organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5,6-Di­methyl-2-[(5-methyl-1,2-oxazol-3-yl)meth­yl]-1-(prop-2-en-1-yl)-1H-1,3-benzo­diazole

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Imouzzer, BP 2202, Fez, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: benyahyamohamedali2017@gmail.com

Edited by P. C. Healy, Griffith University, Australia (Received 27 April 2017; accepted 29 April 2017; online 13 July 2017)

In the title compound, C17H19N3O, the benzo­diazole moiety is twisted slightly end-to-end. In the crystal, two sets of weak C—H⋯N hydrogen bonds form sheets approximately parallel to (100), which are formed into bilayers by pairwise C—H⋯π(ring) inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzimidazole derivatives have been shown to possess various biological activities including anti-histaminic (Al Muhaimeed, 1997[Al Muhaimeed, H. (1997). J. Int. Med. Res. 25, 175-181.]) anti-ulcerative (Scott et al., 2002[Scott, L. J., Dunn, C. J., Mallarkey, G. & Sharpe, M. (2002). Drugs, 62, 1503-1538.]) and anti-allergic (Nakano et al., 2000[Nakano, H., Inoue, T., Kawasaki, N., Miyataka, H., Matsumoto, H., Taguchi, T., Inagaki, N., Nagai, H. & Satoh, T. (2000). Bioorg. Med. Chem. 8, 373-380.]). In addition, they are effective against the human cytomegalovirus (HCMV) (Zhu et al., 2000[Zhu, Z., Lippa, B., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2430-2437.]) and are also efficient selective neuropeptide Y Y1 receptor antagonists (Zarrinmayeh et al., 1998[Zarrinmayeh, H., Nunes, A. M., Ornstein, P. L., Zimmerman, D. M., Arnold, M. B., Schober, D. A., Gackenheimer, S. L., Bruns, R. F., Hipskind, P. A., Britton, T. C., Cantrell, B. E. & Gehlert, D. R. (1998). J. Med. Chem. 41, 2709-2719.]). Isoxazole derivatives represent a unique class of nitro­gen and oxygen-containing five-membered heterocycles and are the components of a variety of natural products and medicinally useful compounds (Sperry & Wright, 2005[Sperry, J. & Wright, D. (2005). Curr. Opin. Drug Discov. Dev. 8, 723-740.]). Isoxazole derivatives with a variety of substituents are known to have various biological activities in both the pharmaceutical and agricultural areas (Lang & Lin, 1984[Lang, A. & Lin, Y. (1984). Comprehensive Heterocyclic Chemistry, Vol. 6, edited by A. R. Katritzky, pp. 1-130. Oxford: Pergamon Press.]; Boyd, 1991[Boyd, G. V. (1991). Prog. Heterocyl. Chem. 3, 166-185.]). As a continuation of our previous studies (Sebbar et al., 2015[Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o423-o424.], 2016[Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016). IUCrData, 1, x161012.]; El Azzaoui et al., 2006[El Azzaoui, B., Rachid, B., Doumbia, M. L., Essassi, E. M., Gornitzka, H. & Bellan, J. (2006). Tetrahedron Lett. 47, 8807-8810.]), we were inter­ested in the synthesis and the crystal structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The title mol­ecule with the labeling scheme and 50% probability ellipsoids.

The benzo­diazole moiety is slightly non-planar, as indicated by the dihedral angle of 1.3 (1)° between the five- and six-membered rings. The oxazole ring is planar to within 0.005 (1) Å and makes a dihedral angle of 89.78 (8)° with the diazole ring.

In the crystal, weak C2—H2⋯N1(x, [{3\over 2}] − y, [{1\over 2}] + z) hydrogen bonds link the mol­ecules into chains running along the c-axis direction, which are joined into corrugated sheets by weak C12—H12⋯N3(x, −1 + y, z) hydrogen bonds running approximately parallel to the c-axis direction (Table 1[link] and Figs. 2[link] and 3[link]). The sheets are formed into bilayers through complementary C14—H14Aπ(ring) inter­actions across centers of symmetry (Table 1[link] and Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N3/O1/C11–C13 oxazole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N1i 1.010 (19) 2.65 (2) 3.603 (2) 157.9 (15)
C12—H12⋯N3ii 1.00 (2) 2.50 (3) 3.358 (3) 143.6 (17)
C14—H14ACg1iii 1.01 (3) 2.77 (3) 3.704 (3) 154 (2)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) -x+1, -y+2, -z.
[Figure 2]
Figure 2
Detail of the C—H⋯N hydrogen bonds (black dotted lines) and the C—H⋯π(ring) inter­actions (orange dotted lines). Symmetry codes: (i) x, −1 + y, z; (ii) x, [{3\over 2}] − y, [{1\over 2}] + z; (iii) 1 − x, 2 − y, −z).
[Figure 3]
Figure 3
Packing viewed along the b axis (color code as in Fig. 2[link]).

Synthesis and crystallization

To a solution of 5,6-dimethyl-2-(5-methyl-isoxazol-3-yl)-methyl-1H-benzimidazole (4.3 mmol; 1.07 g) in N,N-di­methyl­formamide (20 ml) were added allyl bromide (4.5 mmol; 0.54 g), potassium carbonate (4.3 mmol) and a catalytic amount of tetra-n-butyl­ammonium bromide. The reaction mixture was stirred at room temperature for 12 h. After cooling, the solid material was removed by filtration and the solvent evaporated in reduced pressure. The residue obtained was recrystallized from ethanol solution to afford the title compound as colourless crystals.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H19N3O
Mr 281.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 19.6067 (6), 5.5438 (2), 14.0069 (5)
β (°) 99.911 (2)
V3) 1499.77 (9)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.63
Crystal size (mm) 0.12 × 0.07 × 0.01
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.86, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 10867, 2825, 2121
Rint 0.059
(sin θ/λ)max−1) 0.609
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.111, 1.05
No. of reflections 2825
No. of parameters 267
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.20, −0.23
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

5,6-Dimethyl-2-[(5-methyl-1,2-oxazol-3-yl)methyl]-1-(prop-2-en-1-yl)-1H-1,3-benzodiazole top
Crystal data top
C17H19N3OF(000) = 600
Mr = 281.35Dx = 1.246 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 19.6067 (6) ÅCell parameters from 5620 reflections
b = 5.5438 (2) Åθ = 4.6–70.0°
c = 14.0069 (5) ŵ = 0.63 mm1
β = 99.911 (2)°T = 150 K
V = 1499.77 (9) Å3Plate, colourless
Z = 40.12 × 0.07 × 0.01 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2825 independent reflections
Radiation source: INCOATEC IµS micro–focus source2121 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.059
Detector resolution: 10.4167 pixels mm-1θmax = 70.0°, θmin = 2.3°
ω scansh = 2323
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 66
Tmin = 0.86, Tmax = 0.99l = 1516
10867 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047All H-atom parameters refined
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.5009P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2825 reflectionsΔρmax = 0.20 e Å3
267 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL 2014/7 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0045 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.54770 (7)1.1344 (3)0.13741 (12)0.0466 (4)
N10.80943 (8)0.7372 (3)0.15996 (11)0.0339 (4)
N20.77640 (7)0.9145 (3)0.28924 (11)0.0303 (4)
N30.61491 (9)1.2309 (3)0.13994 (14)0.0457 (5)
C10.82047 (8)0.7281 (3)0.32548 (13)0.0264 (4)
C20.84425 (8)0.6479 (3)0.41974 (13)0.0275 (4)
H20.8297 (9)0.725 (3)0.4785 (14)0.031 (5)*
C30.89030 (8)0.4559 (3)0.43144 (13)0.0277 (4)
C40.91251 (8)0.3476 (3)0.35005 (13)0.0283 (4)
C50.88754 (9)0.4304 (4)0.25751 (14)0.0309 (4)
H50.9042 (11)0.356 (4)0.1992 (15)0.040 (6)*
C60.84092 (8)0.6209 (3)0.24493 (13)0.0285 (4)
C70.77223 (9)0.9087 (4)0.19014 (14)0.0325 (4)
C80.91514 (10)0.3569 (4)0.53132 (14)0.0356 (5)
H8A0.9678 (11)0.351 (4)0.5505 (14)0.039 (6)*
H8B0.8968 (12)0.454 (4)0.5818 (17)0.050 (6)*
H8C0.8988 (11)0.181 (4)0.5357 (16)0.048 (6)*
C90.96358 (10)0.1413 (4)0.36417 (17)0.0378 (5)
H9A0.9451 (12)0.007 (5)0.4013 (18)0.058 (7)*
H9B1.0101 (13)0.191 (4)0.4038 (17)0.058 (7)*
H9C0.9742 (12)0.087 (4)0.2990 (19)0.061 (7)*
C100.72902 (10)1.0819 (4)0.12321 (17)0.0409 (5)
H10A0.7409 (11)1.256 (4)0.1425 (15)0.045 (6)*
H10B0.7401 (11)1.053 (4)0.0554 (17)0.046 (6)*
C110.65309 (10)1.0480 (3)0.12356 (14)0.0343 (5)
C120.61480 (10)0.8321 (4)0.11048 (14)0.0343 (4)
H120.6306 (12)0.664 (5)0.0994 (17)0.056 (7)*
C130.55011 (10)0.8941 (4)0.12044 (14)0.0348 (4)
C140.48476 (11)0.7599 (5)0.1177 (2)0.0465 (6)
H14A0.4485 (14)0.812 (5)0.061 (2)0.076 (9)*
H14B0.4933 (15)0.583 (6)0.108 (2)0.087 (10)*
H14C0.4654 (13)0.782 (5)0.175 (2)0.068 (8)*
C150.74467 (10)1.0827 (4)0.34788 (16)0.0368 (5)
H15A0.7314 (11)1.234 (4)0.3106 (17)0.052 (6)*
H15B0.7805 (11)1.135 (4)0.4056 (16)0.046 (6)*
C160.68341 (10)0.9834 (4)0.38483 (16)0.0414 (5)
H160.6641 (12)1.081 (4)0.4300 (17)0.054 (7)*
C170.65382 (11)0.7744 (5)0.36319 (17)0.0461 (6)
H17A0.6126 (14)0.723 (5)0.3939 (19)0.073 (8)*
H17B0.6715 (11)0.663 (4)0.3190 (16)0.046 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0367 (8)0.0343 (8)0.0677 (11)0.0044 (6)0.0064 (7)0.0012 (7)
N10.0293 (8)0.0430 (10)0.0289 (9)0.0025 (7)0.0032 (6)0.0063 (7)
N20.0256 (7)0.0284 (8)0.0364 (9)0.0005 (6)0.0039 (6)0.0036 (7)
N30.0377 (9)0.0312 (9)0.0657 (13)0.0019 (8)0.0017 (8)0.0037 (8)
C10.0208 (8)0.0276 (9)0.0300 (10)0.0014 (7)0.0028 (7)0.0019 (7)
C20.0236 (8)0.0304 (10)0.0287 (10)0.0034 (7)0.0050 (7)0.0015 (8)
C30.0234 (8)0.0324 (10)0.0269 (10)0.0032 (7)0.0030 (7)0.0022 (7)
C40.0220 (8)0.0302 (10)0.0331 (10)0.0002 (7)0.0056 (7)0.0012 (7)
C50.0272 (9)0.0369 (11)0.0297 (10)0.0013 (8)0.0077 (7)0.0039 (8)
C60.0243 (8)0.0357 (10)0.0256 (9)0.0035 (8)0.0046 (7)0.0014 (8)
C70.0251 (8)0.0374 (11)0.0337 (11)0.0057 (8)0.0013 (7)0.0089 (8)
C80.0353 (10)0.0403 (12)0.0296 (11)0.0023 (9)0.0013 (8)0.0044 (9)
C90.0307 (10)0.0378 (12)0.0445 (13)0.0066 (9)0.0053 (9)0.0009 (10)
C100.0320 (10)0.0411 (13)0.0471 (13)0.0024 (9)0.0001 (9)0.0152 (10)
C110.0336 (9)0.0298 (10)0.0369 (11)0.0020 (8)0.0013 (8)0.0087 (8)
C120.0344 (10)0.0294 (10)0.0371 (11)0.0008 (8)0.0008 (8)0.0028 (8)
C130.0345 (10)0.0319 (11)0.0361 (11)0.0004 (8)0.0006 (8)0.0039 (8)
C140.0336 (11)0.0496 (15)0.0549 (15)0.0051 (10)0.0032 (10)0.0080 (11)
C150.0316 (10)0.0303 (11)0.0468 (13)0.0047 (8)0.0022 (9)0.0039 (9)
C160.0305 (10)0.0473 (13)0.0460 (13)0.0062 (10)0.0053 (9)0.0081 (10)
C170.0355 (11)0.0545 (15)0.0496 (14)0.0031 (11)0.0109 (10)0.0001 (11)
Geometric parameters (Å, º) top
O1—C131.356 (2)C8—H8C1.03 (2)
O1—N31.417 (2)C9—H9A1.01 (3)
N1—C71.312 (3)C9—H9B1.02 (3)
N1—C61.400 (2)C9—H9C1.02 (3)
N2—C71.377 (2)C10—C111.501 (3)
N2—C11.386 (2)C10—H10A1.02 (2)
N2—C151.451 (2)C10—H10B1.02 (2)
N3—C111.304 (3)C11—C121.408 (3)
C1—C61.394 (2)C12—C131.344 (3)
C1—C21.395 (2)C12—H121.00 (2)
C2—C31.387 (3)C13—C141.476 (3)
C2—H21.010 (19)C14—H14A1.01 (3)
C3—C41.421 (2)C14—H14B1.01 (3)
C3—C81.504 (3)C14—H14C0.95 (3)
C4—C51.383 (3)C15—C161.492 (3)
C4—C91.510 (3)C15—H15A1.00 (2)
C5—C61.388 (3)C15—H15B1.02 (2)
C5—H51.02 (2)C16—C171.308 (3)
C7—C101.498 (3)C16—H160.96 (2)
C8—H8A1.02 (2)C17—H17A1.02 (3)
C8—H8B1.00 (2)C17—H17B0.98 (2)
C13—O1—N3108.37 (15)C4—C9—H9C109.9 (14)
C7—N1—C6104.36 (15)H9A—C9—H9C113.1 (19)
C7—N2—C1106.09 (15)H9B—C9—H9C105.5 (19)
C7—N2—C15128.95 (16)C7—C10—C11111.83 (16)
C1—N2—C15124.92 (16)C7—C10—H10A111.3 (12)
C11—N3—O1105.15 (15)C11—C10—H10A107.5 (12)
N2—C1—C6105.63 (15)C7—C10—H10B107.1 (12)
N2—C1—C2132.06 (16)C11—C10—H10B110.7 (12)
C6—C1—C2122.31 (16)H10A—C10—H10B108.5 (16)
C3—C2—C1117.44 (16)N3—C11—C12112.00 (17)
C3—C2—H2119.7 (11)N3—C11—C10120.16 (18)
C1—C2—H2122.9 (11)C12—C11—C10127.81 (19)
C2—C3—C4120.83 (16)C13—C12—C11105.13 (18)
C2—C3—C8119.33 (17)C13—C12—H12125.1 (13)
C4—C3—C8119.82 (17)C11—C12—H12129.7 (13)
C5—C4—C3120.25 (16)C12—C13—O1109.34 (17)
C5—C4—C9119.59 (17)C12—C13—C14134.3 (2)
C3—C4—C9120.16 (17)O1—C13—C14116.33 (19)
C4—C5—C6119.38 (17)C13—C14—H14A111.4 (15)
C4—C5—H5120.4 (12)C13—C14—H14B109.3 (17)
C6—C5—H5120.2 (12)H14A—C14—H14B107 (2)
C5—C6—C1119.77 (16)C13—C14—H14C112.5 (16)
C5—C6—N1129.98 (17)H14A—C14—H14C107 (2)
C1—C6—N1110.23 (16)H14B—C14—H14C110 (2)
N1—C7—N2113.69 (16)N2—C15—C16114.11 (17)
N1—C7—C10123.28 (19)N2—C15—H15A110.0 (13)
N2—C7—C10123.02 (19)C16—C15—H15A109.7 (13)
C3—C8—H8A114.1 (12)N2—C15—H15B109.1 (12)
C3—C8—H8B111.2 (13)C16—C15—H15B108.4 (12)
H8A—C8—H8B107.5 (17)H15A—C15—H15B105.1 (18)
C3—C8—H8C110.3 (12)C17—C16—C15126.7 (2)
H8A—C8—H8C105.3 (17)C17—C16—H16116.4 (14)
H8B—C8—H8C108.2 (17)C15—C16—H16116.9 (14)
C4—C9—H9A109.7 (14)C16—C17—H17A120.1 (16)
C4—C9—H9B112.0 (14)C16—C17—H17B121.0 (13)
H9A—C9—H9B106.6 (19)H17A—C17—H17B119 (2)
C13—O1—N3—C110.7 (2)C7—N1—C6—C10.6 (2)
C7—N2—C1—C60.45 (18)C6—N1—C7—N20.3 (2)
C15—N2—C1—C6177.34 (16)C6—N1—C7—C10179.90 (17)
C7—N2—C1—C2179.60 (18)C1—N2—C7—N10.1 (2)
C15—N2—C1—C21.8 (3)C15—N2—C7—N1177.57 (17)
N2—C1—C2—C3178.43 (17)C1—N2—C7—C10179.71 (16)
C6—C1—C2—C30.6 (3)C15—N2—C7—C102.6 (3)
C1—C2—C3—C40.5 (2)N1—C7—C10—C11113.8 (2)
C1—C2—C3—C8177.59 (16)N2—C7—C10—C1166.0 (3)
C2—C3—C4—C51.0 (3)O1—N3—C11—C120.3 (2)
C8—C3—C4—C5177.09 (17)O1—N3—C11—C10178.57 (17)
C2—C3—C4—C9178.99 (17)C7—C10—C11—N3126.8 (2)
C8—C3—C4—C92.9 (3)C7—C10—C11—C1251.2 (3)
C3—C4—C5—C60.3 (3)N3—C11—C12—C130.3 (2)
C9—C4—C5—C6179.63 (17)C10—C11—C12—C13177.8 (2)
C4—C5—C6—C10.7 (3)C11—C12—C13—O10.8 (2)
C4—C5—C6—N1179.09 (17)C11—C12—C13—C14178.6 (2)
N2—C1—C6—C5178.01 (15)N3—O1—C13—C121.0 (2)
C2—C1—C6—C51.2 (3)N3—O1—C13—C14178.53 (18)
N2—C1—C6—N10.65 (19)C7—N2—C15—C16104.1 (2)
C2—C1—C6—N1179.90 (16)C1—N2—C15—C1678.7 (2)
C7—N1—C6—C5177.89 (19)N2—C15—C16—C175.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N3/O1/C11–C13 oxazole ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···N1i1.010 (19)2.65 (2)3.603 (2)157.9 (15)
C12—H12···N3ii1.00 (2)2.50 (3)3.358 (3)143.6 (17)
C14—H14A···Cg1iii1.01 (3)2.77 (3)3.704 (3)154 (2)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y1, z; (iii) x+1, y+2, z.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAl Muhaimeed, H. (1997). J. Int. Med. Res. 25, 175–181.  CAS PubMed Web of Science Google Scholar
First citationBoyd, G. V. (1991). Prog. Heterocyl. Chem. 3, 166–185.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Azzaoui, B., Rachid, B., Doumbia, M. L., Essassi, E. M., Gornitzka, H. & Bellan, J. (2006). Tetrahedron Lett. 47, 8807–8810.  Web of Science CSD CrossRef CAS Google Scholar
First citationLang, A. & Lin, Y. (1984). Comprehensive Heterocyclic Chemistry, Vol. 6, edited by A. R. Katritzky, pp. 1–130. Oxford: Pergamon Press.  Google Scholar
First citationNakano, H., Inoue, T., Kawasaki, N., Miyataka, H., Matsumoto, H., Taguchi, T., Inagaki, N., Nagai, H. & Satoh, T. (2000). Bioorg. Med. Chem. 8, 373–380.  Web of Science CrossRef PubMed CAS Google Scholar
First citationScott, L. J., Dunn, C. J., Mallarkey, G. & Sharpe, M. (2002). Drugs, 62, 1503–1538.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o423–o424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016). IUCrData, 1, x161012.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSperry, J. & Wright, D. (2005). Curr. Opin. Drug Discov. Dev. 8, 723–740.  CAS Google Scholar
First citationZarrinmayeh, H., Nunes, A. M., Ornstein, P. L., Zimmerman, D. M., Arnold, M. B., Schober, D. A., Gackenheimer, S. L., Bruns, R. F., Hipskind, P. A., Britton, T. C., Cantrell, B. E. & Gehlert, D. R. (1998). J. Med. Chem. 41, 2709–2719.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhu, Z., Lippa, B., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2430–2437.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds