metal-organic compounds
Bis(lysine-κ2N,O)hexa-μ2-oxido-hexaoxidobis(1,10-phenanthroline-κ2N,N′)dicopper(II)tetravanadium(V) tetrahydrate
aCentro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: eduardo.slara@alumno.buap.mx
The heterometallic coordination compound [Cu(Lys)(phen)]2V4O12·4H2O (Lys is the amino acid lysine, C6H14N2O2, and phen is 1,10-phenanthroline, C12H8N2) lies across an inversion centre. Two [Cu(Lys)(phen)]2+ units coordinate to the cyclo-vanadate fragment and the formula unit is completed by four solvent water molecules. The lysine ligand is in the zwitterionic form and chelates the CuII atom via the α-NH2 and α-COO− donor groups, while the ∊-NH3+ group is involved in intramolecular hydrogen bonds with the central [V4O12]4− core and with solvent water molecules. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds connect the components of the structure to form a three-dimensional network. The is further stabilized by π–π interactions involving the phen ligands. The lysine group is disordered over two sets of sites with refined occupancies of 0.534 (11) and 0.466 (11).
Keywords: crystal structure; mixed-ligand complex; cyclic oxovanadate; copper.
CCDC reference: 1562307
Structure description
Vanadate [VO4]3− is prone to condensation in aqueous solutions and forms oligomeric polyoxovanadate ions, whose formula and structure depend on pH, vanadate concentration, temperature and In basic media, predominant species are dimeric [V2O7]4−, tetrameric [V4O12]4− and pentameric [V5O15]5− anions, while the decameric cluster [V10O28]6− is the most stable species in acidic media (Amado et al., 1993; Aureliano & Crans, 2009). The ring system [V4O12]4− is of interest in coordination chemistry, given that this anion may behave as a bridging ligand, providing an entry to heterometallic complexes. Hence, the crystal structures of some V/Cu compounds, including [V4O12]4−, have been reported (Yucesan et al., 2006; Joniaková et al., 2006; Wang et al., 2007; Paredes-García et al., 2008). Within the sub-set of heterometallic complexes containing V and Cu as transition metals for which an X-ray characterization is available, the compound reported herein is the first one including an amino acid, namely lysine.
The 2V4O12·4H2O, where Lys is lysine and phen is 1,10-phenanthroline, contains one half complex molecule and two solvent water molecules. The formula unit is completed by an inversion center (Fig. 1). The centrosymmetric [V4O12]4− anion shows an eight-membered ring structure built up from four corner sharing tetrahedra and displays a chair-like conformation. The V—O bond lengths and V—O—V angles are found in normal ranges, in comparison with other structures containing this polyoxovanadate (e.g. Paredes-García et al., 2008).
for [Cu(Lys)(phen)]The [V4O12]4− anion serves as a bridge between two [Cu(Lys)(phen)]2+ moieties, a complex which has been shown to present a photo-induced DNA cleavage activity (Patra et al., 2005). The CuII atom displays the common distorted square pyramidal geometry: the α-amino N and α-carboxylate O atoms of lysine and the two N donors of phenanthroline are placed in basal positions, while the apical position is occupied by O3 belonging to the [V4O12]4− anion, with a longer Cu—O bond length of 2.282 (2) Å. The value of the structural parameter τ5 for Cu is 0.26, reflecting a limited distortion toward the trigonal–bipyramidal geometry (Addison et al., 1984). The Cu atom is displaced by 0.24 Å above the basal mean plane O1/N2A/N3/N4. The zwitterionic lysine is folded in such a way that both the ∊-NH3+ and the α-NH2 donor groups interact with the [V4O12]4− core ring and the water molecule O10, via weak N—H⋯O hydrogen bonds (Table 1).
In the crystal, O—H⋯O and N—H⋯O hydrogen bonds involving the water molecules O9, O10 and the N atoms of the lysine molecule as donors connect the components of the structure forming a three-dimensional network (Table 1, Fig. 2). In addition, the is further stabilized by π–π parallel-displaced stacking interactions between the phen ligands, characterized by a separation of 3.6446 (2) Å between the centroids of the central rings C10/C11/C12/C13/C17/C18 for two symmetry-related phen ligands (see Fig. 2, inset). The shortest Cu⋯Cu intermolecular distance is Cu⋯Cui = 6.2251 (7) Å [symmetry code: (i) 1 − x, 1 − y, 1 − z], large enough to avoid any significant magnetic interactions in the crystal.
Synthesis and crystallization
The title compound was prepared by a general synthetic method in which 1.0 mmol of 1,10-phenanthroline hydrochloride was added to an aqueous solution of lysine hydrochloride (0.18 g, 1.0 mmol in 30 ml H2O) under stirring and slight warming in order to dissolve the heterocyclic base. An amount of CuCl2·2H2O (0.170 g, 1 mmol) was added to this mixture, and the pH of the resulting solution was adjusted to 9.5 by slow addition of KOH (10%), giving a dark-blue solution. Then, NH4VO3 (0.116 g, 1.0 mmol in 15 ml H2O) was added dropwise to the solution, which was filtered and kept outdoors at room temperature for three days. Blue prismatic crystals were separated from the solution without any other impurity and used for X-ray diffraction. The final pH of the solution at 298 K was 8.
Refinement
Crystal data, data collection and structure . ADPs for non-H atoms of the lysine ligand evidenced that this molecule is disordered over two positions. The disorder was modelled using independent sites A and B, and occupancies for each part were refined, which converged to 0.534 (11) and 0.466 (11) for sites A and B, respectively. Since atoms N2A and N2B, corresponding to the α-NH2 group coordinating the metal, were difficult to resolve their sites were constrained to have the same coordinates and displacement parameters (EXYZ and EADP constrictions in SHELXL; Sheldrick, 2015b).
details are summarized in Table 2
|
Structural data
CCDC reference: 1562307
https://doi.org/10.1107/S2414314617010501/lh4021sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617010501/lh4021Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2015); cell
X-AREA (Stoe & Cie, 2015); data reduction: X-AREA (Stoe & Cie, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b).[Cu(C12H8N2)(C6H14N2O2)]2[V4O12]·4H2O | Z = 1 |
Mr = 1247.69 | F(000) = 634 |
Triclinic, P1 | Dx = 1.731 Mg m−3 |
a = 9.2807 (4) Å | Ag Kα radiation, λ = 0.56083 Å |
b = 11.2960 (4) Å | Cell parameters from 29693 reflections |
c = 12.7697 (5) Å | θ = 2.3–28.7° |
α = 72.259 (3)° | µ = 0.89 mm−1 |
β = 69.999 (3)° | T = 295 K |
γ = 81.523 (3)° | Prism, blue |
V = 1196.75 (9) Å3 | 0.30 × 0.20 × 0.20 mm |
Stoe Stadivari diffractometer | 5850 reflections with I > 2σ(I) |
Radiation source: Sealed X-ray tube, Axo Microfocus source | Rint = 0.034 |
Mirror monochromator | θmax = 24.1°, θmin = 2.3° |
Detector resolution: 5.81 pixels mm-1 | h = −13→13 |
ω scans | k = −16→16 |
46672 measured reflections | l = −18→18 |
7667 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: mixed |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0417P)2 + 1.8611P] where P = (Fo2 + 2Fc2)/3 |
7667 reflections | (Δ/σ)max < 0.001 |
371 parameters | Δρmax = 1.05 e Å−3 |
0 restraints | Δρmin = −1.04 e Å−3 |
0 constraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The H atoms for water molecules O9 and O10 were located from a difference Fourier map, and then included with idealized O—H bond lengths of 0.84 Å. All other H atoms were placed in calculated positions and refined in the riding-motion approximation. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.28666 (4) | 0.37528 (3) | 0.42645 (3) | 0.03113 (9) | |
V1 | 0.60736 (5) | 0.45877 (4) | 0.16289 (4) | 0.03081 (11) | |
V2 | 0.48289 (8) | 0.31044 (5) | 0.03247 (4) | 0.04600 (15) | |
O1 | 0.2405 (3) | 0.52471 (18) | 0.47897 (18) | 0.0385 (4) | |
O2 | 0.0915 (3) | 0.6963 (2) | 0.4704 (2) | 0.0553 (6) | |
O3 | 0.5310 (3) | 0.4070 (2) | 0.30298 (17) | 0.0411 (5) | |
O4 | 0.4868 (3) | 0.58607 (19) | 0.11187 (16) | 0.0383 (4) | |
O5 | 0.7830 (3) | 0.4986 (3) | 0.1340 (2) | 0.0632 (7) | |
O6 | 0.6154 (3) | 0.3387 (2) | 0.0954 (2) | 0.0565 (7) | |
O7 | 0.3068 (4) | 0.3382 (3) | 0.1098 (2) | 0.0769 (9) | |
O8 | 0.5116 (6) | 0.1674 (2) | 0.0252 (3) | 0.0980 (14) | |
N3 | 0.3584 (3) | 0.2840 (2) | 0.56278 (19) | 0.0325 (5) | |
N4 | 0.2610 (3) | 0.2000 (2) | 0.42780 (19) | 0.0321 (5) | |
N1A | −0.0245 (7) | 0.6630 (7) | −0.0520 (5) | 0.0511 (17) | 0.534 (11) |
H1A1 | 0.068783 | 0.628719 | −0.053834 | 0.077* | 0.534 (11) |
H1A2 | −0.036718 | 0.675570 | −0.120727 | 0.077* | 0.534 (11) |
H1A3 | −0.094914 | 0.612355 | 0.002064 | 0.077* | 0.534 (11) |
N2A | 0.1937 (3) | 0.4754 (2) | 0.3046 (2) | 0.0324 (5) | 0.534 (11) |
H2AC | 0.267423 | 0.500729 | 0.237479 | 0.039* | 0.534 (11) |
H2AD | 0.132401 | 0.428641 | 0.295082 | 0.039* | 0.534 (11) |
C1A | −0.0422 (15) | 0.7850 (10) | −0.0239 (11) | 0.065 (3) | 0.534 (11) |
H1AA | −0.151129 | 0.802817 | 0.009100 | 0.078* | 0.534 (11) |
H1AB | −0.006459 | 0.848649 | −0.096551 | 0.078* | 0.534 (11) |
C2A | 0.0364 (14) | 0.8003 (7) | 0.0564 (8) | 0.052 (2) | 0.534 (11) |
H2AA | 0.140387 | 0.824892 | 0.011591 | 0.062* | 0.534 (11) |
H2AB | −0.017196 | 0.866728 | 0.090425 | 0.062* | 0.534 (11) |
C3A | 0.042 (3) | 0.683 (3) | 0.153 (2) | 0.052 (5) | 0.534 (11) |
H3AA | 0.106097 | 0.619819 | 0.118836 | 0.062* | 0.534 (11) |
H3AB | −0.060707 | 0.652883 | 0.191254 | 0.062* | 0.534 (11) |
C4A | 0.1031 (13) | 0.7010 (7) | 0.2422 (8) | 0.0430 (18) | 0.534 (11) |
H4AA | 0.206876 | 0.729162 | 0.204135 | 0.052* | 0.534 (11) |
H4AB | 0.040617 | 0.765710 | 0.274879 | 0.052* | 0.534 (11) |
C5A | 0.1047 (10) | 0.5842 (6) | 0.3398 (7) | 0.0349 (14) | 0.534 (11) |
H5AA | −0.002022 | 0.560109 | 0.377435 | 0.042* | 0.534 (11) |
N1B | −0.0843 (17) | 0.7332 (13) | −0.0599 (9) | 0.092 (4) | 0.466 (11) |
H1B1 | −0.056330 | 0.653128 | −0.053176 | 0.138* | 0.466 (11) |
H1B2 | −0.103320 | 0.767266 | −0.126794 | 0.138* | 0.466 (11) |
H1B3 | −0.168642 | 0.740242 | −0.001552 | 0.138* | 0.466 (11) |
N2B | 0.1937 (3) | 0.4754 (2) | 0.3046 (2) | 0.0324 (5) | 0.466 (11) |
H2BC | 0.254448 | 0.469107 | 0.235269 | 0.039* | 0.466 (11) |
H2BD | 0.103074 | 0.446448 | 0.317935 | 0.039* | 0.466 (11) |
C1B | 0.0327 (15) | 0.7939 (11) | −0.0569 (9) | 0.055 (3) | 0.466 (11) |
H1BA | 0.036663 | 0.880480 | −0.101643 | 0.066* | 0.466 (11) |
H1BB | 0.132517 | 0.751270 | −0.078464 | 0.066* | 0.466 (11) |
C2B | −0.0450 (15) | 0.7745 (13) | 0.0883 (10) | 0.062 (3) | 0.466 (11) |
H2BA | −0.060180 | 0.853549 | 0.106720 | 0.074* | 0.466 (11) |
H2BB | −0.142491 | 0.735132 | 0.118419 | 0.074* | 0.466 (11) |
C3B | 0.073 (3) | 0.692 (3) | 0.136 (2) | 0.040 (4) | 0.466 (11) |
H3BA | 0.173286 | 0.725887 | 0.093264 | 0.048* | 0.466 (11) |
H3BB | 0.076685 | 0.610213 | 0.124312 | 0.048* | 0.466 (11) |
C4B | 0.0414 (11) | 0.6762 (9) | 0.2659 (8) | 0.0365 (17) | 0.466 (11) |
H4BA | 0.025226 | 0.757614 | 0.279834 | 0.044* | 0.466 (11) |
H4BB | −0.051585 | 0.631427 | 0.310312 | 0.044* | 0.466 (11) |
C5B | 0.1740 (10) | 0.6059 (6) | 0.3064 (6) | 0.0255 (13) | 0.466 (11) |
H5BA | 0.268464 | 0.646941 | 0.254025 | 0.031* | 0.466 (11) |
C6 | 0.1564 (4) | 0.6087 (3) | 0.4323 (2) | 0.0364 (6) | |
C7 | 0.4109 (4) | 0.3304 (3) | 0.6255 (3) | 0.0407 (6) | |
H7A | 0.419788 | 0.415905 | 0.606119 | 0.049* | |
C8 | 0.4533 (4) | 0.2536 (3) | 0.7205 (3) | 0.0480 (8) | |
H8A | 0.491515 | 0.288232 | 0.762469 | 0.058* | |
C9 | 0.4389 (4) | 0.1284 (3) | 0.7515 (3) | 0.0498 (8) | |
H9A | 0.465751 | 0.077469 | 0.815119 | 0.060* | |
C10 | 0.3828 (4) | 0.0767 (3) | 0.6865 (2) | 0.0408 (6) | |
C11 | 0.3672 (5) | −0.0537 (3) | 0.7089 (3) | 0.0535 (9) | |
H11A | 0.392773 | −0.109731 | 0.771058 | 0.064* | |
C12 | 0.3157 (5) | −0.0964 (3) | 0.6404 (3) | 0.0552 (9) | |
H12A | 0.304755 | −0.181337 | 0.657416 | 0.066* | |
C13 | 0.2778 (4) | −0.0142 (3) | 0.5428 (3) | 0.0412 (6) | |
C14 | 0.2262 (4) | −0.0526 (3) | 0.4671 (3) | 0.0511 (8) | |
H14A | 0.213642 | −0.136481 | 0.479431 | 0.061* | |
C15 | 0.1949 (4) | 0.0339 (3) | 0.3756 (3) | 0.0487 (8) | |
H15A | 0.161247 | 0.009298 | 0.325069 | 0.058* | |
C16 | 0.2137 (4) | 0.1603 (3) | 0.3580 (3) | 0.0404 (6) | |
H16A | 0.192236 | 0.218353 | 0.295089 | 0.048* | |
C17 | 0.2930 (3) | 0.1139 (2) | 0.5187 (2) | 0.0310 (5) | |
C18 | 0.3457 (3) | 0.1596 (2) | 0.5914 (2) | 0.0312 (5) | |
O9 | 0.2826 (5) | 0.0017 (5) | 0.0903 (4) | 0.1215 (16) | |
H91 | 0.332940 | 0.065801 | 0.060048 | 0.182* | |
H92 | 0.308060 | −0.029729 | 0.034468 | 0.182* | |
O10 | 0.0727 (3) | 0.6510 (3) | 0.7036 (2) | 0.0613 (7) | |
H101 | 0.130220 | 0.593952 | 0.729652 | 0.092* | |
H102 | 0.115531 | 0.669602 | 0.631782 | 0.092* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0444 (2) | 0.02394 (14) | 0.02671 (15) | −0.00129 (12) | −0.01526 (14) | −0.00487 (11) |
V1 | 0.0309 (2) | 0.0383 (2) | 0.0236 (2) | 0.00036 (17) | −0.01121 (17) | −0.00697 (16) |
V2 | 0.0816 (4) | 0.0301 (2) | 0.0266 (2) | −0.0047 (2) | −0.0206 (3) | −0.00322 (18) |
O1 | 0.0528 (12) | 0.0331 (9) | 0.0374 (10) | 0.0036 (8) | −0.0229 (9) | −0.0134 (8) |
O2 | 0.0801 (18) | 0.0393 (12) | 0.0570 (15) | 0.0152 (11) | −0.0316 (13) | −0.0251 (11) |
O3 | 0.0470 (12) | 0.0459 (11) | 0.0264 (9) | −0.0012 (9) | −0.0135 (9) | −0.0024 (8) |
O4 | 0.0475 (12) | 0.0371 (10) | 0.0266 (9) | 0.0023 (8) | −0.0133 (8) | −0.0038 (7) |
O5 | 0.0394 (13) | 0.091 (2) | 0.0561 (15) | −0.0165 (13) | −0.0183 (12) | −0.0059 (14) |
O6 | 0.089 (2) | 0.0452 (12) | 0.0485 (13) | 0.0218 (12) | −0.0407 (14) | −0.0220 (10) |
O7 | 0.087 (2) | 0.102 (2) | 0.0321 (13) | −0.0295 (19) | −0.0035 (13) | −0.0103 (14) |
O8 | 0.196 (4) | 0.0305 (12) | 0.081 (2) | −0.0135 (18) | −0.063 (3) | −0.0098 (13) |
N3 | 0.0394 (12) | 0.0306 (10) | 0.0282 (10) | 0.0005 (9) | −0.0132 (9) | −0.0071 (8) |
N4 | 0.0412 (12) | 0.0265 (10) | 0.0281 (10) | −0.0033 (9) | −0.0118 (9) | −0.0049 (8) |
N1A | 0.045 (3) | 0.067 (4) | 0.041 (3) | 0.010 (3) | −0.021 (2) | −0.012 (3) |
N2A | 0.0391 (12) | 0.0295 (10) | 0.0329 (11) | −0.0004 (9) | −0.0170 (10) | −0.0089 (8) |
C1A | 0.071 (7) | 0.060 (5) | 0.066 (7) | 0.001 (6) | −0.044 (6) | 0.001 (5) |
C2A | 0.075 (6) | 0.034 (3) | 0.056 (5) | −0.002 (4) | −0.043 (5) | −0.002 (3) |
C3A | 0.067 (12) | 0.036 (4) | 0.064 (13) | −0.007 (8) | −0.046 (10) | 0.001 (7) |
C4A | 0.058 (5) | 0.028 (3) | 0.047 (5) | −0.003 (3) | −0.027 (4) | −0.004 (3) |
C5A | 0.036 (4) | 0.028 (3) | 0.041 (3) | −0.001 (2) | −0.015 (3) | −0.007 (2) |
N1B | 0.121 (10) | 0.091 (9) | 0.078 (6) | −0.045 (8) | −0.055 (7) | 0.004 (6) |
N2B | 0.0391 (12) | 0.0295 (10) | 0.0329 (11) | −0.0004 (9) | −0.0170 (10) | −0.0089 (8) |
C1B | 0.059 (6) | 0.064 (5) | 0.042 (5) | −0.002 (5) | −0.028 (5) | −0.002 (4) |
C2B | 0.063 (7) | 0.075 (7) | 0.056 (6) | 0.023 (5) | −0.032 (5) | −0.027 (5) |
C3B | 0.043 (7) | 0.044 (10) | 0.031 (4) | 0.006 (6) | −0.012 (4) | −0.011 (5) |
C4B | 0.038 (5) | 0.035 (4) | 0.033 (4) | 0.005 (3) | −0.010 (3) | −0.010 (3) |
C5B | 0.026 (3) | 0.026 (3) | 0.023 (3) | −0.005 (2) | −0.006 (2) | −0.004 (2) |
C6 | 0.0450 (16) | 0.0310 (12) | 0.0350 (13) | −0.0041 (11) | −0.0129 (12) | −0.0103 (10) |
C7 | 0.0483 (17) | 0.0404 (14) | 0.0386 (15) | −0.0012 (12) | −0.0190 (13) | −0.0125 (12) |
C8 | 0.0525 (19) | 0.062 (2) | 0.0389 (16) | 0.0045 (15) | −0.0232 (14) | −0.0202 (14) |
C9 | 0.056 (2) | 0.0589 (19) | 0.0358 (15) | 0.0147 (16) | −0.0249 (15) | −0.0103 (14) |
C10 | 0.0463 (16) | 0.0387 (14) | 0.0300 (13) | 0.0054 (12) | −0.0138 (12) | −0.0007 (11) |
C11 | 0.069 (2) | 0.0369 (15) | 0.0435 (17) | 0.0038 (15) | −0.0216 (17) | 0.0069 (13) |
C12 | 0.076 (3) | 0.0269 (13) | 0.0524 (19) | −0.0041 (14) | −0.0192 (18) | 0.0036 (13) |
C13 | 0.0493 (17) | 0.0271 (12) | 0.0393 (15) | −0.0041 (11) | −0.0077 (13) | −0.0040 (11) |
C14 | 0.061 (2) | 0.0315 (14) | 0.059 (2) | −0.0095 (14) | −0.0126 (17) | −0.0143 (14) |
C15 | 0.061 (2) | 0.0450 (16) | 0.0485 (18) | −0.0100 (15) | −0.0185 (16) | −0.0198 (14) |
C16 | 0.0506 (17) | 0.0389 (14) | 0.0357 (14) | −0.0042 (12) | −0.0167 (13) | −0.0115 (11) |
C17 | 0.0329 (13) | 0.0271 (11) | 0.0277 (11) | −0.0024 (9) | −0.0057 (10) | −0.0041 (9) |
C18 | 0.0344 (13) | 0.0298 (11) | 0.0261 (11) | 0.0014 (10) | −0.0090 (10) | −0.0048 (9) |
O9 | 0.079 (3) | 0.172 (5) | 0.126 (4) | 0.014 (3) | −0.040 (3) | −0.060 (3) |
O10 | 0.0671 (17) | 0.0685 (17) | 0.0555 (15) | −0.0091 (13) | −0.0349 (14) | −0.0068 (13) |
Cu1—O1 | 1.940 (2) | N1B—H1B2 | 0.8900 |
Cu1—N2B | 2.001 (2) | N1B—H1B3 | 0.8900 |
Cu1—N2A | 2.001 (2) | N2B—C5B | 1.464 (6) |
Cu1—N3 | 2.008 (2) | N2B—H2BC | 0.8900 |
Cu1—N4 | 2.023 (2) | N2B—H2BD | 0.8900 |
Cu1—O3 | 2.282 (2) | C1B—C2B | 1.700 (17) |
V1—O3 | 1.631 (2) | C1B—H1BA | 0.9700 |
V1—O5 | 1.643 (2) | C1B—H1BB | 0.9700 |
V1—O4 | 1.788 (2) | C2B—C3B | 1.50 (4) |
V1—O6 | 1.796 (2) | C2B—H2BA | 0.9700 |
V2—O8 | 1.624 (3) | C2B—H2BB | 0.9700 |
V2—O7 | 1.636 (3) | C3B—C4B | 1.54 (3) |
V2—O6 | 1.792 (3) | C3B—H3BA | 0.9700 |
V2—O4i | 1.8090 (19) | C3B—H3BB | 0.9700 |
O1—C6 | 1.272 (3) | C4B—C5B | 1.520 (12) |
O2—C6 | 1.224 (4) | C4B—H4BA | 0.9700 |
N3—C7 | 1.323 (4) | C4B—H4BB | 0.9700 |
N3—C18 | 1.353 (3) | C5B—C6 | 1.570 (6) |
N4—C16 | 1.325 (4) | C5B—H5BA | 0.9800 |
N4—C17 | 1.358 (3) | C7—C8 | 1.402 (4) |
N1A—C1A | 1.499 (15) | C7—H7A | 0.9300 |
N1A—H1A1 | 0.8900 | C8—C9 | 1.361 (5) |
N1A—H1A2 | 0.8900 | C8—H8A | 0.9300 |
N1A—H1A3 | 0.8900 | C9—C10 | 1.408 (5) |
N2A—C5A | 1.476 (7) | C9—H9A | 0.9300 |
N2A—H2AC | 0.8900 | C10—C18 | 1.402 (4) |
N2A—H2AD | 0.8900 | C10—C11 | 1.433 (5) |
C1A—C2A | 1.506 (14) | C11—C12 | 1.355 (6) |
C1A—H1AA | 0.9700 | C11—H11A | 0.9300 |
C1A—H1AB | 0.9700 | C12—C13 | 1.428 (5) |
C2A—C3A | 1.52 (3) | C12—H12A | 0.9300 |
C2A—H2AA | 0.9700 | C13—C17 | 1.403 (4) |
C2A—H2AB | 0.9700 | C13—C14 | 1.409 (5) |
C3A—C4A | 1.51 (3) | C14—C15 | 1.362 (5) |
C3A—H3AA | 0.9700 | C14—H14A | 0.9300 |
C3A—H3AB | 0.9700 | C15—C16 | 1.404 (4) |
C4A—C5A | 1.516 (11) | C15—H15A | 0.9300 |
C4A—H4AA | 0.9700 | C16—H16A | 0.9300 |
C4A—H4AB | 0.9700 | C17—C18 | 1.430 (4) |
C5A—C6 | 1.526 (7) | O9—H91 | 0.8356 |
C5A—H5AA | 0.9800 | O9—H92 | 0.8396 |
N1B—C1B | 1.383 (16) | O10—H101 | 0.8369 |
N1B—H1B1 | 0.8900 | O10—H102 | 0.8367 |
O1—Cu1—N2B | 83.94 (9) | H1B1—N1B—H1B3 | 109.5 |
O1—Cu1—N2A | 83.94 (9) | H1B2—N1B—H1B3 | 109.5 |
O1—Cu1—N3 | 90.65 (9) | C5B—N2B—Cu1 | 109.4 (3) |
N2B—Cu1—N3 | 172.79 (10) | C5B—N2B—H2BC | 109.8 |
N2A—Cu1—N3 | 172.79 (10) | Cu1—N2B—H2BC | 109.8 |
O1—Cu1—N4 | 157.13 (10) | C5B—N2B—H2BD | 109.8 |
N2B—Cu1—N4 | 101.14 (9) | Cu1—N2B—H2BD | 109.8 |
N2A—Cu1—N4 | 101.14 (9) | H2BC—N2B—H2BD | 108.3 |
N3—Cu1—N4 | 82.07 (9) | N1B—C1B—C2B | 92.3 (11) |
O1—Cu1—O3 | 101.31 (9) | N1B—C1B—H1BA | 113.2 |
N2B—Cu1—O3 | 92.76 (9) | C2B—C1B—H1BA | 113.2 |
N2A—Cu1—O3 | 92.76 (9) | N1B—C1B—H1BB | 113.2 |
N3—Cu1—O3 | 92.97 (9) | C2B—C1B—H1BB | 113.2 |
N4—Cu1—O3 | 100.70 (9) | H1BA—C1B—H1BB | 110.6 |
O3—V1—O5 | 108.89 (13) | C3B—C2B—C1B | 103.3 (12) |
O3—V1—O4 | 107.83 (10) | C3B—C2B—H2BA | 111.1 |
O5—V1—O4 | 112.78 (13) | C1B—C2B—H2BA | 111.1 |
O3—V1—O6 | 109.91 (12) | C3B—C2B—H2BB | 111.1 |
O5—V1—O6 | 108.72 (15) | C1B—C2B—H2BB | 111.1 |
O4—V1—O6 | 108.68 (10) | H2BA—C2B—H2BB | 109.1 |
O8—V2—O7 | 111.8 (2) | C2B—C3B—C4B | 113.4 (17) |
O8—V2—O6 | 108.32 (17) | C2B—C3B—H3BA | 108.9 |
O7—V2—O6 | 109.89 (14) | C4B—C3B—H3BA | 108.9 |
O8—V2—O4i | 109.20 (14) | C2B—C3B—H3BB | 108.9 |
O7—V2—O4i | 107.28 (13) | C4B—C3B—H3BB | 108.9 |
O6—V2—O4i | 110.39 (12) | H3BA—C3B—H3BB | 107.7 |
C6—O1—Cu1 | 115.86 (18) | C5B—C4B—C3B | 111.3 (13) |
V1—O3—Cu1 | 134.84 (12) | C5B—C4B—H4BA | 109.4 |
V1—O4—V2i | 129.04 (12) | C3B—C4B—H4BA | 109.4 |
V2—O6—V1 | 129.23 (14) | C5B—C4B—H4BB | 109.4 |
C7—N3—C18 | 119.0 (2) | C3B—C4B—H4BB | 109.4 |
C7—N3—Cu1 | 128.5 (2) | H4BA—C4B—H4BB | 108.0 |
C18—N3—Cu1 | 112.50 (17) | N2B—C5B—C4B | 113.6 (7) |
C16—N4—C17 | 118.0 (2) | N2B—C5B—C6 | 107.7 (4) |
C16—N4—Cu1 | 130.04 (19) | C4B—C5B—C6 | 112.0 (6) |
C17—N4—Cu1 | 111.87 (18) | N2B—C5B—H5BA | 107.8 |
C1A—N1A—H1A1 | 109.5 | C4B—C5B—H5BA | 107.8 |
C1A—N1A—H1A2 | 109.5 | C6—C5B—H5BA | 107.8 |
H1A1—N1A—H1A2 | 109.5 | O2—C6—O1 | 124.2 (3) |
C1A—N1A—H1A3 | 109.5 | O2—C6—C5A | 116.7 (3) |
H1A1—N1A—H1A3 | 109.5 | O1—C6—C5A | 117.7 (3) |
H1A2—N1A—H1A3 | 109.5 | O2—C6—C5B | 122.0 (3) |
C5A—N2A—Cu1 | 109.5 (3) | O1—C6—C5B | 112.5 (3) |
C5A—N2A—H2AC | 109.8 | N3—C7—C8 | 121.5 (3) |
Cu1—N2A—H2AC | 109.8 | N3—C7—H7A | 119.3 |
C5A—N2A—H2AD | 109.8 | C8—C7—H7A | 119.3 |
Cu1—N2A—H2AD | 109.8 | C9—C8—C7 | 120.2 (3) |
H2AC—N2A—H2AD | 108.2 | C9—C8—H8A | 119.9 |
N1A—C1A—C2A | 119.4 (8) | C7—C8—H8A | 119.9 |
N1A—C1A—H1AA | 107.5 | C8—C9—C10 | 119.4 (3) |
C2A—C1A—H1AA | 107.5 | C8—C9—H9A | 120.3 |
N1A—C1A—H1AB | 107.5 | C10—C9—H9A | 120.3 |
C2A—C1A—H1AB | 107.5 | C18—C10—C9 | 116.9 (3) |
H1AA—C1A—H1AB | 107.0 | C18—C10—C11 | 118.8 (3) |
C3A—C2A—C1A | 113.4 (13) | C9—C10—C11 | 124.3 (3) |
C3A—C2A—H2AA | 108.9 | C12—C11—C10 | 120.7 (3) |
C1A—C2A—H2AA | 108.9 | C12—C11—H11A | 119.7 |
C3A—C2A—H2AB | 108.9 | C10—C11—H11A | 119.7 |
C1A—C2A—H2AB | 108.9 | C11—C12—C13 | 121.7 (3) |
H2AA—C2A—H2AB | 107.7 | C11—C12—H12A | 119.2 |
C2A—C3A—C4A | 114.1 (19) | C13—C12—H12A | 119.2 |
C2A—C3A—H3AA | 108.7 | C17—C13—C14 | 116.8 (3) |
C4A—C3A—H3AA | 108.7 | C17—C13—C12 | 118.7 (3) |
C2A—C3A—H3AB | 108.7 | C14—C13—C12 | 124.5 (3) |
C4A—C3A—H3AB | 108.7 | C15—C14—C13 | 119.6 (3) |
H3AA—C3A—H3AB | 107.6 | C15—C14—H14A | 120.2 |
C5A—C4A—C3A | 113.7 (13) | C13—C14—H14A | 120.2 |
C5A—C4A—H4AA | 108.8 | C14—C15—C16 | 119.8 (3) |
C3A—C4A—H4AA | 108.8 | C14—C15—H15A | 120.1 |
C5A—C4A—H4AB | 108.8 | C16—C15—H15A | 120.1 |
C3A—C4A—H4AB | 108.8 | N4—C16—C15 | 122.4 (3) |
H4AA—C4A—H4AB | 107.7 | N4—C16—H16A | 118.8 |
N2A—C5A—C4A | 115.8 (7) | C15—C16—H16A | 118.8 |
N2A—C5A—C6 | 109.4 (4) | N4—C17—C13 | 123.5 (3) |
C4A—C5A—C6 | 111.9 (6) | N4—C17—C18 | 116.6 (2) |
N2A—C5A—H5AA | 106.4 | C13—C17—C18 | 119.9 (2) |
C4A—C5A—H5AA | 106.4 | N3—C18—C10 | 123.0 (3) |
C6—C5A—H5AA | 106.4 | N3—C18—C17 | 116.7 (2) |
C1B—N1B—H1B1 | 109.5 | C10—C18—C17 | 120.3 (2) |
C1B—N1B—H1B2 | 109.5 | H91—O9—H92 | 100.7 |
H1B1—N1B—H1B2 | 109.5 | H101—O10—H102 | 104.1 |
C1B—N1B—H1B3 | 109.5 | ||
O5—V1—O3—Cu1 | 162.47 (18) | C18—N3—C7—C8 | 0.0 (5) |
O4—V1—O3—Cu1 | 39.8 (2) | Cu1—N3—C7—C8 | 178.5 (2) |
O6—V1—O3—Cu1 | −78.53 (19) | N3—C7—C8—C9 | −1.1 (5) |
O3—V1—O4—V2i | 174.60 (15) | C7—C8—C9—C10 | 0.8 (5) |
O5—V1—O4—V2i | 54.3 (2) | C8—C9—C10—C18 | 0.4 (5) |
O6—V1—O4—V2i | −66.30 (19) | C8—C9—C10—C11 | 178.0 (3) |
O8—V2—O6—V1 | −160.5 (2) | C18—C10—C11—C12 | −0.8 (5) |
O7—V2—O6—V1 | −38.2 (2) | C9—C10—C11—C12 | −178.4 (4) |
O4i—V2—O6—V1 | 80.0 (2) | C10—C11—C12—C13 | 1.1 (6) |
O3—V1—O6—V2 | 95.4 (2) | C11—C12—C13—C17 | −0.8 (6) |
O5—V1—O6—V2 | −145.5 (2) | C11—C12—C13—C14 | 178.9 (4) |
O4—V1—O6—V2 | −22.4 (2) | C17—C13—C14—C15 | 0.4 (5) |
N1A—C1A—C2A—C3A | −35 (2) | C12—C13—C14—C15 | −179.2 (4) |
C1A—C2A—C3A—C4A | −173.0 (13) | C13—C14—C15—C16 | −0.3 (6) |
C2A—C3A—C4A—C5A | 178.6 (12) | C17—N4—C16—C15 | 0.5 (5) |
Cu1—N2A—C5A—C4A | 146.8 (6) | Cu1—N4—C16—C15 | −176.5 (2) |
Cu1—N2A—C5A—C6 | 19.2 (6) | C14—C15—C16—N4 | −0.2 (5) |
C3A—C4A—C5A—N2A | 57.7 (16) | C16—N4—C17—C13 | −0.4 (4) |
C3A—C4A—C5A—C6 | −176.0 (11) | Cu1—N4—C17—C13 | 177.1 (2) |
N1B—C1B—C2B—C3B | 115.6 (18) | C16—N4—C17—C18 | 179.2 (3) |
C1B—C2B—C3B—C4B | 171.0 (15) | Cu1—N4—C17—C18 | −3.3 (3) |
C2B—C3B—C4B—C5B | −172.6 (14) | C14—C13—C17—N4 | −0.1 (5) |
Cu1—N2B—C5B—C4B | −151.4 (6) | C12—C13—C17—N4 | 179.6 (3) |
Cu1—N2B—C5B—C6 | −26.8 (6) | C14—C13—C17—C18 | −179.6 (3) |
C3B—C4B—C5B—N2B | −67.3 (16) | C12—C13—C17—C18 | 0.1 (4) |
C3B—C4B—C5B—C6 | 170.4 (13) | C7—N3—C18—C10 | 1.3 (4) |
Cu1—O1—C6—O2 | 164.7 (3) | Cu1—N3—C18—C10 | −177.4 (2) |
Cu1—O1—C6—C5A | −1.3 (5) | C7—N3—C18—C17 | −178.1 (3) |
Cu1—O1—C6—C5B | −28.3 (4) | Cu1—N3—C18—C17 | 3.2 (3) |
N2A—C5A—C6—O2 | −179.6 (4) | C9—C10—C18—N3 | −1.5 (4) |
C4A—C5A—C6—O2 | 50.7 (10) | C11—C10—C18—N3 | −179.3 (3) |
N2A—C5A—C6—O1 | −12.5 (8) | C9—C10—C18—C17 | 177.9 (3) |
C4A—C5A—C6—O1 | −142.2 (7) | C11—C10—C18—C17 | 0.2 (4) |
N2B—C5B—C6—O2 | −156.2 (4) | N4—C17—C18—N3 | 0.1 (4) |
C4B—C5B—C6—O2 | −30.6 (9) | C13—C17—C18—N3 | 179.7 (3) |
N2B—C5B—C6—O1 | 36.5 (6) | N4—C17—C18—C10 | −179.3 (3) |
C4B—C5B—C6—O1 | 162.1 (6) | C13—C17—C18—C10 | 0.2 (4) |
Symmetry code: (i) −x+1, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A1···O5i | 0.89 | 2.09 | 2.794 (7) | 136 |
N1A—H1A2···O7ii | 0.89 | 2.49 | 2.958 (7) | 114 |
N1A—H1A2···O10iii | 0.89 | 2.21 | 2.979 (7) | 145 |
N1A—H1A3···O5iv | 0.89 | 1.89 | 2.769 (8) | 169 |
N2A—H2AC···O4 | 0.89 | 2.25 | 3.094 (3) | 159 |
N2A—H2AD···O10v | 0.89 | 2.22 | 3.077 (3) | 163 |
C1A—H1AA···O9ii | 0.97 | 2.56 | 3.157 (11) | 120 |
C5A—H5AA···O1v | 0.98 | 2.44 | 3.390 (10) | 163 |
N1B—H1B1···O5iv | 0.89 | 2.60 | 3.090 (10) | 115 |
N2B—H2BC···O4 | 0.89 | 2.48 | 3.094 (3) | 127 |
N2B—H2BC···O7 | 0.89 | 2.39 | 3.127 (4) | 141 |
N2B—H2BD···O10v | 0.89 | 2.23 | 3.077 (3) | 159 |
C1B—H1BB···O6i | 0.97 | 2.37 | 3.326 (13) | 167 |
C5B—H5BA···O4 | 0.98 | 2.39 | 3.140 (8) | 133 |
C8—H8A···O4vi | 0.93 | 2.51 | 3.412 (4) | 162 |
C16—H16A···O7 | 0.93 | 2.31 | 3.097 (4) | 143 |
O9—H91···O8 | 0.84 | 2.00 | 2.780 (6) | 155 |
O9—H92···O8vii | 0.84 | 2.21 | 2.861 (6) | 135 |
O10—H101···O5vi | 0.84 | 2.09 | 2.837 (4) | 148 |
O10—H102···O2 | 0.84 | 2.07 | 2.811 (4) | 147 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z; (iii) x, y, z−1; (iv) x−1, y, z; (v) −x, −y+1, −z+1; (vi) −x+1, −y+1, −z+1; (vii) −x+1, −y, −z. |
Funding information
Funding for this research was provided by Consejo Nacional de Ciencia y Tecnología (Award No. 268178, Infraestructura). ESL is thankful to CONACyT (Mexico) for the PhD Fellowship (support No. 293256).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Amado, A. M., Aureliano, M., Riberio-Claro, P. J. A. & Teixeira-Dias, J. J. C. (1993). J. Raman Spectrosc. 24, 699–703. CrossRef CAS Google Scholar
Aureliano, M. & Crans, D. C. (2009). J. Inorg. Biochem. 103, 536–546. Web of Science CrossRef PubMed CAS Google Scholar
Joniaková, D., Gyepes, R., Rakovský, E., Schwendt, P., Žúrková, L., Marek, J. & Mička, Z. (2006). Polyhedron, 25, 2491–2502. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Paredes-García, V., Gaune, S., Saldías, M., Garland, M. T., Baggio, R., Vega, A., El Fallah, M. S., Escuer, A., Le Fur, E., Venegas-Yazigi, D. & Spodine, E. (2008). Inorg. Chim. Acta, 361, 3681–3689. Google Scholar
Patra, A. K., Nethaji, M. & Chakravarty, A. R. (2005). Dalton Trans. pp. 2798–2804. CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2015). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Wang, Q., Yu, X.-L., You, W.-S., Zhao, Y., Huang, C.-Y. & Sun, Z.-G. (2007). Inorg. Chem. Commun. 10, 1465–1468. CSD CrossRef CAS Google Scholar
Yucesan, G., Armatas, N. G. & Zubieta, J. (2006). Inorg. Chim. Acta, 359, 4557–4564. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.