organic compounds
5,6-Dimethyl-2-[(5-methyl-1,2-oxazol-3-yl)methyl]-1-(prop-2-en-1-yl)-1H-1,3-benzodiazole
aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Imouzzer, BP 2202, Fez, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: benyahyamohamedali2017@gmail.com
In the title compound, C17H19N3O, the benzodiazole moiety is twisted slightly end-to-end. In the crystal, two sets of weak C—H⋯N hydrogen bonds form sheets approximately parallel to (100), which are formed into bilayers by pairwise C—H⋯π(ring) interactions.
CCDC reference: 1547028
Structure description
Benzimidazole derivatives have been shown to possess various biological activities including anti-histaminic (Al Muhaimeed, 1997) anti-ulcerative (Scott et al., 2002) and anti-allergic (Nakano et al., 2000). In addition, they are effective against the human cytomegalovirus (HCMV) (Zhu et al., 2000) and are also efficient selective neuropeptide Y Y1 receptor antagonists (Zarrinmayeh et al., 1998). Isoxazole derivatives represent a unique class of nitrogen and oxygen-containing five-membered heterocycles and are the components of a variety of natural products and medicinally useful compounds (Sperry & Wright, 2005). Isoxazole derivatives with a variety of substituents are known to have various biological activities in both the pharmaceutical and agricultural areas (Lang & Lin, 1984; Boyd, 1991). As a continuation of our previous studies (Sebbar et al., 2015, 2016; El Azzaoui et al., 2006), we were interested in the synthesis and the of the title compound (Fig. 1).
The benzodiazole moiety is slightly non-planar, as indicated by the dihedral angle of 1.3 (1)° between the five- and six-membered rings. The oxazole ring is planar to within 0.005 (1) Å and makes a dihedral angle of 89.78 (8)° with the diazole ring.
In the crystal, weak C2—H2⋯N1(x, − y, + z) hydrogen bonds link the molecules into chains running along the c-axis direction, which are joined into corrugated sheets by weak C12—H12⋯N3(x, −1 + y, z) hydrogen bonds running approximately parallel to the c-axis direction (Table 1 and Figs. 2 and 3). The sheets are formed into bilayers through complementary C14—H14A⋯π(ring) interactions across centers of symmetry (Table 1 and Figs. 2 and 3).
Synthesis and crystallization
To a solution of 5,6-dimethyl-2-(5-methyl-isoxazol-3-yl)-methyl-1H-benzimidazole (4.3 mmol; 1.07 g) in N,N-dimethylformamide (20 ml) were added allyl bromide (4.5 mmol; 0.54 g), potassium carbonate (4.3 mmol) and a catalytic amount of tetra-n-butylammonium bromide. The reaction mixture was stirred at room temperature for 12 h. After cooling, the solid material was removed by filtration and the solvent evaporated in reduced pressure. The residue obtained was recrystallized from ethanol solution to afford the title compound as colourless crystals.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 1547028
