metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(lysine-κ2N,O)hexa-μ2-oxido-hexa­oxidobis(1,10-phenanthroline-κ2N,N′)dicopper(II)tetravanadium(V) tetra­hydrate

CROSSMARK_Color_square_no_text.svg

aCentro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: eduardo.slara@alumno.buap.mx

Edited by A. J. Lough, University of Toronto, Canada (Received 2 June 2017; accepted 14 July 2017; online 25 July 2017)

The heterometallic coordination compound [Cu(Lys)(phen)]2V4O12·4H2O (Lys is the amino acid lysine, C6H14N2O2, and phen is 1,10-phenanthroline, C12H8N2) lies across an inversion centre. Two [Cu(Lys)(phen)]2+ units coordinate to the cyclo-vanadate fragment and the formula unit is completed by four solvent water mol­ecules. The lysine ligand is in the zwitterionic form and chelates the CuII atom via the α-NH2 and α-COO donor groups, while the -NH3+ group is involved in intra­molecular hydrogen bonds with the central [V4O12]4− core and with solvent water mol­ecules. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds connect the components of the structure to form a three-dimensional network. The crystal structure is further stabilized by ππ inter­actions involving the phen ligands. The lysine group is disordered over two sets of sites with refined occupancies of 0.534 (11) and 0.466 (11).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Vanadate [VO4]3− is prone to condensation in aqueous solutions and forms oligomeric polyoxovanadate ions, whose formula and structure depend on pH, vanadate concentration, temperature and ionic strength. In basic media, predominant species are dimeric [V2O7]4−, tetra­meric [V4O12]4− and penta­meric [V5O15]5− anions, while the deca­meric cluster [V10O28]6− is the most stable species in acidic media (Amado et al., 1993[Amado, A. M., Aureliano, M., Riberio-Claro, P. J. A. & Teixeira-Dias, J. J. C. (1993). J. Raman Spectrosc. 24, 699-703.]; Aureliano & Crans, 2009[Aureliano, M. & Crans, D. C. (2009). J. Inorg. Biochem. 103, 536-546.]). The ring system [V4O12]4− is of inter­est in coordination chemistry, given that this anion may behave as a bridging ligand, providing an entry to heterometallic complexes. Hence, the crystal structures of some V/Cu compounds, including [V4O12]4−, have been reported (Yucesan et al., 2006[Yucesan, G., Armatas, N. G. & Zubieta, J. (2006). Inorg. Chim. Acta, 359, 4557-4564.]; Joniaková et al., 2006[Joniaková, D., Gyepes, R., Rakovský, E., Schwendt, P., Žúrková, L., Marek, J. & Mička, Z. (2006). Polyhedron, 25, 2491-2502.]; Wang et al., 2007[Wang, Q., Yu, X.-L., You, W.-S., Zhao, Y., Huang, C.-Y. & Sun, Z.-G. (2007). Inorg. Chem. Commun. 10, 1465-1468.]; Paredes-García et al., 2008[Paredes-García, V., Gaune, S., Saldías, M., Garland, M. T., Baggio, R., Vega, A., El Fallah, M. S., Escuer, A., Le Fur, E., Venegas-Yazigi, D. & Spodine, E. (2008). Inorg. Chim. Acta, 361, 3681-3689.]). Within the sub-set of heterometallic complexes containing V and Cu as transition metals for which an X-ray characterization is available, the compound reported herein is the first one including an amino acid, namely lysine.

The asymmetric unit for [Cu(Lys)(phen)]2V4O12·4H2O, where Lys is lysine and phen is 1,10-phenanthroline, contains one half complex mol­ecule and two solvent water mol­ecules. The formula unit is completed by an inversion center (Fig. 1[link]). The centrosymmetric [V4O12]4− anion shows an eight-membered ring structure built up from four corner sharing tetra­hedra and displays a chair-like conformation. The V—O bond lengths and V—O—V angles are found in normal ranges, in comparison with other structures containing this polyoxovanadate (e.g. Paredes-García et al., 2008[Paredes-García, V., Gaune, S., Saldías, M., Garland, M. T., Baggio, R., Vega, A., El Fallah, M. S., Escuer, A., Le Fur, E., Venegas-Yazigi, D. & Spodine, E. (2008). Inorg. Chim. Acta, 361, 3681-3689.]).

[Figure 1]
Figure 1
Mol­ecular entities in the crystal structure of the title compound with displacement ellipsoids for non-H atoms at the 30% probability level. Only the major component of disorder for the lysine group is presented and only the symmetry-unique water mol­ecules are shown. Unlabelled atoms are generated by the symmetry operator (1 − x, 1 − y, −z).

The [V4O12]4− anion serves as a bridge between two [Cu(Lys)(phen)]2+ moieties, a complex which has been shown to present a photo-induced DNA cleavage activity (Patra et al., 2005[Patra, A. K., Nethaji, M. & Chakravarty, A. R. (2005). Dalton Trans. pp. 2798-2804.]). The CuII atom displays the common distorted square pyramidal geometry: the α-amino N and α-carboxyl­ate O atoms of lysine and the two N donors of phenanthroline are placed in basal positions, while the apical position is occupied by O3 belonging to the [V4O12]4− anion, with a longer Cu—O bond length of 2.282 (2) Å. The value of the structural parameter τ5 for Cu is 0.26, reflecting a limited distortion toward the trigonal–bipyramidal geometry (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The Cu atom is displaced by 0.24 Å above the basal mean plane O1/N2A/N3/N4. The zwitterionic lysine is folded in such a way that both the -NH3+ and the α-NH2 donor groups inter­act with the [V4O12]4− core ring and the water mol­ecule O10, via weak N—H⋯O hydrogen bonds (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A1⋯O5i 0.89 2.09 2.794 (7) 136
N1A—H1A2⋯O10ii 0.89 2.21 2.979 (7) 145
N1A—H1A3⋯O5iii 0.89 1.89 2.769 (8) 169
N2A—H2AC⋯O4 0.89 2.25 3.094 (3) 159
N2A—H2AD⋯O10iv 0.89 2.22 3.077 (3) 163
N2B—H2BC⋯O4 0.89 2.48 3.094 (3) 127
N2B—H2BC⋯O7 0.89 2.39 3.127 (4) 141
N2B—H2BD⋯O10iv 0.89 2.23 3.077 (3) 159
O9—H91⋯O8 0.84 2.00 2.780 (6) 155
O9—H92⋯O8v 0.84 2.21 2.861 (6) 135
O10—H101⋯O5vi 0.84 2.09 2.837 (4) 148
O10—H102⋯O2 0.84 2.07 2.811 (4) 147
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y, z-1; (iii) x-1, y, z; (iv) -x, -y+1, -z+1; (v) -x+1, -y, -z; (vi) -x+1, -y+1, -z+1.

In the crystal, O—H⋯O and N—H⋯O hydrogen bonds involving the water mol­ecules O9, O10 and the N atoms of the lysine mol­ecule as donors connect the components of the structure forming a three-dimensional network (Table 1[link], Fig. 2[link]). In addition, the crystal structure is further stabilized by ππ parallel-displaced stacking inter­actions between the phen ligands, characterized by a separation of 3.6446 (2) Å between the centroids of the central rings C10/C11/C12/C13/C17/C18 for two symmetry-related phen ligands (see Fig. 2[link], inset). The shortest Cu⋯Cu inter­molecular distance is Cu⋯Cui = 6.2251 (7) Å [symmetry code: (i) 1 − x, 1 − y, 1 − z], large enough to avoid any significant magnetic inter­actions in the crystal.

[Figure 2]
Figure 2
Part of the crystal structure showing the O—H⋯O and N—H⋯O hydrogen bonds, which are represented by dotted green lines, and only H atoms involved in hydrogen bonds are shown. The inset displays two mol­ecules inter­acting through ππ contacts between symmetry-related phenanthroline ligands.

Synthesis and crystallization

The title compound was prepared by a general synthetic method in which 1.0 mmol of 1,10-phenanthroline hydro­chloride was added to an aqueous solution of lysine hydro­chloride (0.18 g, 1.0 mmol in 30 ml H2O) under stirring and slight warming in order to dissolve the heterocyclic base. An amount of CuCl2·2H2O (0.170 g, 1 mmol) was added to this mixture, and the pH of the resulting solution was adjusted to 9.5 by slow addition of KOH (10%), giving a dark-blue solution. Then, NH4VO3 (0.116 g, 1.0 mmol in 15 ml H2O) was added dropwise to the solution, which was filtered and kept outdoors at room temperature for three days. Blue prismatic crystals were separated from the solution without any other impurity and used for X-ray diffraction. The final pH of the solution at 298 K was 8.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. ADPs for non-H atoms of the lysine ligand evidenced that this mol­ecule is disordered over two positions. The disorder was modelled using independent sites A and B, and occupancies for each part were refined, which converged to 0.534 (11) and 0.466 (11) for sites A and B, respectively. Since atoms N2A and N2B, corresponding to the α-NH2 group coordinating the metal, were difficult to resolve their sites were constrained to have the same coordinates and displacement parameters (EXYZ and EADP constrictions in SHELXL; Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C12H8N2)(C6H14N2O2)]2[V4O12]·4H2O
Mr 1247.69
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 295
a, b, c (Å) 9.2807 (4), 11.2960 (4), 12.7697 (5)
α, β, γ (°) 72.259 (3), 69.999 (3), 81.523 (3)
V3) 1196.75 (9)
Z 1
Radiation type Ag Kα, λ = 0.56083 Å
μ (mm−1) 0.89
Crystal size (mm) 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Stoe Stadivari
No. of measured, independent and observed [I > 2σ(I)] reflections 46672, 7667, 5850
Rint 0.034
(sin θ/λ)max−1) 0.728
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.119, 1.04
No. of reflections 7667
No. of parameters 371
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.05, −1.04
Computer programs: X-AREA (Stoe & Cie, 2015[Stoe & Cie (2015). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2015); cell refinement: X-AREA (Stoe & Cie, 2015); data reduction: X-AREA (Stoe & Cie, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b).

Bis(lysine-κ2N,O)hexa-µ2-oxido-hexaoxidobis(1,10-phenanthroline-κ2N,N')dicopper(II)tetravanadium(V) tetrahydrate top
Crystal data top
[Cu(C12H8N2)(C6H14N2O2)]2[V4O12]·4H2OZ = 1
Mr = 1247.69F(000) = 634
Triclinic, P1Dx = 1.731 Mg m3
a = 9.2807 (4) ÅAg Kα radiation, λ = 0.56083 Å
b = 11.2960 (4) ÅCell parameters from 29693 reflections
c = 12.7697 (5) Åθ = 2.3–28.7°
α = 72.259 (3)°µ = 0.89 mm1
β = 69.999 (3)°T = 295 K
γ = 81.523 (3)°Prism, blue
V = 1196.75 (9) Å30.30 × 0.20 × 0.20 mm
Data collection top
Stoe Stadivari
diffractometer
5850 reflections with I > 2σ(I)
Radiation source: Sealed X-ray tube, Axo Microfocus sourceRint = 0.034
Mirror monochromatorθmax = 24.1°, θmin = 2.3°
Detector resolution: 5.81 pixels mm-1h = 1313
ω scansk = 1616
46672 measured reflectionsl = 1818
7667 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: mixed
wR(F2) = 0.119H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0417P)2 + 1.8611P]
where P = (Fo2 + 2Fc2)/3
7667 reflections(Δ/σ)max < 0.001
371 parametersΔρmax = 1.05 e Å3
0 restraintsΔρmin = 1.04 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms for water molecules O9 and O10 were located from a difference Fourier map, and then included with idealized O—H bond lengths of 0.84 Å. All other H atoms were placed in calculated positions and refined in the riding-motion approximation.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.28666 (4)0.37528 (3)0.42645 (3)0.03113 (9)
V10.60736 (5)0.45877 (4)0.16289 (4)0.03081 (11)
V20.48289 (8)0.31044 (5)0.03247 (4)0.04600 (15)
O10.2405 (3)0.52471 (18)0.47897 (18)0.0385 (4)
O20.0915 (3)0.6963 (2)0.4704 (2)0.0553 (6)
O30.5310 (3)0.4070 (2)0.30298 (17)0.0411 (5)
O40.4868 (3)0.58607 (19)0.11187 (16)0.0383 (4)
O50.7830 (3)0.4986 (3)0.1340 (2)0.0632 (7)
O60.6154 (3)0.3387 (2)0.0954 (2)0.0565 (7)
O70.3068 (4)0.3382 (3)0.1098 (2)0.0769 (9)
O80.5116 (6)0.1674 (2)0.0252 (3)0.0980 (14)
N30.3584 (3)0.2840 (2)0.56278 (19)0.0325 (5)
N40.2610 (3)0.2000 (2)0.42780 (19)0.0321 (5)
N1A0.0245 (7)0.6630 (7)0.0520 (5)0.0511 (17)0.534 (11)
H1A10.0687830.6287190.0538340.077*0.534 (11)
H1A20.0367180.6755700.1207270.077*0.534 (11)
H1A30.0949140.6123550.0020640.077*0.534 (11)
N2A0.1937 (3)0.4754 (2)0.3046 (2)0.0324 (5)0.534 (11)
H2AC0.2674230.5007290.2374790.039*0.534 (11)
H2AD0.1324010.4286410.2950820.039*0.534 (11)
C1A0.0422 (15)0.7850 (10)0.0239 (11)0.065 (3)0.534 (11)
H1AA0.1511290.8028170.0091000.078*0.534 (11)
H1AB0.0064590.8486490.0965510.078*0.534 (11)
C2A0.0364 (14)0.8003 (7)0.0564 (8)0.052 (2)0.534 (11)
H2AA0.1403870.8248920.0115910.062*0.534 (11)
H2AB0.0171960.8667280.0904250.062*0.534 (11)
C3A0.042 (3)0.683 (3)0.153 (2)0.052 (5)0.534 (11)
H3AA0.1060970.6198190.1188360.062*0.534 (11)
H3AB0.0607070.6528830.1912540.062*0.534 (11)
C4A0.1031 (13)0.7010 (7)0.2422 (8)0.0430 (18)0.534 (11)
H4AA0.2068760.7291620.2041350.052*0.534 (11)
H4AB0.0406170.7657100.2748790.052*0.534 (11)
C5A0.1047 (10)0.5842 (6)0.3398 (7)0.0349 (14)0.534 (11)
H5AA0.0020220.5601090.3774350.042*0.534 (11)
N1B0.0843 (17)0.7332 (13)0.0599 (9)0.092 (4)0.466 (11)
H1B10.0563300.6531280.0531760.138*0.466 (11)
H1B20.1033200.7672660.1267940.138*0.466 (11)
H1B30.1686420.7402420.0015520.138*0.466 (11)
N2B0.1937 (3)0.4754 (2)0.3046 (2)0.0324 (5)0.466 (11)
H2BC0.2544480.4691070.2352690.039*0.466 (11)
H2BD0.1030740.4464480.3179350.039*0.466 (11)
C1B0.0327 (15)0.7939 (11)0.0569 (9)0.055 (3)0.466 (11)
H1BA0.0366630.8804800.1016430.066*0.466 (11)
H1BB0.1325170.7512700.0784640.066*0.466 (11)
C2B0.0450 (15)0.7745 (13)0.0883 (10)0.062 (3)0.466 (11)
H2BA0.0601800.8535490.1067200.074*0.466 (11)
H2BB0.1424910.7351320.1184190.074*0.466 (11)
C3B0.073 (3)0.692 (3)0.136 (2)0.040 (4)0.466 (11)
H3BA0.1732860.7258870.0932640.048*0.466 (11)
H3BB0.0766850.6102130.1243120.048*0.466 (11)
C4B0.0414 (11)0.6762 (9)0.2659 (8)0.0365 (17)0.466 (11)
H4BA0.0252260.7576140.2798340.044*0.466 (11)
H4BB0.0515850.6314270.3103120.044*0.466 (11)
C5B0.1740 (10)0.6059 (6)0.3064 (6)0.0255 (13)0.466 (11)
H5BA0.2684640.6469410.2540250.031*0.466 (11)
C60.1564 (4)0.6087 (3)0.4323 (2)0.0364 (6)
C70.4109 (4)0.3304 (3)0.6255 (3)0.0407 (6)
H7A0.4197880.4159050.6061190.049*
C80.4533 (4)0.2536 (3)0.7205 (3)0.0480 (8)
H8A0.4915150.2882320.7624690.058*
C90.4389 (4)0.1284 (3)0.7515 (3)0.0498 (8)
H9A0.4657510.0774690.8151190.060*
C100.3828 (4)0.0767 (3)0.6865 (2)0.0408 (6)
C110.3672 (5)0.0537 (3)0.7089 (3)0.0535 (9)
H11A0.3927730.1097310.7710580.064*
C120.3157 (5)0.0964 (3)0.6404 (3)0.0552 (9)
H12A0.3047550.1813370.6574160.066*
C130.2778 (4)0.0142 (3)0.5428 (3)0.0412 (6)
C140.2262 (4)0.0526 (3)0.4671 (3)0.0511 (8)
H14A0.2136420.1364810.4794310.061*
C150.1949 (4)0.0339 (3)0.3756 (3)0.0487 (8)
H15A0.1612470.0092980.3250690.058*
C160.2137 (4)0.1603 (3)0.3580 (3)0.0404 (6)
H16A0.1922360.2183530.2950890.048*
C170.2930 (3)0.1139 (2)0.5187 (2)0.0310 (5)
C180.3457 (3)0.1596 (2)0.5914 (2)0.0312 (5)
O90.2826 (5)0.0017 (5)0.0903 (4)0.1215 (16)
H910.3329400.0658010.0600480.182*
H920.3080600.0297290.0344680.182*
O100.0727 (3)0.6510 (3)0.7036 (2)0.0613 (7)
H1010.1302200.5939520.7296520.092*
H1020.1155310.6696020.6317820.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0444 (2)0.02394 (14)0.02671 (15)0.00129 (12)0.01526 (14)0.00487 (11)
V10.0309 (2)0.0383 (2)0.0236 (2)0.00036 (17)0.01121 (17)0.00697 (16)
V20.0816 (4)0.0301 (2)0.0266 (2)0.0047 (2)0.0206 (3)0.00322 (18)
O10.0528 (12)0.0331 (9)0.0374 (10)0.0036 (8)0.0229 (9)0.0134 (8)
O20.0801 (18)0.0393 (12)0.0570 (15)0.0152 (11)0.0316 (13)0.0251 (11)
O30.0470 (12)0.0459 (11)0.0264 (9)0.0012 (9)0.0135 (9)0.0024 (8)
O40.0475 (12)0.0371 (10)0.0266 (9)0.0023 (8)0.0133 (8)0.0038 (7)
O50.0394 (13)0.091 (2)0.0561 (15)0.0165 (13)0.0183 (12)0.0059 (14)
O60.089 (2)0.0452 (12)0.0485 (13)0.0218 (12)0.0407 (14)0.0220 (10)
O70.087 (2)0.102 (2)0.0321 (13)0.0295 (19)0.0035 (13)0.0103 (14)
O80.196 (4)0.0305 (12)0.081 (2)0.0135 (18)0.063 (3)0.0098 (13)
N30.0394 (12)0.0306 (10)0.0282 (10)0.0005 (9)0.0132 (9)0.0071 (8)
N40.0412 (12)0.0265 (10)0.0281 (10)0.0033 (9)0.0118 (9)0.0049 (8)
N1A0.045 (3)0.067 (4)0.041 (3)0.010 (3)0.021 (2)0.012 (3)
N2A0.0391 (12)0.0295 (10)0.0329 (11)0.0004 (9)0.0170 (10)0.0089 (8)
C1A0.071 (7)0.060 (5)0.066 (7)0.001 (6)0.044 (6)0.001 (5)
C2A0.075 (6)0.034 (3)0.056 (5)0.002 (4)0.043 (5)0.002 (3)
C3A0.067 (12)0.036 (4)0.064 (13)0.007 (8)0.046 (10)0.001 (7)
C4A0.058 (5)0.028 (3)0.047 (5)0.003 (3)0.027 (4)0.004 (3)
C5A0.036 (4)0.028 (3)0.041 (3)0.001 (2)0.015 (3)0.007 (2)
N1B0.121 (10)0.091 (9)0.078 (6)0.045 (8)0.055 (7)0.004 (6)
N2B0.0391 (12)0.0295 (10)0.0329 (11)0.0004 (9)0.0170 (10)0.0089 (8)
C1B0.059 (6)0.064 (5)0.042 (5)0.002 (5)0.028 (5)0.002 (4)
C2B0.063 (7)0.075 (7)0.056 (6)0.023 (5)0.032 (5)0.027 (5)
C3B0.043 (7)0.044 (10)0.031 (4)0.006 (6)0.012 (4)0.011 (5)
C4B0.038 (5)0.035 (4)0.033 (4)0.005 (3)0.010 (3)0.010 (3)
C5B0.026 (3)0.026 (3)0.023 (3)0.005 (2)0.006 (2)0.004 (2)
C60.0450 (16)0.0310 (12)0.0350 (13)0.0041 (11)0.0129 (12)0.0103 (10)
C70.0483 (17)0.0404 (14)0.0386 (15)0.0012 (12)0.0190 (13)0.0125 (12)
C80.0525 (19)0.062 (2)0.0389 (16)0.0045 (15)0.0232 (14)0.0202 (14)
C90.056 (2)0.0589 (19)0.0358 (15)0.0147 (16)0.0249 (15)0.0103 (14)
C100.0463 (16)0.0387 (14)0.0300 (13)0.0054 (12)0.0138 (12)0.0007 (11)
C110.069 (2)0.0369 (15)0.0435 (17)0.0038 (15)0.0216 (17)0.0069 (13)
C120.076 (3)0.0269 (13)0.0524 (19)0.0041 (14)0.0192 (18)0.0036 (13)
C130.0493 (17)0.0271 (12)0.0393 (15)0.0041 (11)0.0077 (13)0.0040 (11)
C140.061 (2)0.0315 (14)0.059 (2)0.0095 (14)0.0126 (17)0.0143 (14)
C150.061 (2)0.0450 (16)0.0485 (18)0.0100 (15)0.0185 (16)0.0198 (14)
C160.0506 (17)0.0389 (14)0.0357 (14)0.0042 (12)0.0167 (13)0.0115 (11)
C170.0329 (13)0.0271 (11)0.0277 (11)0.0024 (9)0.0057 (10)0.0041 (9)
C180.0344 (13)0.0298 (11)0.0261 (11)0.0014 (10)0.0090 (10)0.0048 (9)
O90.079 (3)0.172 (5)0.126 (4)0.014 (3)0.040 (3)0.060 (3)
O100.0671 (17)0.0685 (17)0.0555 (15)0.0091 (13)0.0349 (14)0.0068 (13)
Geometric parameters (Å, º) top
Cu1—O11.940 (2)N1B—H1B20.8900
Cu1—N2B2.001 (2)N1B—H1B30.8900
Cu1—N2A2.001 (2)N2B—C5B1.464 (6)
Cu1—N32.008 (2)N2B—H2BC0.8900
Cu1—N42.023 (2)N2B—H2BD0.8900
Cu1—O32.282 (2)C1B—C2B1.700 (17)
V1—O31.631 (2)C1B—H1BA0.9700
V1—O51.643 (2)C1B—H1BB0.9700
V1—O41.788 (2)C2B—C3B1.50 (4)
V1—O61.796 (2)C2B—H2BA0.9700
V2—O81.624 (3)C2B—H2BB0.9700
V2—O71.636 (3)C3B—C4B1.54 (3)
V2—O61.792 (3)C3B—H3BA0.9700
V2—O4i1.8090 (19)C3B—H3BB0.9700
O1—C61.272 (3)C4B—C5B1.520 (12)
O2—C61.224 (4)C4B—H4BA0.9700
N3—C71.323 (4)C4B—H4BB0.9700
N3—C181.353 (3)C5B—C61.570 (6)
N4—C161.325 (4)C5B—H5BA0.9800
N4—C171.358 (3)C7—C81.402 (4)
N1A—C1A1.499 (15)C7—H7A0.9300
N1A—H1A10.8900C8—C91.361 (5)
N1A—H1A20.8900C8—H8A0.9300
N1A—H1A30.8900C9—C101.408 (5)
N2A—C5A1.476 (7)C9—H9A0.9300
N2A—H2AC0.8900C10—C181.402 (4)
N2A—H2AD0.8900C10—C111.433 (5)
C1A—C2A1.506 (14)C11—C121.355 (6)
C1A—H1AA0.9700C11—H11A0.9300
C1A—H1AB0.9700C12—C131.428 (5)
C2A—C3A1.52 (3)C12—H12A0.9300
C2A—H2AA0.9700C13—C171.403 (4)
C2A—H2AB0.9700C13—C141.409 (5)
C3A—C4A1.51 (3)C14—C151.362 (5)
C3A—H3AA0.9700C14—H14A0.9300
C3A—H3AB0.9700C15—C161.404 (4)
C4A—C5A1.516 (11)C15—H15A0.9300
C4A—H4AA0.9700C16—H16A0.9300
C4A—H4AB0.9700C17—C181.430 (4)
C5A—C61.526 (7)O9—H910.8356
C5A—H5AA0.9800O9—H920.8396
N1B—C1B1.383 (16)O10—H1010.8369
N1B—H1B10.8900O10—H1020.8367
O1—Cu1—N2B83.94 (9)H1B1—N1B—H1B3109.5
O1—Cu1—N2A83.94 (9)H1B2—N1B—H1B3109.5
O1—Cu1—N390.65 (9)C5B—N2B—Cu1109.4 (3)
N2B—Cu1—N3172.79 (10)C5B—N2B—H2BC109.8
N2A—Cu1—N3172.79 (10)Cu1—N2B—H2BC109.8
O1—Cu1—N4157.13 (10)C5B—N2B—H2BD109.8
N2B—Cu1—N4101.14 (9)Cu1—N2B—H2BD109.8
N2A—Cu1—N4101.14 (9)H2BC—N2B—H2BD108.3
N3—Cu1—N482.07 (9)N1B—C1B—C2B92.3 (11)
O1—Cu1—O3101.31 (9)N1B—C1B—H1BA113.2
N2B—Cu1—O392.76 (9)C2B—C1B—H1BA113.2
N2A—Cu1—O392.76 (9)N1B—C1B—H1BB113.2
N3—Cu1—O392.97 (9)C2B—C1B—H1BB113.2
N4—Cu1—O3100.70 (9)H1BA—C1B—H1BB110.6
O3—V1—O5108.89 (13)C3B—C2B—C1B103.3 (12)
O3—V1—O4107.83 (10)C3B—C2B—H2BA111.1
O5—V1—O4112.78 (13)C1B—C2B—H2BA111.1
O3—V1—O6109.91 (12)C3B—C2B—H2BB111.1
O5—V1—O6108.72 (15)C1B—C2B—H2BB111.1
O4—V1—O6108.68 (10)H2BA—C2B—H2BB109.1
O8—V2—O7111.8 (2)C2B—C3B—C4B113.4 (17)
O8—V2—O6108.32 (17)C2B—C3B—H3BA108.9
O7—V2—O6109.89 (14)C4B—C3B—H3BA108.9
O8—V2—O4i109.20 (14)C2B—C3B—H3BB108.9
O7—V2—O4i107.28 (13)C4B—C3B—H3BB108.9
O6—V2—O4i110.39 (12)H3BA—C3B—H3BB107.7
C6—O1—Cu1115.86 (18)C5B—C4B—C3B111.3 (13)
V1—O3—Cu1134.84 (12)C5B—C4B—H4BA109.4
V1—O4—V2i129.04 (12)C3B—C4B—H4BA109.4
V2—O6—V1129.23 (14)C5B—C4B—H4BB109.4
C7—N3—C18119.0 (2)C3B—C4B—H4BB109.4
C7—N3—Cu1128.5 (2)H4BA—C4B—H4BB108.0
C18—N3—Cu1112.50 (17)N2B—C5B—C4B113.6 (7)
C16—N4—C17118.0 (2)N2B—C5B—C6107.7 (4)
C16—N4—Cu1130.04 (19)C4B—C5B—C6112.0 (6)
C17—N4—Cu1111.87 (18)N2B—C5B—H5BA107.8
C1A—N1A—H1A1109.5C4B—C5B—H5BA107.8
C1A—N1A—H1A2109.5C6—C5B—H5BA107.8
H1A1—N1A—H1A2109.5O2—C6—O1124.2 (3)
C1A—N1A—H1A3109.5O2—C6—C5A116.7 (3)
H1A1—N1A—H1A3109.5O1—C6—C5A117.7 (3)
H1A2—N1A—H1A3109.5O2—C6—C5B122.0 (3)
C5A—N2A—Cu1109.5 (3)O1—C6—C5B112.5 (3)
C5A—N2A—H2AC109.8N3—C7—C8121.5 (3)
Cu1—N2A—H2AC109.8N3—C7—H7A119.3
C5A—N2A—H2AD109.8C8—C7—H7A119.3
Cu1—N2A—H2AD109.8C9—C8—C7120.2 (3)
H2AC—N2A—H2AD108.2C9—C8—H8A119.9
N1A—C1A—C2A119.4 (8)C7—C8—H8A119.9
N1A—C1A—H1AA107.5C8—C9—C10119.4 (3)
C2A—C1A—H1AA107.5C8—C9—H9A120.3
N1A—C1A—H1AB107.5C10—C9—H9A120.3
C2A—C1A—H1AB107.5C18—C10—C9116.9 (3)
H1AA—C1A—H1AB107.0C18—C10—C11118.8 (3)
C3A—C2A—C1A113.4 (13)C9—C10—C11124.3 (3)
C3A—C2A—H2AA108.9C12—C11—C10120.7 (3)
C1A—C2A—H2AA108.9C12—C11—H11A119.7
C3A—C2A—H2AB108.9C10—C11—H11A119.7
C1A—C2A—H2AB108.9C11—C12—C13121.7 (3)
H2AA—C2A—H2AB107.7C11—C12—H12A119.2
C2A—C3A—C4A114.1 (19)C13—C12—H12A119.2
C2A—C3A—H3AA108.7C17—C13—C14116.8 (3)
C4A—C3A—H3AA108.7C17—C13—C12118.7 (3)
C2A—C3A—H3AB108.7C14—C13—C12124.5 (3)
C4A—C3A—H3AB108.7C15—C14—C13119.6 (3)
H3AA—C3A—H3AB107.6C15—C14—H14A120.2
C5A—C4A—C3A113.7 (13)C13—C14—H14A120.2
C5A—C4A—H4AA108.8C14—C15—C16119.8 (3)
C3A—C4A—H4AA108.8C14—C15—H15A120.1
C5A—C4A—H4AB108.8C16—C15—H15A120.1
C3A—C4A—H4AB108.8N4—C16—C15122.4 (3)
H4AA—C4A—H4AB107.7N4—C16—H16A118.8
N2A—C5A—C4A115.8 (7)C15—C16—H16A118.8
N2A—C5A—C6109.4 (4)N4—C17—C13123.5 (3)
C4A—C5A—C6111.9 (6)N4—C17—C18116.6 (2)
N2A—C5A—H5AA106.4C13—C17—C18119.9 (2)
C4A—C5A—H5AA106.4N3—C18—C10123.0 (3)
C6—C5A—H5AA106.4N3—C18—C17116.7 (2)
C1B—N1B—H1B1109.5C10—C18—C17120.3 (2)
C1B—N1B—H1B2109.5H91—O9—H92100.7
H1B1—N1B—H1B2109.5H101—O10—H102104.1
C1B—N1B—H1B3109.5
O5—V1—O3—Cu1162.47 (18)C18—N3—C7—C80.0 (5)
O4—V1—O3—Cu139.8 (2)Cu1—N3—C7—C8178.5 (2)
O6—V1—O3—Cu178.53 (19)N3—C7—C8—C91.1 (5)
O3—V1—O4—V2i174.60 (15)C7—C8—C9—C100.8 (5)
O5—V1—O4—V2i54.3 (2)C8—C9—C10—C180.4 (5)
O6—V1—O4—V2i66.30 (19)C8—C9—C10—C11178.0 (3)
O8—V2—O6—V1160.5 (2)C18—C10—C11—C120.8 (5)
O7—V2—O6—V138.2 (2)C9—C10—C11—C12178.4 (4)
O4i—V2—O6—V180.0 (2)C10—C11—C12—C131.1 (6)
O3—V1—O6—V295.4 (2)C11—C12—C13—C170.8 (6)
O5—V1—O6—V2145.5 (2)C11—C12—C13—C14178.9 (4)
O4—V1—O6—V222.4 (2)C17—C13—C14—C150.4 (5)
N1A—C1A—C2A—C3A35 (2)C12—C13—C14—C15179.2 (4)
C1A—C2A—C3A—C4A173.0 (13)C13—C14—C15—C160.3 (6)
C2A—C3A—C4A—C5A178.6 (12)C17—N4—C16—C150.5 (5)
Cu1—N2A—C5A—C4A146.8 (6)Cu1—N4—C16—C15176.5 (2)
Cu1—N2A—C5A—C619.2 (6)C14—C15—C16—N40.2 (5)
C3A—C4A—C5A—N2A57.7 (16)C16—N4—C17—C130.4 (4)
C3A—C4A—C5A—C6176.0 (11)Cu1—N4—C17—C13177.1 (2)
N1B—C1B—C2B—C3B115.6 (18)C16—N4—C17—C18179.2 (3)
C1B—C2B—C3B—C4B171.0 (15)Cu1—N4—C17—C183.3 (3)
C2B—C3B—C4B—C5B172.6 (14)C14—C13—C17—N40.1 (5)
Cu1—N2B—C5B—C4B151.4 (6)C12—C13—C17—N4179.6 (3)
Cu1—N2B—C5B—C626.8 (6)C14—C13—C17—C18179.6 (3)
C3B—C4B—C5B—N2B67.3 (16)C12—C13—C17—C180.1 (4)
C3B—C4B—C5B—C6170.4 (13)C7—N3—C18—C101.3 (4)
Cu1—O1—C6—O2164.7 (3)Cu1—N3—C18—C10177.4 (2)
Cu1—O1—C6—C5A1.3 (5)C7—N3—C18—C17178.1 (3)
Cu1—O1—C6—C5B28.3 (4)Cu1—N3—C18—C173.2 (3)
N2A—C5A—C6—O2179.6 (4)C9—C10—C18—N31.5 (4)
C4A—C5A—C6—O250.7 (10)C11—C10—C18—N3179.3 (3)
N2A—C5A—C6—O112.5 (8)C9—C10—C18—C17177.9 (3)
C4A—C5A—C6—O1142.2 (7)C11—C10—C18—C170.2 (4)
N2B—C5B—C6—O2156.2 (4)N4—C17—C18—N30.1 (4)
C4B—C5B—C6—O230.6 (9)C13—C17—C18—N3179.7 (3)
N2B—C5B—C6—O136.5 (6)N4—C17—C18—C10179.3 (3)
C4B—C5B—C6—O1162.1 (6)C13—C17—C18—C100.2 (4)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A1···O5i0.892.092.794 (7)136
N1A—H1A2···O7ii0.892.492.958 (7)114
N1A—H1A2···O10iii0.892.212.979 (7)145
N1A—H1A3···O5iv0.891.892.769 (8)169
N2A—H2AC···O40.892.253.094 (3)159
N2A—H2AD···O10v0.892.223.077 (3)163
C1A—H1AA···O9ii0.972.563.157 (11)120
C5A—H5AA···O1v0.982.443.390 (10)163
N1B—H1B1···O5iv0.892.603.090 (10)115
N2B—H2BC···O40.892.483.094 (3)127
N2B—H2BC···O70.892.393.127 (4)141
N2B—H2BD···O10v0.892.233.077 (3)159
C1B—H1BB···O6i0.972.373.326 (13)167
C5B—H5BA···O40.982.393.140 (8)133
C8—H8A···O4vi0.932.513.412 (4)162
C16—H16A···O70.932.313.097 (4)143
O9—H91···O80.842.002.780 (6)155
O9—H92···O8vii0.842.212.861 (6)135
O10—H101···O5vi0.842.092.837 (4)148
O10—H102···O20.842.072.811 (4)147
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x, y, z1; (iv) x1, y, z; (v) x, y+1, z+1; (vi) x+1, y+1, z+1; (vii) x+1, y, z.
 

Funding information

Funding for this research was provided by Consejo Nacional de Ciencia y Tecnología (Award No. 268178, Infraestructura). ESL is thankful to CONACyT (Mexico) for the PhD Fellowship (support No. 293256).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAmado, A. M., Aureliano, M., Riberio-Claro, P. J. A. & Teixeira-Dias, J. J. C. (1993). J. Raman Spectrosc. 24, 699–703.  CrossRef CAS Google Scholar
First citationAureliano, M. & Crans, D. C. (2009). J. Inorg. Biochem. 103, 536–546.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJoniaková, D., Gyepes, R., Rakovský, E., Schwendt, P., Žúrková, L., Marek, J. & Mička, Z. (2006). Polyhedron, 25, 2491–2502.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParedes-García, V., Gaune, S., Saldías, M., Garland, M. T., Baggio, R., Vega, A., El Fallah, M. S., Escuer, A., Le Fur, E., Venegas-Yazigi, D. & Spodine, E. (2008). Inorg. Chim. Acta, 361, 3681–3689.  Google Scholar
First citationPatra, A. K., Nethaji, M. & Chakravarty, A. R. (2005). Dalton Trans. pp. 2798–2804.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2015). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWang, Q., Yu, X.-L., You, W.-S., Zhao, Y., Huang, C.-Y. & Sun, Z.-G. (2007). Inorg. Chem. Commun. 10, 1465–1468.  CSD CrossRef CAS Google Scholar
First citationYucesan, G., Armatas, N. G. & Zubieta, J. (2006). Inorg. Chim. Acta, 359, 4557–4564.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds