organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

9-Amino-5,7-di­bromo-1,2,3,4-tetra­hydro­acridine hemihydrate

aDepartment of Physics, Faculty of Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Faculty of Art and Science, Düzce University, 81620, Düzce, Turkey, dDepatment of Chemistry, Faculty of Art and Science, Sakarya University, Serdivan, 54187, Sakarya, Turkey, eDepartment of Maths and Science Education, Faculty of Education, Kırıkkale University, Yahşihan, 71450, Kırıkkale, Turkey, fDepartment of Chemistry, Faculty of Art and Science, Sakarya University, Serdivan, 54187, Sakarya, Turkey, and gDepartment of Physics, Faculty of Arts and Sciences, Sinop University, 57010 Sinop, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 30 June 2017; accepted 7 July 2017; online 18 July 2017)

The asymmetric unit of the title compound, C13H12Br2N2·0.5H2O, includes two mol­ecules of 5,7-di­bromo-1,2,3,4-tetra­hydro­acridin-9-amine and one water mol­ecule. In the crystal, C—H⋯O, N—H⋯N, N—H⋯O and O—H⋯N hydrogen bonds connect the mol­ecules, forming a two-dimensional network parallel to (010). The two-dimensional sheets are further assembled into a three-dimensional structure through C—H⋯π and ππ stacking inter­actions [centroid–centroid distance = 3.719 (2) Å].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Various synthetic methods such as the Skraup, Friedländer, Doebner-von Millet and Combes syntheses have developed due to the importance of the synthesis of bioactive heterocycles with N functions such as indole (Ökten et al., 2015[Ökten, S., Erenler, R., Köprülü, T. K. & Tekin, Ş. (2015). Turk. J. Biol. 39, 15-22.]), quinoline (Ökten et al., 2013[Ökten, S., Çakmak, O., Erenler, R., Tekin, Ş. & Yüce, Ö. (2013). Turk. J. Chem. 37, 896-908.]), acridine (Zong et al., 2006[Zong, R., Wang, D., Hammitt, R. & Thummel, R. P. (2006). J. Org. Chem. 71, 167-175.]) and tacrine (Yang et al., 2007[Yang, D., Jiang, K., Li, J. & Xu, F. (2007). Tetrahedron, 63, 7654-7658.]). The Friedländer reaction is one of the most well known for the synthesis of polysubstituted hetero­aromatic compounds (Peçanha et al., 2001[Peçanha, E. P., Fraga, C. A. M., Barreiro, E. J., Braga, M. F. M., Pereira, E. F. R. & Albuquerque, E. X. (2001). J. Braz. Chem. Soc. 12, 408-412.]; Zong et al., 2006[Zong, R., Wang, D., Hammitt, R. & Thummel, R. P. (2006). J. Org. Chem. 71, 167-175.]; Tang et al., 2012[Tang, J., Li, J., Zhang, L., Ma, S., Shi, D., Zhang, Q., Yang, L., Wang, X., Liu, X. & Liu, C. (2012). J. Heterocycl. Chem. 49, 533-542.]). 9-Amino-1,2,3,4-tetra­hydro­acridine, known as tacrine, was the first AChE inhibitor to be investigated as an AD drug (Cheng, 1994[Cheng, X. M. (1994). Annu. Rep. Med. Chem. 29, 331-354.]). Although beneficial effects of tacrines on AD symptoms, it exhibited several adverse effects which in some cases causes some problems (Brinton & Yamazaki, 1998[Diaz Brinton, R. & Yamazaki, R. S. (1998). Pharm. Res. 15, 386-398.]). As a result of that, many other AChE inhibitors have been studied and researchers still continue to improve the pharmacological profile of novel drug candidates (Rampa et al., 2000[Rampa, A., Bisi, A., Belluti, F., Gobbi, S., Valenti, P., Andrisano, V., Cavrini, V., Cavalli, A. & Recanatini, M. (2000). Bioorg. Med. Chem. 8, 497-506.]).

Halogenated aromatics including a quinoline skeleton are used as precursors for various multifunctional heterocyclic compounds, undergoing metal–halogen exchanges (Ökten et al., 2013[Ökten, S., Çakmak, O., Erenler, R., Tekin, Ş. & Yüce, Ö. (2013). Turk. J. Chem. 37, 896-908.]), couplings (Zemtsova et al., 2015[Zemtsova, M. N., Kulemina, S. V., Rybakov, V. B. & Klimochkin, Y. N. (2015). Russ. J. Org. Chem. 51, 636-639.]), and metal-assisted substitutions (Ökten et al., 2013[Ökten, S., Çakmak, O., Erenler, R., Tekin, Ş. & Yüce, Ö. (2013). Turk. J. Chem. 37, 896-908.]; Eisch, 1962[Eisch, J. J. (1962). J. Org. Chem. 27, 1318-1323.]). In addition, this class of aromatic compounds, used as starting materials for numerous compounds with pharmacological properties, has been of inter­est to chemists (Zong et al., 2006[Zong, R., Wang, D., Hammitt, R. & Thummel, R. P. (2006). J. Org. Chem. 71, 167-175.]; Das & Parida, 2006[Das, D. P. & Parida, K. M. (2006). J. Mol. Catal. A Chem. 253, 70-78.]). In this study we present the structure of 9-amino-5,7-di­bromo-1,2,3,4-tetra­hydro­acridine hemihydrate.

As shown in Fig. 1[link], the asymmetric unit includes two mol­ecules (A and B) of 9-amino-5,7-di­bromo-1,2,3,4-tetra­hydro­acridine and a water mol­ecule. The cyclo­hexane rings display a half-boat conformation, with atoms C12 and C24 as flap atoms and puckering parameters QT = 0.498 (5) Å, θ = 127.5 (4)°, φ = 38.6 (6)° for ring C8–C13, and QT = 0.495 (5) Å, θ = 128.2 (5)°, φ = 18.7 (6)° for ring C21–C26. The observed bond lengths are comparable to those reported for similar compounds (Glöcklhofer et al., 2014[Glöcklhofer, F., Fröhlich, J., Stöger, B. & Weil, M. (2014). Acta Cryst. E70, 77-79.]; Sparrow et al., 2012[Sparrow, C. R., Fronczek, F. R. & Watkins, S. F. (2012). Acta Cryst. E68, o2809.]; Akkurt et al., 2010[Akkurt, M., Çelik, Í., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1770-o1771.]; Çelik et al., 2017[Çelik, İ., Ísmail, , Akkurt, M., Ekiz, M., Tutar, A., Ökten, S. & Ersanlı, C. C. (2017). IUCrData, 2, x170888.]).

[Figure 1]
Figure 1
The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 30% probability level.

In the crystal, adjacent mol­ecules are linked by C—H⋯O, N—H⋯N, N—H⋯O and O—H⋯N hydrogen bonds (Table 1[link]), forming a two-dimensional network parallel to (010) (Table 1[link]; Figs. 2[link] and 3[link]). The parallel layers are then assembled into a three-dimensional network through C—H⋯π (Table 1[link]) and ππ stacking inter­actions [CgCgi = 3.719 (2) Å; Cg is the centroid of the C1–C6 benzene ring of mol­ecule A; symmetry code: (i) 2 − x, 1 − y, −z] between the layers.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N3/C1/C18/C20–C22 pyridine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2NA⋯O1i 0.84 (5) 2.39 (4) 3.215 (5) 168 (5)
O1—H1O⋯N3ii 0.81 (4) 2.12 (3) 2.895 (4) 161 (5)
N4—H4NB⋯N1 0.88 (4) 2.36 (4) 3.207 (4) 161 (4)
C6—H6⋯O1i 0.93 2.42 3.315 (5) 162
C25—H25BCg1iii 0.97 2.95 3.820 (5) 151
Symmetry codes: (i) x, y, z-1; (ii) x, y+1, z; (iii) -x+2, -y, -z+1.
[Figure 2]
Figure 2
Crystal packing of the title compound, viewed down the a axis. Hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
Crystal packing of the title compound, viewed down the b axis. Hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

According to the reported procedure (Ekiz et al., 2016[Ekiz, M., Tutar, A. & Ökten, S. (2016). Tetrahedron, 72, 5323-5330.]), 9-amino-5,7-di­bromo-1,2,3,4-tetra­hydro­acridine was prepared by the Friedländer quinoline reaction of cyclo­hexa­none and brominated 2-amino-3,5-di­bromo­benzo­nitrile in the presence of InCl3 as Lewis acid. The recrystallization in CHCl3/hexane (1:1 v/v) gave yellow block-shaped crystals suitable for X-ray analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H12Br2N2·0.5H2O
Mr 365.05
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 9.404 (2), 11.163 (2), 13.263 (3)
α, β, γ (°) 80.607 (9), 75.713 (9), 76.407 (9)
V3) 1303.3 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 6.20
Crystal size (mm) 0.16 × 0.13 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.409, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 66562, 6486, 4883
Rint 0.055
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.080, 1.09
No. of reflections 6486
No. of parameters 335
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.63, −0.83
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

9-Amino-5,7-dibromo-1,2,3,4-tetrahydroacridine hemihydrate top
Crystal data top
C13H12Br2N2·0.5H2OZ = 4
Mr = 365.05F(000) = 716
Triclinic, P1Dx = 1.860 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.404 (2) ÅCell parameters from 9584 reflections
b = 11.163 (2) Åθ = 3.5–28.3°
c = 13.263 (3) ŵ = 6.20 mm1
α = 80.607 (9)°T = 296 K
β = 75.713 (9)°Block, yellow
γ = 76.407 (9)°0.16 × 0.13 × 0.12 mm
V = 1303.3 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4883 reflections with I > 2σ(I)
φ and ω scansRint = 0.055
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
θmax = 28.4°, θmin = 3.1°
Tmin = 0.409, Tmax = 0.746h = 1212
66562 measured reflectionsk = 1414
6486 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0191P)2 + 2.4473P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.63 e Å3
6486 reflectionsΔρmin = 0.83 e Å3
335 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.0038 (3)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