https://doi.org/10.1107/S2414314617006472/hg4022sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617006472/hg4022Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617006472/hg4022Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314617006472/hg4022Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C17H19N3O | F(000) = 600 |
Mr = 281.35 | Dx = 1.246 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 19.6067 (6) Å | Cell parameters from 5620 reflections |
b = 5.5438 (2) Å | θ = 4.6–70.0° |
c = 14.0069 (5) Å | µ = 0.63 mm−1 |
β = 99.911 (2)° | T = 150 K |
V = 1499.77 (9) Å3 | Plate, colourless |
Z = 4 | 0.12 × 0.07 × 0.01 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2825 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 2121 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.059 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 70.0°, θmin = 2.3° |
ω scans | h = −23→23 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −6→6 |
Tmin = 0.86, Tmax = 0.99 | l = −15→16 |
10867 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | All H-atom parameters refined |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.0433P)2 + 0.5009P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2825 reflections | Δρmax = 0.20 e Å−3 |
267 parameters | Δρmin = −0.23 e Å−3 |
0 restraints | Extinction correction: SHELXL 2014/7 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0045 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.54770 (7) | 1.1344 (3) | 0.13741 (12) | 0.0466 (4) | |
N1 | 0.80943 (8) | 0.7372 (3) | 0.15996 (11) | 0.0339 (4) | |
N2 | 0.77640 (7) | 0.9145 (3) | 0.28924 (11) | 0.0303 (4) | |
N3 | 0.61491 (9) | 1.2309 (3) | 0.13994 (14) | 0.0457 (5) | |
C1 | 0.82047 (8) | 0.7281 (3) | 0.32548 (13) | 0.0264 (4) | |
C2 | 0.84425 (8) | 0.6479 (3) | 0.41974 (13) | 0.0275 (4) | |
H2 | 0.8297 (9) | 0.725 (3) | 0.4785 (14) | 0.031 (5)* | |
C3 | 0.89030 (8) | 0.4559 (3) | 0.43144 (13) | 0.0277 (4) | |
C4 | 0.91251 (8) | 0.3476 (3) | 0.35005 (13) | 0.0283 (4) | |
C5 | 0.88754 (9) | 0.4304 (4) | 0.25751 (14) | 0.0309 (4) | |
H5 | 0.9042 (11) | 0.356 (4) | 0.1992 (15) | 0.040 (6)* | |
C6 | 0.84092 (8) | 0.6209 (3) | 0.24493 (13) | 0.0285 (4) | |
C7 | 0.77223 (9) | 0.9087 (4) | 0.19014 (14) | 0.0325 (4) | |
C8 | 0.91514 (10) | 0.3569 (4) | 0.53132 (14) | 0.0356 (5) | |
H8A | 0.9678 (11) | 0.351 (4) | 0.5505 (14) | 0.039 (6)* | |
H8B | 0.8968 (12) | 0.454 (4) | 0.5818 (17) | 0.050 (6)* | |
H8C | 0.8988 (11) | 0.181 (4) | 0.5357 (16) | 0.048 (6)* | |
C9 | 0.96358 (10) | 0.1413 (4) | 0.36417 (17) | 0.0378 (5) | |
H9A | 0.9451 (12) | 0.007 (5) | 0.4013 (18) | 0.058 (7)* | |
H9B | 1.0101 (13) | 0.191 (4) | 0.4038 (17) | 0.058 (7)* | |
H9C | 0.9742 (12) | 0.087 (4) | 0.2990 (19) | 0.061 (7)* | |
C10 | 0.72902 (10) | 1.0819 (4) | 0.12321 (17) | 0.0409 (5) | |
H10A | 0.7409 (11) | 1.256 (4) | 0.1425 (15) | 0.045 (6)* | |
H10B | 0.7401 (11) | 1.053 (4) | 0.0554 (17) | 0.046 (6)* | |
C11 | 0.65309 (10) | 1.0480 (3) | 0.12356 (14) | 0.0343 (5) | |
C12 | 0.61480 (10) | 0.8321 (4) | 0.11048 (14) | 0.0343 (4) | |
H12 | 0.6306 (12) | 0.664 (5) | 0.0994 (17) | 0.056 (7)* | |
C13 | 0.55011 (10) | 0.8941 (4) | 0.12044 (14) | 0.0348 (4) | |
C14 | 0.48476 (11) | 0.7599 (5) | 0.1177 (2) | 0.0465 (6) | |
H14A | 0.4485 (14) | 0.812 (5) | 0.061 (2) | 0.076 (9)* | |
H14B | 0.4933 (15) | 0.583 (6) | 0.108 (2) | 0.087 (10)* | |
H14C | 0.4654 (13) | 0.782 (5) | 0.175 (2) | 0.068 (8)* | |
C15 | 0.74467 (10) | 1.0827 (4) | 0.34788 (16) | 0.0368 (5) | |
H15A | 0.7314 (11) | 1.234 (4) | 0.3106 (17) | 0.052 (6)* | |
H15B | 0.7805 (11) | 1.135 (4) | 0.4056 (16) | 0.046 (6)* | |
C16 | 0.68341 (10) | 0.9834 (4) | 0.38483 (16) | 0.0414 (5) | |
H16 | 0.6641 (12) | 1.081 (4) | 0.4300 (17) | 0.054 (7)* | |
C17 | 0.65382 (11) | 0.7744 (5) | 0.36319 (17) | 0.0461 (6) | |
H17A | 0.6126 (14) | 0.723 (5) | 0.3939 (19) | 0.073 (8)* | |
H17B | 0.6715 (11) | 0.663 (4) | 0.3190 (16) | 0.046 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0367 (8) | 0.0343 (8) | 0.0677 (11) | 0.0044 (6) | 0.0064 (7) | 0.0012 (7) |
N1 | 0.0293 (8) | 0.0430 (10) | 0.0289 (9) | −0.0025 (7) | 0.0032 (6) | 0.0063 (7) |
N2 | 0.0256 (7) | 0.0284 (8) | 0.0364 (9) | 0.0005 (6) | 0.0039 (6) | 0.0036 (7) |
N3 | 0.0377 (9) | 0.0312 (9) | 0.0657 (13) | −0.0019 (8) | 0.0017 (8) | 0.0037 (8) |
C1 | 0.0208 (8) | 0.0276 (9) | 0.0300 (10) | −0.0014 (7) | 0.0028 (7) | 0.0019 (7) |
C2 | 0.0236 (8) | 0.0304 (10) | 0.0287 (10) | −0.0034 (7) | 0.0050 (7) | −0.0015 (8) |
C3 | 0.0234 (8) | 0.0324 (10) | 0.0269 (10) | −0.0032 (7) | 0.0030 (7) | 0.0022 (7) |
C4 | 0.0220 (8) | 0.0302 (10) | 0.0331 (10) | −0.0002 (7) | 0.0056 (7) | −0.0012 (7) |
C5 | 0.0272 (9) | 0.0369 (11) | 0.0297 (10) | −0.0013 (8) | 0.0077 (7) | −0.0039 (8) |
C6 | 0.0243 (8) | 0.0357 (10) | 0.0256 (9) | −0.0035 (8) | 0.0046 (7) | 0.0014 (8) |
C7 | 0.0251 (8) | 0.0374 (11) | 0.0337 (11) | −0.0057 (8) | 0.0013 (7) | 0.0089 (8) |
C8 | 0.0353 (10) | 0.0403 (12) | 0.0296 (11) | 0.0023 (9) | 0.0013 (8) | 0.0044 (9) |
C9 | 0.0307 (10) | 0.0378 (12) | 0.0445 (13) | 0.0066 (9) | 0.0053 (9) | −0.0009 (10) |
C10 | 0.0320 (10) | 0.0411 (13) | 0.0471 (13) | −0.0024 (9) | −0.0001 (9) | 0.0152 (10) |
C11 | 0.0336 (9) | 0.0298 (10) | 0.0369 (11) | 0.0020 (8) | −0.0013 (8) | 0.0087 (8) |
C12 | 0.0344 (10) | 0.0294 (10) | 0.0371 (11) | 0.0008 (8) | 0.0008 (8) | 0.0028 (8) |
C13 | 0.0345 (10) | 0.0319 (11) | 0.0361 (11) | −0.0004 (8) | 0.0006 (8) | 0.0039 (8) |
C14 | 0.0336 (11) | 0.0496 (15) | 0.0549 (15) | −0.0051 (10) | 0.0032 (10) | 0.0080 (11) |
C15 | 0.0316 (10) | 0.0303 (11) | 0.0468 (13) | 0.0047 (8) | 0.0022 (9) | −0.0039 (9) |
C16 | 0.0305 (10) | 0.0473 (13) | 0.0460 (13) | 0.0062 (10) | 0.0053 (9) | −0.0081 (10) |
C17 | 0.0355 (11) | 0.0545 (15) | 0.0496 (14) | −0.0031 (11) | 0.0109 (10) | 0.0001 (11) |
O1—C13 | 1.356 (2) | C8—H8C | 1.03 (2) |
O1—N3 | 1.417 (2) | C9—H9A | 1.01 (3) |
N1—C7 | 1.312 (3) | C9—H9B | 1.02 (3) |
N1—C6 | 1.400 (2) | C9—H9C | 1.02 (3) |
N2—C7 | 1.377 (2) | C10—C11 | 1.501 (3) |
N2—C1 | 1.386 (2) | C10—H10A | 1.02 (2) |
N2—C15 | 1.451 (2) | C10—H10B | 1.02 (2) |
N3—C11 | 1.304 (3) | C11—C12 | 1.408 (3) |
C1—C6 | 1.394 (2) | C12—C13 | 1.344 (3) |
C1—C2 | 1.395 (2) | C12—H12 | 1.00 (2) |
C2—C3 | 1.387 (3) | C13—C14 | 1.476 (3) |
C2—H2 | 1.010 (19) | C14—H14A | 1.01 (3) |
C3—C4 | 1.421 (2) | C14—H14B | 1.01 (3) |
C3—C8 | 1.504 (3) | C14—H14C | 0.95 (3) |
C4—C5 | 1.383 (3) | C15—C16 | 1.492 (3) |
C4—C9 | 1.510 (3) | C15—H15A | 1.00 (2) |
C5—C6 | 1.388 (3) | C15—H15B | 1.02 (2) |
C5—H5 | 1.02 (2) | C16—C17 | 1.308 (3) |
C7—C10 | 1.498 (3) | C16—H16 | 0.96 (2) |
C8—H8A | 1.02 (2) | C17—H17A | 1.02 (3) |
C8—H8B | 1.00 (2) | C17—H17B | 0.98 (2) |
C13—O1—N3 | 108.37 (15) | C4—C9—H9C | 109.9 (14) |
C7—N1—C6 | 104.36 (15) | H9A—C9—H9C | 113.1 (19) |
C7—N2—C1 | 106.09 (15) | H9B—C9—H9C | 105.5 (19) |
C7—N2—C15 | 128.95 (16) | C7—C10—C11 | 111.83 (16) |
C1—N2—C15 | 124.92 (16) | C7—C10—H10A | 111.3 (12) |
C11—N3—O1 | 105.15 (15) | C11—C10—H10A | 107.5 (12) |
N2—C1—C6 | 105.63 (15) | C7—C10—H10B | 107.1 (12) |
N2—C1—C2 | 132.06 (16) | C11—C10—H10B | 110.7 (12) |
C6—C1—C2 | 122.31 (16) | H10A—C10—H10B | 108.5 (16) |
C3—C2—C1 | 117.44 (16) | N3—C11—C12 | 112.00 (17) |
C3—C2—H2 | 119.7 (11) | N3—C11—C10 | 120.16 (18) |
C1—C2—H2 | 122.9 (11) | C12—C11—C10 | 127.81 (19) |
C2—C3—C4 | 120.83 (16) | C13—C12—C11 | 105.13 (18) |
C2—C3—C8 | 119.33 (17) | C13—C12—H12 | 125.1 (13) |
C4—C3—C8 | 119.82 (17) | C11—C12—H12 | 129.7 (13) |
C5—C4—C3 | 120.25 (16) | C12—C13—O1 | 109.34 (17) |
C5—C4—C9 | 119.59 (17) | C12—C13—C14 | 134.3 (2) |
C3—C4—C9 | 120.16 (17) | O1—C13—C14 | 116.33 (19) |
C4—C5—C6 | 119.38 (17) | C13—C14—H14A | 111.4 (15) |
C4—C5—H5 | 120.4 (12) | C13—C14—H14B | 109.3 (17) |
C6—C5—H5 | 120.2 (12) | H14A—C14—H14B | 107 (2) |
C5—C6—C1 | 119.77 (16) | C13—C14—H14C | 112.5 (16) |
C5—C6—N1 | 129.98 (17) | H14A—C14—H14C | 107 (2) |
C1—C6—N1 | 110.23 (16) | H14B—C14—H14C | 110 (2) |
N1—C7—N2 | 113.69 (16) | N2—C15—C16 | 114.11 (17) |
N1—C7—C10 | 123.28 (19) | N2—C15—H15A | 110.0 (13) |
N2—C7—C10 | 123.02 (19) | C16—C15—H15A | 109.7 (13) |
C3—C8—H8A | 114.1 (12) | N2—C15—H15B | 109.1 (12) |
C3—C8—H8B | 111.2 (13) | C16—C15—H15B | 108.4 (12) |
H8A—C8—H8B | 107.5 (17) | H15A—C15—H15B | 105.1 (18) |
C3—C8—H8C | 110.3 (12) | C17—C16—C15 | 126.7 (2) |
H8A—C8—H8C | 105.3 (17) | C17—C16—H16 | 116.4 (14) |
H8B—C8—H8C | 108.2 (17) | C15—C16—H16 | 116.9 (14) |
C4—C9—H9A | 109.7 (14) | C16—C17—H17A | 120.1 (16) |
C4—C9—H9B | 112.0 (14) | C16—C17—H17B | 121.0 (13) |
H9A—C9—H9B | 106.6 (19) | H17A—C17—H17B | 119 (2) |
C13—O1—N3—C11 | 0.7 (2) | C7—N1—C6—C1 | 0.6 (2) |
C7—N2—C1—C6 | 0.45 (18) | C6—N1—C7—N2 | −0.3 (2) |
C15—N2—C1—C6 | −177.34 (16) | C6—N1—C7—C10 | 179.90 (17) |
C7—N2—C1—C2 | 179.60 (18) | C1—N2—C7—N1 | −0.1 (2) |
C15—N2—C1—C2 | 1.8 (3) | C15—N2—C7—N1 | 177.57 (17) |
N2—C1—C2—C3 | −178.43 (17) | C1—N2—C7—C10 | 179.71 (16) |
C6—C1—C2—C3 | 0.6 (3) | C15—N2—C7—C10 | −2.6 (3) |
C1—C2—C3—C4 | 0.5 (2) | N1—C7—C10—C11 | 113.8 (2) |
C1—C2—C3—C8 | −177.59 (16) | N2—C7—C10—C11 | −66.0 (3) |
C2—C3—C4—C5 | −1.0 (3) | O1—N3—C11—C12 | −0.3 (2) |
C8—C3—C4—C5 | 177.09 (17) | O1—N3—C11—C10 | −178.57 (17) |
C2—C3—C4—C9 | 178.99 (17) | C7—C10—C11—N3 | 126.8 (2) |
C8—C3—C4—C9 | −2.9 (3) | C7—C10—C11—C12 | −51.2 (3) |
C3—C4—C5—C6 | 0.3 (3) | N3—C11—C12—C13 | −0.3 (2) |
C9—C4—C5—C6 | −179.63 (17) | C10—C11—C12—C13 | 177.8 (2) |
C4—C5—C6—C1 | 0.7 (3) | C11—C12—C13—O1 | 0.8 (2) |
C4—C5—C6—N1 | 179.09 (17) | C11—C12—C13—C14 | −178.6 (2) |
N2—C1—C6—C5 | 178.01 (15) | N3—O1—C13—C12 | −1.0 (2) |
C2—C1—C6—C5 | −1.2 (3) | N3—O1—C13—C14 | 178.53 (18) |
N2—C1—C6—N1 | −0.65 (19) | C7—N2—C15—C16 | 104.1 (2) |
C2—C1—C6—N1 | −179.90 (16) | C1—N2—C15—C16 | −78.7 (2) |
C7—N1—C6—C5 | −177.89 (19) | N2—C15—C16—C17 | −5.9 (3) |
Cg is the centroid of the N3/O1/C11–C13 oxazole ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···N1i | 1.010 (19) | 2.65 (2) | 3.603 (2) | 157.9 (15) |
C12—H12···N3ii | 1.00 (2) | 2.50 (3) | 3.358 (3) | 143.6 (17) |
C14—H14A···Cg1iii | 1.01 (3) | 2.77 (3) | 3.704 (3) | 154 (2) |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, y−1, z; (iii) −x+1, −y+2, −z. |
Acknowledgements
The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Al Muhaimeed, H. (1997). J. Int. Med. Res. 25, 175–181. CAS PubMed Web of Science Google Scholar
Boyd, G. V. (1991). Prog. Heterocyl. Chem. 3, 166–185. CrossRef CAS Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
El Azzaoui, B., Rachid, B., Doumbia, M. L., Essassi, E. M., Gornitzka, H. & Bellan, J. (2006). Tetrahedron Lett. 47, 8807–8810. Web of Science CSD CrossRef CAS Google Scholar
Lang, A. & Lin, Y. (1984). Comprehensive Heterocyclic Chemistry, Vol. 6, edited by A. R. Katritzky, pp. 1–130. Oxford: Pergamon Press. Google Scholar
Nakano, H., Inoue, T., Kawasaki, N., Miyataka, H., Matsumoto, H., Taguchi, T., Inagaki, N., Nagai, H. & Satoh, T. (2000). Bioorg. Med. Chem. 8, 373–380. