organic compounds
2-(Ethoxycarbonothioylthio)propanoic acid
aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz
In the title compound, C6H10O3S2, the O,S-diethyl carbonodithioate segment of the molecule is almost planar and is inclined to the carboxylic acid substituent by 82.31 (8)°. In the crystal, O—H⋯O, C—H⋯O and C—H⋯S hydrogen bonds each form inversion dimers and combine with a short O⋯S contact of 3.2394 (16) Å to generate a three-dimensional network of molecules stacked along all three axial directions.
Keywords: crystal structure; 2-(ethoxycarbonothioylthio)propanoic acid; inversion dimers; hydrogen bonds.
CCDC reference: 1561912
Structure description
The title compound is a commonly used reversible addition–fragmentation chain-transfer (RAFT) polymerization agent (Nakabayashi et al., 2016; Peng et al., 2016). The Cambridge Structural Database (Version 5.38 with three updates; Groom et al., 2016) reveals only four closely related compounds with the H—O—C(=O)—C—S—C(=S)—O skeleton of the title compound. Only two of these, namely 2-[(ethoxycarbonothioyl)sulfanyl]acetic acid (CSD refcode EROTAH; Xiao et al., 2011) and 2-(O-ethyl dithiocarbonato)succinic acid (JAPHEN; Duarte et al., 1989) have ethoxy substituents on the dithiocarbonyl unit. The other two analogues have methoxy (ULEHAV; Xiao & Charpentier, 2011) and isopropoxy (WACQOI; Xiao & Charpentier, 2010) substituents in these positions.
The C3—C2—S2—C4(=S1)—O3—C5—C6 segment of the title molecule (Fig. 1) is almost planar, with an r.m.s. deviation of 0.0859 Å from the best-fit plane through all eight non-H atoms. The C2—C1(=O1)—O2 carboxylic acid unit is also close to planar, with an r.m.s. deviation of 0.0106 Å, and is almost orthogonal to the previous plane, with a dihedral angle of 82.31 (8)° between them. In the crystal, classical O2—H2O⋯O1i and nonclassical C2—H2⋯O1ii and C6—H6A⋯S1iii hydrogen bonds (Table 1) each form inversion dimers, enclosing R22(8), R22(8) and R22(12) ring motifs, respectively (Bernstein et al., 1995). In addition, short O1⋯S1iv contacts [3.2394 (16) Å; symmetry code: (iv) x, y, 1 + z] link adjacent molecules into rows along the c-axis direction. These contacts combine to stack the molecules along all three axial directions (Figs. 2, 3 and 4).
Synthesis and crystallization
The title compound was prepared according to the literature procedure of Nguyen et al. (2015) and X-ray-quality crystals were obtained by recrystallization from mixed solvents of diethyl ether layered with hexane.
Refinement
Crystal data, data collection and structure . Once all of the atoms in the stucture had been found, a high peak remained in the difference Fourier map close to the S2 atom, suggesting possible disorder. of the two locations of the S2 atom converged with an occupancy ratio of 0.861 (18):0.139 (18).
details are summarized in Table 2Structural data
CCDC reference: 1561912
https://doi.org/10.1107/S2414314617010355/hg4023sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617010355/hg4023Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617010355/hg4023Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and TITAN (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).C6H10O3S2 | Z = 2 |
Mr = 194.26 | F(000) = 204 |
Triclinic, P1 | Dx = 1.428 Mg m−3 |
a = 7.4093 (4) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 7.9779 (3) Å | Cell parameters from 4826 reflections |
c = 8.6250 (3) Å | θ = 5.5–75.3° |
α = 67.300 (4)° | µ = 5.04 mm−1 |
β = 85.900 (4)° | T = 100 K |
γ = 74.068 (4)° | Rectangular block, colourless |
V = 451.93 (4) Å3 | 0.30 × 0.13 × 0.10 mm |
Agilent SuperNova Dual Source diffractometer with an Atlas detector | 1875 independent reflections |
Radiation source: SuperNova (Cu) X-ray Source | 1766 reflections with I > 2σ(I) |
Detector resolution: 5.1725 pixels mm-1 | Rint = 0.064 |
ω scans | θmax = 76.3°, θmin = 5.6° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −9→9 |
Tmin = 0.637, Tmax = 1.000 | k = −9→10 |
6643 measured reflections | l = −10→10 |
Refinement on F2 | 7 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.128 | w = 1/[σ2(Fo2) + (0.0828P)2 + 0.2987P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
1875 reflections | Δρmax = 0.62 e Å−3 |
115 parameters | Δρmin = −0.60 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.7282 (2) | 0.4764 (2) | 0.0116 (2) | 0.0259 (4) | |
O2 | 0.4935 (2) | 0.6981 (3) | 0.0545 (2) | 0.0272 (4) | |
H2O | 0.433 (5) | 0.647 (5) | 0.042 (4) | 0.041* | |
C1 | 0.6695 (3) | 0.6171 (3) | 0.0468 (3) | 0.0201 (4) | |
C2 | 0.8089 (3) | 0.7123 (3) | 0.0736 (3) | 0.0216 (5) | |
H2 | 0.9359 | 0.6201 | 0.0989 | 0.026* | |
C3 | 0.8165 (4) | 0.8809 (4) | −0.0890 (3) | 0.0305 (6) | |
H3A | 0.8454 | 0.8383 | −0.1827 | 0.046* | |
H3B | 0.9143 | 0.9365 | −0.0761 | 0.046* | |
H3C | 0.6947 | 0.9756 | −0.1122 | 0.046* | |
S2 | 0.7542 (6) | 0.7994 (3) | 0.24168 (12) | 0.0156 (4) | 0.861 (18) |
S2A | 0.704 (3) | 0.829 (2) | 0.2403 (9) | 0.0171 (18) | 0.139 (18) |
C4 | 0.7572 (3) | 0.5968 (3) | 0.4189 (3) | 0.0164 (4) | |
S1 | 0.75397 (7) | 0.59867 (7) | 0.60794 (6) | 0.0198 (2) | |
O3 | 0.7618 (2) | 0.4524 (2) | 0.37763 (18) | 0.0186 (3) | |
C5 | 0.7683 (3) | 0.2696 (3) | 0.5119 (3) | 0.0210 (5) | |
H5A | 0.6612 | 0.2809 | 0.5861 | 0.025* | |
H5B | 0.8866 | 0.2208 | 0.5806 | 0.025* | |
C6 | 0.7573 (3) | 0.1402 (3) | 0.4260 (3) | 0.0255 (5) | |
H6A | 0.6388 | 0.1896 | 0.3598 | 0.038* | |
H6B | 0.7633 | 0.0142 | 0.5108 | 0.038* | |
H6C | 0.8628 | 0.1326 | 0.3514 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0334 (9) | 0.0282 (10) | 0.0246 (8) | −0.0125 (7) | −0.0001 (7) | −0.0159 (7) |
O2 | 0.0306 (9) | 0.0216 (9) | 0.0329 (9) | −0.0108 (7) | −0.0083 (7) | −0.0100 (7) |
C1 | 0.0253 (10) | 0.0193 (11) | 0.0158 (9) | −0.0089 (8) | −0.0033 (8) | −0.0041 (8) |
C2 | 0.0251 (10) | 0.0215 (11) | 0.0206 (10) | −0.0084 (9) | −0.0035 (8) | −0.0083 (9) |
C3 | 0.0420 (14) | 0.0304 (14) | 0.0237 (11) | −0.0202 (11) | −0.0006 (10) | −0.0078 (10) |
S2 | 0.0174 (9) | 0.0106 (5) | 0.0188 (4) | −0.0019 (5) | −0.0058 (3) | −0.0058 (3) |
S2A | 0.019 (2) | 0.018 (2) | 0.0169 (19) | −0.0070 (11) | −0.0024 (9) | −0.0070 (11) |
C4 | 0.0158 (8) | 0.0147 (10) | 0.0207 (9) | −0.0042 (7) | −0.0040 (7) | −0.0079 (8) |
S1 | 0.0238 (3) | 0.0186 (3) | 0.0182 (3) | −0.0035 (2) | −0.0032 (2) | −0.0092 (2) |
O3 | 0.0229 (7) | 0.0147 (8) | 0.0202 (7) | −0.0055 (6) | −0.0031 (6) | −0.0080 (6) |
C5 | 0.0234 (10) | 0.0144 (11) | 0.0237 (10) | −0.0041 (8) | −0.0049 (8) | −0.0053 (8) |
C6 | 0.0283 (11) | 0.0153 (12) | 0.0330 (12) | −0.0039 (9) | −0.0048 (9) | −0.0095 (9) |
O1—C1 | 1.232 (3) | S2A—C4 | 1.856 (13) |
O2—C1 | 1.296 (3) | C4—O3 | 1.322 (3) |
O2—H2O | 0.72 (4) | C4—S1 | 1.635 (2) |
C1—C2 | 1.515 (3) | S1—O1i | 3.2394 (16) |
C2—C3 | 1.535 (3) | O3—C5 | 1.462 (3) |
C2—S2 | 1.813 (3) | C5—C6 | 1.505 (3) |
C2—S2A | 2.004 (13) | C5—H5A | 0.9900 |
C2—H2 | 1.0000 | C5—H5B | 0.9900 |
C3—H3A | 0.9800 | C6—H6A | 0.9800 |
C3—H3B | 0.9800 | C6—H6B | 0.9800 |
C3—H3C | 0.9800 | C6—H6C | 0.9800 |
S2—C4 | 1.740 (2) | ||
C1—O2—H2O | 112 (3) | O3—C4—S1 | 127.40 (17) |
O1—C1—O2 | 124.6 (2) | O3—C4—S2 | 111.49 (15) |
O1—C1—C2 | 118.99 (19) | S1—C4—S2 | 121.11 (13) |
O2—C1—C2 | 116.27 (19) | O3—C4—S2A | 114.6 (3) |
C1—C2—C3 | 108.95 (18) | S1—C4—S2A | 116.9 (3) |
C1—C2—S2 | 114.60 (17) | C4—S1—O1i | 162.49 (9) |
C3—C2—S2 | 107.51 (16) | C4—O3—C5 | 118.71 (16) |
C1—C2—S2A | 108.0 (4) | O3—C5—C6 | 106.08 (17) |
C3—C2—S2A | 104.2 (4) | O3—C5—H5A | 110.5 |
C1—C2—H2 | 108.5 | C6—C5—H5A | 110.5 |
C3—C2—H2 | 108.5 | O3—C5—H5B | 110.5 |
S2—C2—H2 | 108.5 | C6—C5—H5B | 110.5 |
C2—C3—H3A | 109.5 | H5A—C5—H5B | 108.7 |
C2—C3—H3B | 109.5 | C5—C6—H6A | 109.5 |
H3A—C3—H3B | 109.5 | C5—C6—H6B | 109.5 |
C2—C3—H3C | 109.5 | H6A—C6—H6B | 109.5 |
H3A—C3—H3C | 109.5 | C5—C6—H6C | 109.5 |
H3B—C3—H3C | 109.5 | H6A—C6—H6C | 109.5 |
C4—S2—C2 | 103.40 (14) | H6B—C6—H6C | 109.5 |
C4—S2A—C2 | 92.4 (7) | ||
O1—C1—C2—C3 | 97.9 (2) | C2—S2A—C4—O3 | −26.7 (7) |
O2—C1—C2—C3 | −78.7 (2) | C2—S2A—C4—S1 | 164.1 (2) |
O1—C1—C2—S2 | −141.7 (2) | O3—C4—S1—O1i | −9.5 (4) |
O2—C1—C2—S2 | 41.8 (3) | S2—C4—S1—O1i | 170.4 (2) |
O1—C1—C2—S2A | −149.6 (5) | S2A—C4—S1—O1i | 158.1 (6) |
O2—C1—C2—S2A | 33.9 (5) | S1—C4—O3—C5 | −1.2 (3) |
C1—C2—S2—C4 | 60.7 (3) | S2—C4—O3—C5 | 178.92 (19) |
C3—C2—S2—C4 | −178.06 (19) | S2A—C4—O3—C5 | −169.0 (6) |
C2—S2—C4—O3 | −11.7 (3) | C4—O3—C5—C6 | 175.74 (17) |
C2—S2—C4—S1 | 168.43 (15) |
Symmetry code: (i) x, y, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2O···O1ii | 0.72 (4) | 1.92 (4) | 2.639 (2) | 175 (4) |
C2—H2···O1iii | 1.00 | 2.62 | 3.497 (3) | 146 |
C6—H6A···S1iv | 0.98 | 2.99 | 3.759 (2) | 136 |
Symmetry codes: (ii) −x+1, −y+1, −z; (iii) −x+2, −y+1, −z; (iv) −x+1, −y+1, −z+1. |
Funding information
Funding for this research was provided by: NZ Ministry of Business Innovation and Employment Science Investment Fund (grant No. UOO-X1206); University of Otago for the purchase of the diffractometer.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England. Google Scholar
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Duarte, M., Frampton, C., Howard-Lock, H. E., Lock, C. J. L. & Wu, H. (1989). Acta Cryst. C45, 1028–1031. CSD CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nakabayashi, K., Umeda, A., Sato, Y. & Mori, H. (2016). Polymer, 96, 81–93. CrossRef CAS Google Scholar
Nguyen, T. H., Paluck, S. J., McGahran, A. J. & Maynard, H. D. (2015). Biomacromolecules, 16, 2684–2692. CrossRef CAS Google Scholar
Peng, H., Ruebsam, K., Huang, X., Jakob, F., Karperien, M., Schwaneberg, U. & Pich, A. (2016). Macromolecules, 49, 7141–7154. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xiao, S. & Charpentier, P. A. (2010). Acta Cryst. E66, o3103. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xiao, S. & Charpentier, P. A. (2011). Acta Cryst. E67, o575. Web of Science CSD CrossRef IUCr Journals Google Scholar
Xiao, S., Gu, R. & Charpentier, P. A. (2011). Acta Cryst. E67, o1442. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.