourier map and refined with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). DFIX instructions were used to keep the H atoms of the water molecule in place. The C-bound H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C). |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.91349 (5) | 0.88067 (3) | 0.02649 (4) | 0.0546 (2) | |
Br2 | 0.87277 (6) | 0.44474 (4) | 0.29818 (3) | 0.0539 (1) | |
Br3 | 0.37866 (5) | 0.47644 (3) | 0.40689 (3) | 0.0495 (1) | |
Br4 | 0.41617 (4) | 0.08140 (4) | 0.72633 (3) | 0.0426 (1) | |
N1 | 0.7550 (3) | 0.3730 (2) | 0.1241 (2) | 0.0273 (8) | |
N2 | 0.7120 (5) | 0.5786 (3) | −0.1647 (3) | 0.0515 (13) | |
C1 | 0.8727 (4) | 0.7188 (3) | 0.0515 (3) | 0.0330 (10) | |
C2 | 0.8871 (4) | 0.6491 (3) | 0.1476 (3) | 0.0339 (10) | |
C3 | 0.8504 (4) | 0.5353 (3) | 0.1682 (2) | 0.0310 (10) | |
C4 | 0.7960 (3) | 0.4850 (3) | 0.0972 (2) | 0.0251 (8) | |
C5 | 0.7853 (3) | 0.5580 (3) | 0.0001 (2) | 0.0262 (9) | |
C6 | 0.8266 (4) | 0.6763 (3) | −0.0213 (3) | 0.0332 (10) | |
C7 | 0.7288 (4) | 0.5106 (3) | −0.0721 (2) | 0.0321 (10) | |
C8 | 0.6920 (4) | 0.3941 (3) | −0.0450 (2) | 0.0307 (9) | |
C9 | 0.7041 (3) | 0.3311 (3) | 0.0539 (2) | 0.0280 (9) | |
C10 | 0.6592 (4) | 0.2070 (3) | 0.0881 (3) | 0.0362 (11) | |
C11 | 0.5783 (5) | 0.1696 (4) | 0.0163 (3) | 0.0508 (14) | |
C12 | 0.6505 (5) | 0.1991 (4) | −0.0964 (3) | 0.0559 (16) | |
C13 | 0.6399 (5) | 0.3390 (4) | −0.1225 (3) | 0.0462 (11) | |
N3 | 0.6966 (3) | −0.0310 (2) | 0.56636 (19) | 0.0277 (8) | |
N4 | 0.8774 (4) | 0.1289 (3) | 0.2676 (2) | 0.0424 (10) | |
O1 | 0.7290 (4) | 0.8667 (3) | 0.7765 (2) | 0.0711 (11) | |
C14 | 0.4807 (4) | 0.3162 (3) | 0.4538 (3) | 0.0324 (10) | |
C15 | 0.4262 (4) | 0.2654 (3) | 0.5559 (3) | 0.0339 (10) | |
C16 | 0.4985 (3) | 0.1505 (3) | 0.5898 (2) | 0.0287 (9) | |
C17 | 0.6288 (3) | 0.0828 (3) | 0.5277 (2) | 0.0258 (9) | |
C18 | 0.6816 (3) | 0.1404 (3) | 0.4257 (2) | 0.0261 (9) | |
C19 | 0.6036 (4) | 0.2572 (3) | 0.3890 (2) | 0.0308 (9) | |
C20 | 0.8175 (4) | 0.0774 (3) | 0.3640 (2) | 0.0283 (9) | |
C21 | 0.8858 (4) | −0.0400 (3) | 0.4041 (2) | 0.0292 (9) | |
C22 | 0.8187 (4) | −0.0896 (3) | 0.5043 (2) | 0.0277 (9) | |
C23 | 0.8851 (4) | −0.2184 (3) | 0.5482 (3) | 0.0394 (11) | |
C24 | 0.9843 (5) | −0.2968 (4) | 0.4651 (3) | 0.0537 (14) | |
C25 | 1.0988 (5) | −0.2286 (4) | 0.3966 (4) | 0.0584 (14) | |
C26 | 1.0254 (4) | −0.1100 (3) | 0.3383 (3) | 0.0424 (11) | |
H2NA | 0.727 (5) | 0.651 (4) | −0.175 (4) | 0.0620* | |
H2 | 0.92100 | 0.68000 | 0.19630 | 0.0410* | |
H2NB | 0.678 (5) | 0.552 (4) | −0.205 (4) | 0.0620* | |
H6 | 0.82160 | 0.72350 | −0.08540 | 0.0400* | |
H10A | 0.59490 | 0.20900 | 0.15750 | 0.0440* | |
H10B | 0.74860 | 0.14390 | 0.09290 | 0.0440* | |
H11A | 0.57990 | 0.08130 | 0.03100 | 0.0600* | |
H11B | 0.47450 | 0.21320 | 0.02960 | 0.0600* | |
H12A | 0.60080 | 0.16990 | −0.14080 | 0.0670* | |
H12B | 0.75490 | 0.15690 | −0.10960 | 0.0670* | |
H13A | 0.70040 | 0.35560 | −0.19190 | 0.0560* | |
H13B | 0.53680 | 0.37890 | −0.12350 | 0.0560* | |
H4NA | 0.959 (5) | 0.099 (4) | 0.242 (3) | 0.0510* | |
H4NB | 0.842 (5) | 0.205 (4) | 0.242 (3) | 0.0510* | |
H15 | 0.34330 | 0.30870 | 0.59940 | 0.0410* | |
H19 | 0.63590 | 0.29330 | 0.32140 | 0.0370* | |
H23A | 0.94320 | −0.21190 | 0.59750 | 0.0470* | |
H23B | 0.80430 | −0.25950 | 0.58630 | 0.0470* | |
H24A | 1.03420 | −0.37400 | 0.49790 | 0.0640* | |
H24B | 0.92370 | −0.31650 | 0.42290 | 0.0640* | |
H25A | 1.16580 | −0.28180 | 0.34630 | 0.0700* | |
H25B | 1.15790 | −0.20790 | 0.43920 | 0.0700* | |
H26A | 1.09710 | −0.05630 | 0.31330 | 0.0510* | |
H26B | 1.00010 | −0.13110 | 0.27770 | 0.0510* | |
H1O | 0.701 (6) | 0.889 (5) | 0.722 (2) | 0.1070* | |
H2O | 0.667 (5) | 0.909 (5) | 0.818 (3) | 0.1070* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0611 (3) | 0.0270 (2) | 0.0741 (3) | −0.0200 (2) | −0.0034 (2) | −0.0024 (2) |
Br2 | 0.0882 (3) | 0.0448 (2) | 0.0405 (2) | −0.0242 (2) | −0.0337 (2) | 0.0079 (2) |
Br3 | 0.0652 (3) | 0.0303 (2) | 0.0496 (2) | 0.0111 (2) | −0.0265 (2) | −0.0035 (2) |
Br4 | 0.0434 (2) | 0.0474 (2) | 0.0309 (2) | −0.0080 (2) | −0.0006 (2) | −0.0004 (2) |
N1 | 0.0327 (14) | 0.0211 (12) | 0.0274 (13) | −0.0059 (11) | −0.0067 (11) | −0.0002 (10) |
N2 | 0.081 (3) | 0.0457 (19) | 0.0334 (17) | −0.0193 (19) | −0.0248 (17) | 0.0077 (15) |
C1 | 0.0310 (17) | 0.0193 (14) | 0.045 (2) | −0.0060 (13) | −0.0005 (14) | −0.0038 (13) |
C2 | 0.0378 (19) | 0.0269 (16) | 0.0405 (19) | −0.0100 (14) | −0.0090 (15) | −0.0080 (14) |
C3 | 0.0349 (18) | 0.0290 (16) | 0.0280 (16) | −0.0039 (13) | −0.0076 (13) | −0.0027 (13) |
C4 | 0.0244 (15) | 0.0219 (14) | 0.0261 (15) | −0.0025 (12) | −0.0025 (12) | −0.0026 (12) |
C5 | 0.0258 (15) | 0.0220 (14) | 0.0282 (16) | −0.0050 (12) | −0.0026 (12) | −0.0004 (12) |
C6 | 0.0347 (18) | 0.0255 (15) | 0.0348 (18) | −0.0048 (13) | −0.0049 (14) | 0.0033 (13) |
C7 | 0.0354 (18) | 0.0337 (17) | 0.0247 (16) | −0.0049 (14) | −0.0052 (13) | −0.0017 (13) |
C8 | 0.0331 (17) | 0.0322 (16) | 0.0269 (16) | −0.0057 (13) | −0.0051 (13) | −0.0069 (13) |
C9 | 0.0275 (16) | 0.0221 (14) | 0.0320 (16) | −0.0033 (12) | −0.0034 (13) | −0.0031 (12) |
C10 | 0.043 (2) | 0.0265 (16) | 0.0412 (19) | −0.0116 (14) | −0.0091 (16) | −0.0034 (14) |
C11 | 0.057 (2) | 0.042 (2) | 0.061 (3) | −0.0202 (19) | −0.016 (2) | −0.0080 (19) |
C12 | 0.074 (3) | 0.051 (2) | 0.055 (3) | −0.022 (2) | −0.018 (2) | −0.021 (2) |
C13 | 0.057 (2) | 0.052 (2) | 0.0362 (19) | −0.0154 (19) | −0.0149 (18) | −0.0098 (17) |
N3 | 0.0324 (14) | 0.0243 (12) | 0.0256 (13) | −0.0038 (11) | −0.0084 (11) | 0.0002 (10) |
N4 | 0.0477 (19) | 0.0361 (17) | 0.0309 (16) | −0.0018 (15) | 0.0032 (14) | 0.0040 (13) |
O1 | 0.082 (2) | 0.070 (2) | 0.0372 (16) | 0.0135 (18) | −0.0083 (16) | 0.0128 (15) |
C14 | 0.0416 (19) | 0.0229 (15) | 0.0349 (17) | −0.0018 (13) | −0.0174 (15) | −0.0027 (13) |
C15 | 0.0334 (18) | 0.0319 (17) | 0.0353 (18) | 0.0010 (14) | −0.0099 (14) | −0.0083 (14) |
C16 | 0.0297 (16) | 0.0312 (16) | 0.0259 (15) | −0.0074 (13) | −0.0063 (13) | −0.0034 (13) |
C17 | 0.0282 (16) | 0.0248 (14) | 0.0278 (15) | −0.0057 (12) | −0.0114 (13) | −0.0037 (12) |
C18 | 0.0313 (16) | 0.0226 (14) | 0.0266 (15) | −0.0060 (12) | −0.0105 (13) | −0.0016 (12) |
C19 | 0.0393 (18) | 0.0253 (15) | 0.0286 (16) | −0.0055 (13) | −0.0123 (14) | 0.0005 (13) |
C20 | 0.0341 (17) | 0.0261 (15) | 0.0265 (15) | −0.0076 (13) | −0.0077 (13) | −0.0040 (12) |
C21 | 0.0305 (16) | 0.0273 (15) | 0.0299 (16) | −0.0022 (13) | −0.0083 (13) | −0.0061 (13) |
C22 | 0.0323 (17) | 0.0230 (14) | 0.0307 (16) | −0.0033 (12) | −0.0141 (13) | −0.0033 (12) |
C23 | 0.046 (2) | 0.0288 (17) | 0.0392 (19) | 0.0028 (15) | −0.0147 (16) | 0.0017 (15) |
C24 | 0.064 (3) | 0.035 (2) | 0.056 (2) | 0.0098 (19) | −0.020 (2) | −0.0065 (18) |
C25 | 0.050 (2) | 0.051 (2) | 0.063 (3) | 0.012 (2) | −0.010 (2) | −0.011 (2) |
C26 | 0.040 (2) | 0.0388 (19) | 0.042 (2) | 0.0014 (16) | −0.0038 (16) | −0.0082 (16) |
Br1—C1 | 1.895 (3) | C12—H12B | 0.9700 |
Br2—C3 | 1.884 (3) | C12—H12A | 0.9700 |
Br3—C14 | 1.906 (3) | C13—H13B | 0.9700 |
Br4—C16 | 1.899 (3) | C13—H13A | 0.9700 |
N1—C4 | 1.361 (4) | N4—H4NB | 0.88 (4) |
N1—C9 | 1.335 (4) | N4—H4NA | 0.78 (5) |
N2—C7 | 1.358 (5) | C14—C15 | 1.401 (5) |
C1—C2 | 1.400 (5) | C14—C19 | 1.358 (5) |
C1—C6 | 1.341 (5) | C15—C16 | 1.365 (5) |
C2—C3 | 1.362 (5) | C16—C17 | 1.422 (4) |
N2—H2NA | 0.84 (5) | C17—C18 | 1.423 (4) |
N2—H2NB | 0.81 (5) | C18—C20 | 1.431 (4) |
C3—C4 | 1.417 (4) | C18—C19 | 1.412 (5) |
C4—C5 | 1.420 (4) | C20—C21 | 1.399 (5) |
C5—C7 | 1.424 (4) | C21—C26 | 1.507 (5) |
C5—C6 | 1.428 (5) | C21—C22 | 1.408 (4) |
C7—C8 | 1.392 (5) | C22—C23 | 1.510 (5) |
C8—C13 | 1.507 (5) | C23—C24 | 1.508 (6) |
C8—C9 | 1.401 (4) | C24—C25 | 1.497 (7) |
C9—C10 | 1.510 (5) | C25—C26 | 1.525 (6) |
C10—C11 | 1.515 (6) | O1—H1O | 0.81 (4) |
C11—C12 | 1.499 (6) | O1—H2O | 0.81 (5) |
C12—C13 | 1.528 (6) | C15—H15 | 0.9300 |
C2—H2 | 0.9300 | C19—H19 | 0.9300 |
N3—C17 | 1.361 (4) | C23—H23A | 0.9700 |
N3—C22 | 1.334 (4) | C23—H23B | 0.9700 |
N4—C20 | 1.356 (4) | C24—H24B | 0.9700 |
C6—H6 | 0.9300 | C24—H24A | 0.9700 |
C10—H10A | 0.9700 | C25—H25A | 0.9700 |
C10—H10B | 0.9700 | C25—H25B | 0.9700 |
C11—H11A | 0.9700 | C26—H26B | 0.9700 |
C11—H11B | 0.9700 | C26—H26A | 0.9700 |
C4—N1—C9 | 117.2 (2) | H4NA—N4—H4NB | 117 (4) |
Br1—C1—C2 | 118.4 (3) | C20—N4—H4NA | 117 (3) |
Br1—C1—C6 | 119.4 (3) | C20—N4—H4NB | 123 (3) |
C2—C1—C6 | 122.2 (3) | Br3—C14—C19 | 119.5 (3) |
C1—C2—C3 | 118.7 (3) | Br3—C14—C15 | 117.7 (3) |
H2NA—N2—H2NB | 122 (5) | C15—C14—C19 | 122.7 (3) |
C7—N2—H2NA | 118 (4) | C14—C15—C16 | 118.0 (3) |
C7—N2—H2NB | 120 (3) | Br4—C16—C15 | 116.8 (2) |
Br2—C3—C2 | 117.1 (3) | Br4—C16—C17 | 120.2 (2) |
Br2—C3—C4 | 120.1 (2) | C15—C16—C17 | 123.0 (3) |
C2—C3—C4 | 122.9 (3) | N3—C17—C18 | 123.3 (3) |
N1—C4—C5 | 123.3 (3) | N3—C17—C16 | 120.2 (2) |
N1—C4—C3 | 120.1 (3) | C16—C17—C18 | 116.6 (3) |
C3—C4—C5 | 116.6 (3) | C17—C18—C19 | 120.5 (3) |
C4—C5—C6 | 120.0 (3) | C17—C18—C20 | 117.6 (3) |
C4—C5—C7 | 117.8 (3) | C19—C18—C20 | 121.9 (3) |
C6—C5—C7 | 122.2 (3) | C14—C19—C18 | 119.2 (3) |
C1—C6—C5 | 119.6 (3) | C18—C20—C21 | 118.6 (3) |
C5—C7—C8 | 118.3 (3) | N4—C20—C21 | 120.5 (3) |
N2—C7—C8 | 121.6 (3) | N4—C20—C18 | 120.8 (3) |
N2—C7—C5 | 120.1 (3) | C20—C21—C22 | 118.3 (3) |
C7—C8—C9 | 119.1 (3) | C20—C21—C26 | 119.4 (3) |
C7—C8—C13 | 119.3 (3) | C22—C21—C26 | 122.3 (3) |
C9—C8—C13 | 121.7 (3) | C21—C22—C23 | 119.8 (3) |
C8—C9—C10 | 120.8 (3) | N3—C22—C21 | 124.8 (3) |
N1—C9—C8 | 124.3 (3) | N3—C22—C23 | 115.4 (3) |
N1—C9—C10 | 114.9 (3) | C22—C23—C24 | 113.1 (3) |
C9—C10—C11 | 114.7 (3) | C23—C24—C25 | 110.1 (4) |
C10—C11—C12 | 111.0 (4) | C24—C25—C26 | 111.5 (4) |
C11—C12—C13 | 110.0 (3) | C21—C26—C25 | 113.7 (3) |
C8—C13—C12 | 112.5 (3) | H1O—O1—H2O | 104 (5) |
C1—C2—H2 | 121.00 | C14—C15—H15 | 121.00 |
C3—C2—H2 | 121.00 | C16—C15—H15 | 121.00 |
C17—N3—C22 | 117.3 (2) | C18—C19—H19 | 120.00 |
C5—C6—H6 | 120.00 | C14—C19—H19 | 120.00 |
C1—C6—H6 | 120.00 | C22—C23—H23A | 109.00 |
C9—C10—H10A | 109.00 | C22—C23—H23B | 109.00 |
C9—C10—H10B | 109.00 | C24—C23—H23B | 109.00 |
C11—C10—H10B | 109.00 | H23A—C23—H23B | 108.00 |
H10A—C10—H10B | 108.00 | C24—C23—H23A | 109.00 |
C11—C10—H10A | 109.00 | C23—C24—H24B | 110.00 |
C10—C11—H11B | 109.00 | C25—C24—H24A | 110.00 |
C12—C11—H11A | 109.00 | C25—C24—H24B | 110.00 |
C12—C11—H11B | 109.00 | H24A—C24—H24B | 108.00 |
H11A—C11—H11B | 108.00 | C23—C24—H24A | 110.00 |
C10—C11—H11A | 109.00 | C24—C25—H25B | 109.00 |
C11—C12—H12B | 110.00 | C26—C25—H25A | 109.00 |
C13—C12—H12A | 110.00 | C24—C25—H25A | 109.00 |
C11—C12—H12A | 110.00 | H25A—C25—H25B | 108.00 |
H12A—C12—H12B | 108.00 | C26—C25—H25B | 109.00 |
C13—C12—H12B | 110.00 | C21—C26—H26A | 109.00 |
C8—C13—H13A | 109.00 | C21—C26—H26B | 109.00 |
C8—C13—H13B | 109.00 | C25—C26—H26B | 109.00 |
C12—C13—H13B | 109.00 | H26A—C26—H26B | 108.00 |
H13A—C13—H13B | 108.00 | C25—C26—H26A | 109.00 |
C12—C13—H13A | 109.00 | ||
C9—N1—C4—C3 | 179.7 (3) | C22—N3—C17—C16 | −179.8 (3) |
C4—N1—C9—C8 | 0.7 (5) | C17—N3—C22—C21 | 3.0 (5) |
C4—N1—C9—C10 | −179.6 (3) | C17—N3—C22—C23 | −176.8 (3) |
C9—N1—C4—C5 | 0.8 (4) | C22—N3—C17—C18 | 0.2 (5) |
Br1—C1—C2—C3 | 176.6 (3) | Br3—C14—C15—C16 | 179.8 (3) |
Br1—C1—C6—C5 | −175.5 (3) | Br3—C14—C19—C18 | 177.8 (3) |
C2—C1—C6—C5 | 2.3 (6) | C15—C14—C19—C18 | −0.8 (6) |
C6—C1—C2—C3 | −1.2 (6) | C19—C14—C15—C16 | −1.6 (6) |
C1—C2—C3—Br2 | 179.7 (3) | C14—C15—C16—Br4 | −177.3 (3) |
C1—C2—C3—C4 | −1.0 (6) | C14—C15—C16—C17 | 2.3 (5) |
Br2—C3—C4—N1 | 2.2 (4) | Br4—C16—C17—N3 | −1.1 (4) |
Br2—C3—C4—C5 | −178.8 (2) | Br4—C16—C17—C18 | 178.9 (2) |
C2—C3—C4—C5 | 1.9 (5) | C15—C16—C17—C18 | −0.6 (5) |
C2—C3—C4—N1 | −177.1 (3) | C15—C16—C17—N3 | 179.4 (3) |
N1—C4—C5—C7 | −0.1 (5) | N3—C17—C18—C20 | −3.6 (5) |
N1—C4—C5—C6 | 178.2 (3) | N3—C17—C18—C19 | 178.1 (3) |
C3—C4—C5—C6 | −0.8 (4) | C16—C17—C18—C19 | −1.9 (4) |
C3—C4—C5—C7 | −179.1 (3) | C16—C17—C18—C20 | 176.4 (3) |
C4—C5—C6—C1 | −1.3 (5) | C17—C18—C19—C14 | 2.6 (5) |
C4—C5—C7—C8 | −2.1 (5) | C17—C18—C20—C21 | 3.9 (5) |
C6—C5—C7—N2 | −0.3 (5) | C19—C18—C20—N4 | 0.7 (5) |
C6—C5—C7—C8 | 179.7 (3) | C19—C18—C20—C21 | −177.8 (3) |
C7—C5—C6—C1 | 177.0 (3) | C20—C18—C19—C14 | −175.7 (3) |
C4—C5—C7—N2 | 178.0 (3) | C17—C18—C20—N4 | −177.6 (3) |
C5—C7—C8—C9 | 3.4 (5) | C18—C20—C21—C22 | −1.1 (5) |
N2—C7—C8—C9 | −176.6 (4) | N4—C20—C21—C22 | −179.7 (3) |
N2—C7—C8—C13 | 3.3 (6) | N4—C20—C21—C26 | −1.1 (5) |
C5—C7—C8—C13 | −176.7 (3) | C18—C20—C21—C26 | 177.4 (3) |
C7—C8—C9—C10 | 177.4 (3) | C20—C21—C22—C23 | 177.2 (3) |
C13—C8—C9—N1 | 177.3 (3) | C26—C21—C22—N3 | 179.0 (3) |
C7—C8—C13—C12 | 162.3 (4) | C20—C21—C26—C25 | 172.6 (3) |
C9—C8—C13—C12 | −17.8 (5) | C22—C21—C26—C25 | −8.9 (5) |
C13—C8—C9—C10 | −2.4 (5) | C26—C21—C22—C23 | −1.3 (5) |
C7—C8—C9—N1 | −2.9 (5) | C20—C21—C22—N3 | −2.5 (5) |
N1—C9—C10—C11 | 170.5 (3) | N3—C22—C23—C24 | 159.5 (3) |
C8—C9—C10—C11 | −9.8 (5) | C21—C22—C23—C24 | −20.3 (5) |
C9—C10—C11—C12 | 42.3 (5) | C22—C23—C24—C25 | 51.8 (5) |
C10—C11—C12—C13 | −62.7 (5) | C23—C24—C25—C26 | −62.6 (5) |
C11—C12—C13—C8 | 49.9 (5) | C24—C25—C26—C21 | 40.6 (5) |
Cg1 is the centroid of the N3/C1/C18/C20–C22 pyridine ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2NA···O1i | 0.84 (5) | 2.39 (4) | 3.215 (5) | 168 (5) |
O1—H1O···N3ii | 0.81 (4) | 2.12 (3) | 2.895 (4) | 161 (5) |
N4—H4NB···N1 | 0.88 (4) | 2.36 (4) | 3.207 (4) | 161 (4) |
C6—H6···O1i | 0.93 | 2.42 | 3.315 (5) | 162 |
C25—H25B···Cg1iii | 0.97 | 2.95 | 3.820 (5) | 151 |
Symmetry codes: (i) x, y, z−1; (ii) x, y+1, z; (iii) −x+2, −y, −z+1. |
Acknowledgements
The authors are indebted to the X-ray laboratory of Sinop University, Scientific and Technological Applied and Research Center, Sinop, Turkey, for use of the X-ray diffractometer.
References
Akkurt, M., Çelik, Í., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1770–o1771. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Çelik, İ., Ísmail, , Akkurt, M., Ekiz, M., Tutar, A., Ökten, S. & Ersanlı, C. C. (2017). IUCrData, 2, x170888. Google Scholar
Cheng, X. M. (1994). Annu. Rep. Med. Chem. 29, 331–354. CrossRef CAS Google Scholar
Das, D. P. & Parida, K. M. (2006). J. Mol. Catal. A Chem. 253, 70–78. CrossRef CAS Google Scholar
Diaz Brinton, R. & Yamazaki, R. S. (1998). Pharm. Res. 15, 386–398. CAS PubMed Google Scholar
Eisch, J. J. (1962). J. Org. Chem. 27, 1318–1323. CrossRef CAS Google Scholar
Ekiz, M., Tutar, A. & Ökten, S. (2016). Tetrahedron, 72, 5323–5330. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Glöcklhofer, F., Fröhlich, J., Stöger, B. & Weil, M. (2014). Acta Cryst. E70, 77–79. CSD CrossRef IUCr Journals Google Scholar
Ökten, S., Çakmak, O., Erenler, R., Tekin, Ş. & Yüce, Ö. (2013). Turk. J. Chem. 37, 896–908. Google Scholar
Ökten, S., Erenler, R., Köprülü, T. K. & Tekin, Ş. (2015). Turk. J. Biol. 39, 15–22. Google Scholar
Peçanha, E. P., Fraga, C. A. M., Barreiro, E. J., Braga, M. F. M., Pereira, E. F. R. & Albuquerque, E. X. (2001). J. Braz. Chem. Soc. 12, 408–412. Google Scholar
Rampa, A., Bisi, A., Belluti, F., Gobbi, S., Valenti, P., Andrisano, V., Cavrini, V., Cavalli, A. & Recanatini, M. (2000). Bioorg. Med. Chem. 8, 497–506. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sparrow, C. R., Fronczek, F. R. & Watkins, S. F. (2012). Acta Cryst. E68, o2809. CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tang, J., Li, J., Zhang, L., Ma, S., Shi, D., Zhang, Q., Yang, L., Wang, X., Liu, X. & Liu, C. (2012). J. Heterocycl. Chem. 49, 533–542. CrossRef CAS Google Scholar
Yang, D., Jiang, K., Li, J. & Xu, F. (2007). Tetrahedron, 63, 7654–7658. Web of Science CrossRef CAS Google Scholar
Zemtsova, M. N., Kulemina, S. V., Rybakov, V. B. & Klimochkin, Y. N. (2015). Russ. J. Org. Chem. 51, 636–639. CSD CrossRef CAS Google Scholar
Zong, R., Wang, D., Hammitt, R. & Thummel, R. P. (2006). J. Org. Chem. 71, 167–175. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.