The amino and water H atoms were located in a difference Fourier map and refined with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). DFIX instructions were used to keep the H atoms of the water molecule in place. The C-bound H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.91349 (5)0.88067 (3)0.02649 (4)0.0546 (2)
Br20.87277 (6)0.44474 (4)0.29818 (3)0.0539 (1)
Br30.37866 (5)0.47644 (3)0.40689 (3)0.0495 (1)
Br40.41617 (4)0.08140 (4)0.72633 (3)0.0426 (1)
N10.7550 (3)0.3730 (2)0.1241 (2)0.0273 (8)
N20.7120 (5)0.5786 (3)0.1647 (3)0.0515 (13)
C10.8727 (4)0.7188 (3)0.0515 (3)0.0330 (10)
C20.8871 (4)0.6491 (3)0.1476 (3)0.0339 (10)
C30.8504 (4)0.5353 (3)0.1682 (2)0.0310 (10)
C40.7960 (3)0.4850 (3)0.0972 (2)0.0251 (8)
C50.7853 (3)0.5580 (3)0.0001 (2)0.0262 (9)
C60.8266 (4)0.6763 (3)0.0213 (3)0.0332 (10)
C70.7288 (4)0.5106 (3)0.0721 (2)0.0321 (10)
C80.6920 (4)0.3941 (3)0.0450 (2)0.0307 (9)
C90.7041 (3)0.3311 (3)0.0539 (2)0.0280 (9)
C100.6592 (4)0.2070 (3)0.0881 (3)0.0362 (11)
C110.5783 (5)0.1696 (4)0.0163 (3)0.0508 (14)
C120.6505 (5)0.1991 (4)0.0964 (3)0.0559 (16)
C130.6399 (5)0.3390 (4)0.1225 (3)0.0462 (11)
N30.6966 (3)0.0310 (2)0.56636 (19)0.0277 (8)
N40.8774 (4)0.1289 (3)0.2676 (2)0.0424 (10)
O10.7290 (4)0.8667 (3)0.7765 (2)0.0711 (11)
C140.4807 (4)0.3162 (3)0.4538 (3)0.0324 (10)
C150.4262 (4)0.2654 (3)0.5559 (3)0.0339 (10)
C160.4985 (3)0.1505 (3)0.5898 (2)0.0287 (9)
C170.6288 (3)0.0828 (3)0.5277 (2)0.0258 (9)
C180.6816 (3)0.1404 (3)0.4257 (2)0.0261 (9)
C190.6036 (4)0.2572 (3)0.3890 (2)0.0308 (9)
C200.8175 (4)0.0774 (3)0.3640 (2)0.0283 (9)
C210.8858 (4)0.0400 (3)0.4041 (2)0.0292 (9)
C220.8187 (4)0.0896 (3)0.5043 (2)0.0277 (9)
C230.8851 (4)0.2184 (3)0.5482 (3)0.0394 (11)
C240.9843 (5)0.2968 (4)0.4651 (3)0.0537 (14)
C251.0988 (5)0.2286 (4)0.3966 (4)0.0584 (14)
C261.0254 (4)0.1100 (3)0.3383 (3)0.0424 (11)
H2NA0.727 (5)0.651 (4)0.175 (4)0.0620*
H20.921000.680000.196300.0410*
H2NB0.678 (5)0.552 (4)0.205 (4)0.0620*
H60.821600.723500.085400.0400*
H10A0.594900.209000.157500.0440*
H10B0.748600.143900.092900.0440*
H11A0.579900.081300.031000.0600*
H11B0.474500.213200.029600.0600*
H12A0.600800.169900.140800.0670*
H12B0.754900.156900.109600.0670*
H13A0.700400.355600.191900.0560*
H13B0.536800.378900.123500.0560*
H4NA0.959 (5)0.099 (4)0.242 (3)0.0510*
H4NB0.842 (5)0.205 (4)0.242 (3)0.0510*
H150.343300.308700.599400.0410*
H190.635900.293300.321400.0370*
H23A0.943200.211900.597500.0470*
H23B0.804300.259500.586300.0470*
H24A1.034200.374000.497900.0640*
H24B0.923700.316500.422900.0640*
H25A1.165800.281800.346300.0700*
H25B1.157900.207900.439200.0700*
H26A1.097100.056300.313300.0510*
H26B1.000100.131100.277700.0510*
H1O0.701 (6)0.889 (5)0.722 (2)0.1070*
H2O0.667 (5)0.909 (5)0.818 (3)0.1070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0611 (3)0.0270 (2)0.0741 (3)0.0200 (2)0.0034 (2)0.0024 (2)
Br20.0882 (3)0.0448 (2)0.0405 (2)0.0242 (2)0.0337 (2)0.0079 (2)
Br30.0652 (3)0.0303 (2)0.0496 (2)0.0111 (2)0.0265 (2)0.0035 (2)
Br40.0434 (2)0.0474 (2)0.0309 (2)0.0080 (2)0.0006 (2)0.0004 (2)
N10.0327 (14)0.0211 (12)0.0274 (13)0.0059 (11)0.0067 (11)0.0002 (10)
N20.081 (3)0.0457 (19)0.0334 (17)0.0193 (19)0.0248 (17)0.0077 (15)
C10.0310 (17)0.0193 (14)0.045 (2)0.0060 (13)0.0005 (14)0.0038 (13)
C20.0378 (19)0.0269 (16)0.0405 (19)0.0100 (14)0.0090 (15)0.0080 (14)
C30.0349 (18)0.0290 (16)0.0280 (16)0.0039 (13)0.0076 (13)0.0027 (13)
C40.0244 (15)0.0219 (14)0.0261 (15)0.0025 (12)0.0025 (12)0.0026 (12)
C50.0258 (15)0.0220 (14)0.0282 (16)0.0050 (12)0.0026 (12)0.0004 (12)
C60.0347 (18)0.0255 (15)0.0348 (18)0.0048 (13)0.0049 (14)0.0033 (13)
C70.0354 (18)0.0337 (17)0.0247 (16)0.0049 (14)0.0052 (13)0.0017 (13)
C80.0331 (17)0.0322 (16)0.0269 (16)0.0057 (13)0.0051 (13)0.0069 (13)
C90.0275 (16)0.0221 (14)0.0320 (16)0.0033 (12)0.0034 (13)0.0031 (12)
C100.043 (2)0.0265 (16)0.0412 (19)0.0116 (14)0.0091 (16)0.0034 (14)
C110.057 (2)0.042 (2)0.061 (3)0.0202 (19)0.016 (2)0.0080 (19)
C120.074 (3)0.051 (2)0.055 (3)0.022 (2)0.018 (2)0.021 (2)
C130.057 (2)0.052 (2)0.0362 (19)0.0154 (19)0.0149 (18)0.0098 (17)
N30.0324 (14)0.0243 (12)0.0256 (13)0.0038 (11)0.0084 (11)0.0002 (10)
N40.0477 (19)0.0361 (17)0.0309 (16)0.0018 (15)0.0032 (14)0.0040 (13)
O10.082 (2)0.070 (2)0.0372 (16)0.0135 (18)0.0083 (16)0.0128 (15)
C140.0416 (19)0.0229 (15)0.0349 (17)0.0018 (13)0.0174 (15)0.0027 (13)
C150.0334 (18)0.0319 (17)0.0353 (18)0.0010 (14)0.0099 (14)0.0083 (14)
C160.0297 (16)0.0312 (16)0.0259 (15)0.0074 (13)0.0063 (13)0.0034 (13)
C170.0282 (16)0.0248 (14)0.0278 (15)0.0057 (12)0.0114 (13)0.0037 (12)
C180.0313 (16)0.0226 (14)0.0266 (15)0.0060 (12)0.0105 (13)0.0016 (12)
C190.0393 (18)0.0253 (15)0.0286 (16)0.0055 (13)0.0123 (14)0.0005 (13)
C200.0341 (17)0.0261 (15)0.0265 (15)0.0076 (13)0.0077 (13)0.0040 (12)
C210.0305 (16)0.0273 (15)0.0299 (16)0.0022 (13)0.0083 (13)0.0061 (13)
C220.0323 (17)0.0230 (14)0.0307 (16)0.0033 (12)0.0141 (13)0.0033 (12)
C230.046 (2)0.0288 (17)0.0392 (19)0.0028 (15)0.0147 (16)0.0017 (15)
C240.064 (3)0.035 (2)0.056 (2)0.0098 (19)0.020 (2)0.0065 (18)
C250.050 (2)0.051 (2)0.063 (3)0.012 (2)0.010 (2)0.011 (2)
C260.040 (2)0.0388 (19)0.042 (2)0.0014 (16)0.0038 (16)0.0082 (16)
Geometric parameters (Å, º) top
Br1—C11.895 (3)C12—H12B0.9700
Br2—C31.884 (3)C12—H12A0.9700
Br3—C141.906 (3)C13—H13B0.9700
Br4—C161.899 (3)C13—H13A0.9700
N1—C41.361 (4)N4—H4NB0.88 (4)
N1—C91.335 (4)N4—H4NA0.78 (5)
N2—C71.358 (5)C14—C151.401 (5)
C1—C21.400 (5)C14—C191.358 (5)
C1—C61.341 (5)C15—C161.365 (5)
C2—C31.362 (5)C16—C171.422 (4)
N2—H2NA0.84 (5)C17—C181.423 (4)
N2—H2NB0.81 (5)C18—C201.431 (4)
C3—C41.417 (4)C18—C191.412 (5)
C4—C51.420 (4)C20—C211.399 (5)
C5—C71.424 (4)C21—C261.507 (5)
C5—C61.428 (5)C21—C221.408 (4)
C7—C81.392 (5)C22—C231.510 (5)
C8—C131.507 (5)C23—C241.508 (6)
C8—C91.401 (4)C24—C251.497 (7)
C9—C101.510 (5)C25—C261.525 (6)
C10—C111.515 (6)O1—H1O0.81 (4)
C11—C121.499 (6)O1—H2O0.81 (5)
C12—C131.528 (6)C15—H150.9300
C2—H20.9300C19—H190.9300
N3—C171.361 (4)C23—H23A0.9700
N3—C221.334 (4)C23—H23B0.9700
N4—C201.356 (4)C24—H24B0.9700
C6—H60.9300C24—H24A0.9700
C10—H10A0.9700C25—H25A0.9700
C10—H10B0.9700C25—H25B0.9700
C11—H11A0.9700C26—H26B0.9700
C11—H11B0.9700C26—H26A0.9700
C4—N1—C9117.2 (2)H4NA—N4—H4NB117 (4)
Br1—C1—C2118.4 (3)C20—N4—H4NA117 (3)
Br1—C1—C6119.4 (3)C20—N4—H4NB123 (3)
C2—C1—C6122.2 (3)Br3—C14—C19119.5 (3)
C1—C2—C3118.7 (3)Br3—C14—C15117.7 (3)
H2NA—N2—H2NB122 (5)C15—C14—C19122.7 (3)
C7—N2—H2NA118 (4)C14—C15—C16118.0 (3)
C7—N2—H2NB120 (3)Br4—C16—C15116.8 (2)
Br2—C3—C2117.1 (3)Br4—C16—C17120.2 (2)
Br2—C3—C4120.1 (2)C15—C16—C17123.0 (3)
C2—C3—C4122.9 (3)N3—C17—C18123.3 (3)
N1—C4—C5123.3 (3)N3—C17—C16120.2 (2)
N1—C4—C3120.1 (3)C16—C17—C18116.6 (3)
C3—C4—C5116.6 (3)C17—C18—C19120.5 (3)
C4—C5—C6120.0 (3)C17—C18—C20117.6 (3)
C4—C5—C7117.8 (3)C19—C18—C20121.9 (3)
C6—C5—C7122.2 (3)C14—C19—C18119.2 (3)
C1—C6—C5119.6 (3)C18—C20—C21118.6 (3)
C5—C7—C8118.3 (3)N4—C20—C21120.5 (3)
N2—C7—C8121.6 (3)N4—C20—C18120.8 (3)
N2—C7—C5120.1 (3)C20—C21—C22118.3 (3)
C7—C8—C9119.1 (3)C20—C21—C26119.4 (3)
C7—C8—C13119.3 (3)C22—C21—C26122.3 (3)
C9—C8—C13121.7 (3)C21—C22—C23119.8 (3)
C8—C9—C10120.8 (3)N3—C22—C21124.8 (3)
N1—C9—C8124.3 (3)N3—C22—C23115.4 (3)
N1—C9—C10114.9 (3)C22—C23—C24113.1 (3)
C9—C10—C11114.7 (3)C23—C24—C25110.1 (4)
C10—C11—C12111.0 (4)C24—C25—C26111.5 (4)
C11—C12—C13110.0 (3)C21—C26—C25113.7 (3)
C8—C13—C12112.5 (3)H1O—O1—H2O104 (5)
C1—C2—H2121.00C14—C15—H15121.00
C3—C2—H2121.00C16—C15—H15121.00
C17—N3—C22117.3 (2)C18—C19—H19120.00
C5—C6—H6120.00C14—C19—H19120.00
C1—C6—H6120.00C22—C23—H23A109.00
C9—C10—H10A109.00C22—C23—H23B109.00
C9—C10—H10B109.00C24—C23—H23B109.00
C11—C10—H10B109.00H23A—C23—H23B108.00
H10A—C10—H10B108.00C24—C23—H23A109.00
C11—C10—H10A109.00C23—C24—H24B110.00
C10—C11—H11B109.00C25—C24—H24A110.00
C12—C11—H11A109.00C25—C24—H24B110.00
C12—C11—H11B109.00H24A—C24—H24B108.00
H11A—C11—H11B108.00C23—C24—H24A110.00
C10—C11—H11A109.00C24—C25—H25B109.00
C11—C12—H12B110.00C26—C25—H25A109.00
C13—C12—H12A110.00C24—C25—H25A109.00
C11—C12—H12A110.00H25A—C25—H25B108.00
H12A—C12—H12B108.00C26—C25—H25B109.00
C13—C12—H12B110.00C21—C26—H26A109.00
C8—C13—H13A109.00C21—C26—H26B109.00
C8—C13—H13B109.00C25—C26—H26B109.00
C12—C13—H13B109.00H26A—C26—H26B108.00
H13A—C13—H13B108.00C25—C26—H26A109.00
C12—C13—H13A109.00
C9—N1—C4—C3179.7 (3)C22—N3—C17—C16179.8 (3)
C4—N1—C9—C80.7 (5)C17—N3—C22—C213.0 (5)
C4—N1—C9—C10179.6 (3)C17—N3—C22—C23176.8 (3)
C9—N1—C4—C50.8 (4)C22—N3—C17—C180.2 (5)
Br1—C1—C2—C3176.6 (3)Br3—C14—C15—C16179.8 (3)
Br1—C1—C6—C5175.5 (3)Br3—C14—C19—C18177.8 (3)
C2—C1—C6—C52.3 (6)C15—C14—C19—C180.8 (6)
C6—C1—C2—C31.2 (6)C19—C14—C15—C161.6 (6)
C1—C2—C3—Br2179.7 (3)C14—C15—C16—Br4177.3 (3)
C1—C2—C3—C41.0 (6)C14—C15—C16—C172.3 (5)
Br2—C3—C4—N12.2 (4)Br4—C16—C17—N31.1 (4)
Br2—C3—C4—C5178.8 (2)Br4—C16—C17—C18178.9 (2)
C2—C3—C4—C51.9 (5)C15—C16—C17—C180.6 (5)
C2—C3—C4—N1177.1 (3)C15—C16—C17—N3179.4 (3)
N1—C4—C5—C70.1 (5)N3—C17—C18—C203.6 (5)
N1—C4—C5—C6178.2 (3)N3—C17—C18—C19178.1 (3)
C3—C4—C5—C60.8 (4)C16—C17—C18—C191.9 (4)
C3—C4—C5—C7179.1 (3)C16—C17—C18—C20176.4 (3)
C4—C5—C6—C11.3 (5)C17—C18—C19—C142.6 (5)
C4—C5—C7—C82.1 (5)C17—C18—C20—C213.9 (5)
C6—C5—C7—N20.3 (5)C19—C18—C20—N40.7 (5)
C6—C5—C7—C8179.7 (3)C19—C18—C20—C21177.8 (3)
C7—C5—C6—C1177.0 (3)C20—C18—C19—C14175.7 (3)
C4—C5—C7—N2178.0 (3)C17—C18—C20—N4177.6 (3)
C5—C7—C8—C93.4 (5)C18—C20—C21—C221.1 (5)
N2—C7—C8—C9176.6 (4)N4—C20—C21—C22179.7 (3)
N2—C7—C8—C133.3 (6)N4—C20—C21—C261.1 (5)
C5—C7—C8—C13176.7 (3)C18—C20—C21—C26177.4 (3)
C7—C8—C9—C10177.4 (3)C20—C21—C22—C23177.2 (3)
C13—C8—C9—N1177.3 (3)C26—C21—C22—N3179.0 (3)
C7—C8—C13—C12162.3 (4)C20—C21—C26—C25172.6 (3)
C9—C8—C13—C1217.8 (5)C22—C21—C26—C258.9 (5)
C13—C8—C9—C102.4 (5)C26—C21—C22—C231.3 (5)
C7—C8—C9—N12.9 (5)C20—C21—C22—N32.5 (5)
N1—C9—C10—C11170.5 (3)N3—C22—C23—C24159.5 (3)
C8—C9—C10—C119.8 (5)C21—C22—C23—C2420.3 (5)
C9—C10—C11—C1242.3 (5)C22—C23—C24—C2551.8 (5)
C10—C11—C12—C1362.7 (5)C23—C24—C25—C2662.6 (5)
C11—C12—C13—C849.9 (5)C24—C25—C26—C2140.6 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N3/C1/C18/C20–C22 pyridine ring.
D—H···AD—HH···AD···AD—H···A
N2—H2NA···O1i0.84 (5)2.39 (4)3.215 (5)168 (5)
O1—H1O···N3ii0.81 (4)2.12 (3)2.895 (4)161 (5)
N4—H4NB···N10.88 (4)2.36 (4)3.207 (4)161 (4)
C6—H6···O1i0.932.423.315 (5)162
C25—H25B···Cg1iii0.972.953.820 (5)151
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z; (iii) x+2, y, z+1.
 

Acknowledgements

The authors are indebted to the X-ray laboratory of Sinop University, Scientific and Technological Applied and Research Center, Sinop, Turkey, for use of the X-ray diffractometer.

References

First citationAkkurt, M., Çelik, Í., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1770–o1771.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇelik, İ., Ísmail, , Akkurt, M., Ekiz, M., Tutar, A., Ökten, S. & Ersanlı, C. C. (2017). IUCrData, 2, x170888.  Google Scholar
First citationCheng, X. M. (1994). Annu. Rep. Med. Chem. 29, 331–354.  CrossRef CAS Google Scholar
First citationDas, D. P. & Parida, K. M. (2006). J. Mol. Catal. A Chem. 253, 70–78.  CrossRef CAS Google Scholar
First citationDiaz Brinton, R. & Yamazaki, R. S. (1998). Pharm. Res. 15, 386–398.  CAS PubMed Google Scholar
First citationEisch, J. J. (1962). J. Org. Chem. 27, 1318–1323.  CrossRef CAS Google Scholar
First citationEkiz, M., Tutar, A. & Ökten, S. (2016). Tetrahedron, 72, 5323–5330.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGlöcklhofer, F., Fröhlich, J., Stöger, B. & Weil, M. (2014). Acta Cryst. E70, 77–79.  CSD CrossRef IUCr Journals Google Scholar
First citationÖkten, S., Çakmak, O., Erenler, R., Tekin, Ş. & Yüce, Ö. (2013). Turk. J. Chem. 37, 896–908.  Google Scholar
First citationÖkten, S., Erenler, R., Köprülü, T. K. & Tekin, Ş. (2015). Turk. J. Biol. 39, 15–22.  Google Scholar
First citationPeçanha, E. P., Fraga, C. A. M., Barreiro, E. J., Braga, M. F. M., Pereira, E. F. R. & Albuquerque, E. X. (2001). J. Braz. Chem. Soc. 12, 408–412.  Google Scholar
First citationRampa, A., Bisi, A., Belluti, F., Gobbi, S., Valenti, P., Andrisano, V., Cavrini, V., Cavalli, A. & Recanatini, M. (2000). Bioorg. Med. Chem. 8, 497–506.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSparrow, C. R., Fronczek, F. R. & Watkins, S. F. (2012). Acta Cryst. E68, o2809.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, J., Li, J., Zhang, L., Ma, S., Shi, D., Zhang, Q., Yang, L., Wang, X., Liu, X. & Liu, C. (2012). J. Heterocycl. Chem. 49, 533–542.  CrossRef CAS Google Scholar
First citationYang, D., Jiang, K., Li, J. & Xu, F. (2007). Tetrahedron, 63, 7654–7658.  Web of Science CrossRef CAS Google Scholar
First citationZemtsova, M. N., Kulemina, S. V., Rybakov, V. B. & Klimochkin, Y. N. (2015). Russ. J. Org. Chem. 51, 636–639.  CSD CrossRef CAS Google Scholar
First citationZong, R., Wang, D., Hammitt, R. & Thummel, R. P. (2006). J. Org. Chem. 71, 167–175.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds