organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(Eth­­oxy­carbono­thio­ylthio)­propanoic acid

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Edited by P. C. Healy, Griffith University, Australia (Received 12 July 2017; accepted 13 July 2017; online 18 July 2017)

In the title compound, C6H10O3S2, the O,S-diethyl carbonodi­thio­ate segment of the mol­ecule is almost planar and is inclined to the carb­oxy­lic acid substituent by 82.31 (8)°. In the crystal, O—H⋯O, C—H⋯O and C—H⋯S hydrogen bonds each form inversion dimers and combine with a short O⋯S contact of 3.2394 (16) Å to generate a three-dimensional network of mol­ecules stacked along all three axial directions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound is a commonly used reversible addition–fragmentation chain-transfer (RAFT) polymerization agent (Nakabayashi et al., 2016[Nakabayashi, K., Umeda, A., Sato, Y. & Mori, H. (2016). Polymer, 96, 81-93.]; Peng et al., 2016[Peng, H., Ruebsam, K., Huang, X., Jakob, F., Karperien, M., Schwaneberg, U. & Pich, A. (2016). Macromolecules, 49, 7141-7154.]). The Cambridge Structural Database (Version 5.38 with three updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals only four closely related compounds with the H—O—C(=O)—C—S—C(=S)—O skeleton of the title compound. Only two of these, namely 2-[(eth­oxy­carbono­thio­yl)sulfan­yl]acetic acid (CSD refcode EROTAH; Xiao et al., 2011[Xiao, S., Gu, R. & Charpentier, P. A. (2011). Acta Cryst. E67, o1442.]) and 2-(O-ethyl di­thio­carbonato)succinic acid (JAPHEN; Duarte et al., 1989[Duarte, M., Frampton, C., Howard-Lock, H. E., Lock, C. J. L. & Wu, H. (1989). Acta Cryst. C45, 1028-1031.]) have eth­oxy substituents on the di­thio­carbonyl unit. The other two analogues have meth­oxy (ULEHAV; Xiao & Charpentier, 2011[Xiao, S. & Charpentier, P. A. (2011). Acta Cryst. E67, o575.]) and isoprop­oxy (WACQOI; Xiao & Charpentier, 2010[Xiao, S. & Charpentier, P. A. (2010). Acta Cryst. E66, o3103.]) substituents in these positions.

The C3—C2—S2—C4(=S1)—O3—C5—C6 segment of the title mol­ecule (Fig. 1[link]) is almost planar, with an r.m.s. deviation of 0.0859 Å from the best-fit plane through all eight non-H atoms. The C2—C1(=O1)—O2 carb­oxy­lic acid unit is also close to planar, with an r.m.s. deviation of 0.0106 Å, and is almost orthogonal to the previous plane, with a dihedral angle of 82.31 (8)° between them. In the crystal, classical O2—H2O⋯O1i and nonclassical C2—H2⋯O1ii and C6—H6A⋯S1iii hydrogen bonds (Table 1[link]) each form inversion dimers, enclosing R22(8), R22(8) and R22(12) ring motifs, respectively (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). In addition, short O1⋯S1iv contacts [3.2394 (16) Å; symmetry code: (iv) x, y, 1 + z] link adjacent mol­ecules into rows along the c-axis direction. These contacts combine to stack the mol­ecules along all three axial directions (Figs. 2[link], 3[link] and 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1i 0.72 (4) 1.92 (4) 2.639 (2) 175 (4)
C2—H2⋯O1ii 1.00 2.62 3.497 (3) 146
C6—H6A⋯S1iii 0.98 2.99 3.759 (2) 136
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+1, -z+1.
[Figure 1]
Figure 1
The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Only the major-disorder component of the S2 atom is shown.
[Figure 2]
Figure 2
The overall packing of the title compound, viewed along the a-axis direction. In this and Figs. 3[link] and 4[link], only the major-disorder component of the S2 atom is shown in each case.
[Figure 3]
Figure 3
The overall packing of the title compound, viewed along the b-axis direction.
[Figure 4]
Figure 4
The overall packing of the title compound, viewed along the c-axis direction.

Synthesis and crystallization

The title compound was prepared according to the literature procedure of Nguyen et al. (2015[Nguyen, T. H., Paluck, S. J., McGahran, A. J. & Maynard, H. D. (2015). Biomacromolecules, 16, 2684-2692.]) and X-ray-quality crystals were obtained by recrystallization from mixed solvents of diethyl ether layered with hexane.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Once all of the atoms in the stucture had been found, a high peak remained in the difference Fourier map close to the S2 atom, suggesting possible disorder. Refinement of the two locations of the S2 atom converged with an occupancy ratio of 0.861 (18):0.139 (18).

Table 2
Experimental details

Crystal data
Chemical formula C6H10O3S2
Mr 194.26
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.4093 (4), 7.9779 (3), 8.6250 (3)
α, β, γ (°) 67.300 (4), 85.900 (4), 74.068 (4)
V3) 451.93 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 5.04
Crystal size (mm) 0.30 × 0.13 × 0.10
 
Data collection
Diffractometer Agilent SuperNova Dual Source diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.637, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6643, 1875, 1766
Rint 0.064
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.128, 1.06
No. of reflections 1875
No. of parameters 115
No. of restraints 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.62, −0.60
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), TITAN (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and TITAN (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

2-(Ethoxycarbonothioylthio)propanoic acid top
Crystal data top
C6H10O3S2Z = 2
Mr = 194.26F(000) = 204
Triclinic, P1Dx = 1.428 Mg m3
a = 7.4093 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 7.9779 (3) ÅCell parameters from 4826 reflections
c = 8.6250 (3) Åθ = 5.5–75.3°
α = 67.300 (4)°µ = 5.04 mm1
β = 85.900 (4)°T = 100 K
γ = 74.068 (4)°Rectangular block, colourless
V = 451.93 (4) Å30.30 × 0.13 × 0.10 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
1875 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1766 reflections with I > 2σ(I)
Detector resolution: 5.1725 pixels mm-1Rint = 0.064
ω scansθmax = 76.3°, θmin = 5.6°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 99
Tmin = 0.637, Tmax = 1.000k = 910
6643 measured reflectionsl = 1010
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0828P)2 + 0.2987P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1875 reflectionsΔρmax = 0.62 e Å3
115 parametersΔρmin = 0.60 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.7282 (2)0.4764 (2)0.0116 (2)0.0259 (4)
O20.4935 (2)0.6981 (3)0.0545 (2)0.0272 (4)
H2O0.433 (5)0.647 (5)0.042 (4)0.041*
C10.6695 (3)0.6171 (3)0.0468 (3)0.0201 (4)
C20.8089 (3)0.7123 (3)0.0736 (3)0.0216 (5)
H20.93590.62010.09890.026*
C30.8165 (4)0.8809 (4)0.0890 (3)0.0305 (6)
H3A0.84540.83830.18270.046*
H3B0.91430.93650.07610.046*
H3C0.69470.97560.11220.046*
S20.7542 (6)0.7994 (3)0.24168 (12)0.0156 (4)0.861 (18)
S2A0.704 (3)0.829 (2)0.2403 (9)0.0171 (18)0.139 (18)
C40.7572 (3)0.5968 (3)0.4189 (3)0.0164 (4)
S10.75397 (7)0.59867 (7)0.60794 (6)0.0198 (2)
O30.7618 (2)0.4524 (2)0.37763 (18)0.0186 (3)
C50.7683 (3)0.2696 (3)0.5119 (3)0.0210 (5)
H5A0.66120.28090.58610.025*
H5B0.88660.22080.58060.025*
C60.7573 (3)0.1402 (3)0.4260 (3)0.0255 (5)
H6A0.63880.18960.35980.038*
H6B0.76330.01420.51080.038*
H6C0.86280.13260.35140.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0334 (9)0.0282 (10)0.0246 (8)0.0125 (7)0.0001 (7)0.0159 (7)
O20.0306 (9)0.0216 (9)0.0329 (9)0.0108 (7)0.0083 (7)0.0100 (7)
C10.0253 (10)0.0193 (11)0.0158 (9)0.0089 (8)0.0033 (8)0.0041 (8)
C20.0251 (10)0.0215 (11)0.0206 (10)0.0084 (9)0.0035 (8)0.0083 (9)
C30.0420 (14)0.0304 (14)0.0237 (11)0.0202 (11)0.0006 (10)0.0078 (10)
S20.0174 (9)0.0106 (5)0.0188 (4)0.0019 (5)0.0058 (3)0.0058 (3)
S2A0.019 (2)0.018 (2)0.0169 (19)0.0070 (11)0.0024 (9)0.0070 (11)
C40.0158 (8)0.0147 (10)0.0207 (9)0.0042 (7)0.0040 (7)0.0079 (8)
S10.0238 (3)0.0186 (3)0.0182 (3)0.0035 (2)0.0032 (2)0.0092 (2)
O30.0229 (7)0.0147 (8)0.0202 (7)0.0055 (6)0.0031 (6)0.0080 (6)
C50.0234 (10)0.0144 (11)0.0237 (10)0.0041 (8)0.0049 (8)0.0053 (8)
C60.0283 (11)0.0153 (12)0.0330 (12)0.0039 (9)0.0048 (9)0.0095 (9)
Geometric parameters (Å, º) top
O1—C11.232 (3)S2A—C41.856 (13)
O2—C11.296 (3)C4—O31.322 (3)
O2—H2O0.72 (4)C4—S11.635 (2)
C1—C21.515 (3)S1—O1i3.2394 (16)
C2—C31.535 (3)O3—C51.462 (3)
C2—S21.813 (3)C5—C61.505 (3)
C2—S2A2.004 (13)C5—H5A0.9900
C2—H21.0000C5—H5B0.9900
C3—H3A0.9800C6—H6A0.9800
C3—H3B0.9800C6—H6B0.9800
C3—H3C0.9800C6—H6C0.9800
S2—C41.740 (2)
C1—O2—H2O112 (3)O3—C4—S1127.40 (17)
O1—C1—O2124.6 (2)O3—C4—S2111.49 (15)
O1—C1—C2118.99 (19)S1—C4—S2121.11 (13)
O2—C1—C2116.27 (19)O3—C4—S2A114.6 (3)
C1—C2—C3108.95 (18)S1—C4—S2A116.9 (3)
C1—C2—S2114.60 (17)C4—S1—O1i162.49 (9)
C3—C2—S2107.51 (16)C4—O3—C5118.71 (16)
C1—C2—S2A108.0 (4)O3—C5—C6106.08 (17)
C3—C2—S2A104.2 (4)O3—C5—H5A110.5
C1—C2—H2108.5C6—C5—H5A110.5
C3—C2—H2108.5O3—C5—H5B110.5
S2—C2—H2108.5C6—C5—H5B110.5
C2—C3—H3A109.5H5A—C5—H5B108.7
C2—C3—H3B109.5C5—C6—H6A109.5
H3A—C3—H3B109.5C5—C6—H6B109.5
C2—C3—H3C109.5H6A—C6—H6B109.5
H3A—C3—H3C109.5C5—C6—H6C109.5
H3B—C3—H3C109.5H6A—C6—H6C109.5
C4—S2—C2103.40 (14)H6B—C6—H6C109.5
C4—S2A—C292.4 (7)
O1—C1—C2—C397.9 (2)C2—S2A—C4—O326.7 (7)
O2—C1—C2—C378.7 (2)C2—S2A—C4—S1164.1 (2)
O1—C1—C2—S2141.7 (2)O3—C4—S1—O1i9.5 (4)
O2—C1—C2—S241.8 (3)S2—C4—S1—O1i170.4 (2)
O1—C1—C2—S2A149.6 (5)S2A—C4—S1—O1i158.1 (6)
O2—C1—C2—S2A33.9 (5)S1—C4—O3—C51.2 (3)
C1—C2—S2—C460.7 (3)S2—C4—O3—C5178.92 (19)
C3—C2—S2—C4178.06 (19)S2A—C4—O3—C5169.0 (6)
C2—S2—C4—O311.7 (3)C4—O3—C5—C6175.74 (17)
C2—S2—C4—S1168.43 (15)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1ii0.72 (4)1.92 (4)2.639 (2)175 (4)
C2—H2···O1iii1.002.623.497 (3)146
C6—H6A···S1iv0.982.993.759 (2)136
Symmetry codes: (ii) x+1, y+1, z; (iii) x+2, y+1, z; (iv) x+1, y+1, z+1.
 

Funding information

Funding for this research was provided by: NZ Ministry of Business Innovation and Employment Science Investment Fund (grant No. UOO-X1206); University of Otago for the purchase of the diffractometer.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDuarte, M., Frampton, C., Howard-Lock, H. E., Lock, C. J. L. & Wu, H. (1989). Acta Cryst. C45, 1028–1031.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNakabayashi, K., Umeda, A., Sato, Y. & Mori, H. (2016). Polymer, 96, 81–93.  CrossRef CAS Google Scholar
First citationNguyen, T. H., Paluck, S. J., McGahran, A. J. & Maynard, H. D. (2015). Biomacromolecules, 16, 2684–2692.  CrossRef CAS Google Scholar
First citationPeng, H., Ruebsam, K., Huang, X., Jakob, F., Karperien, M., Schwaneberg, U. & Pich, A. (2016). Macromolecules, 49, 7141–7154.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, S. & Charpentier, P. A. (2010). Acta Cryst. E66, o3103.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, S. & Charpentier, P. A. (2011). Acta Cryst. E67, o575.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiao, S., Gu, R. & Charpentier, P. A. (2011). Acta Cryst. E67, o1442.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds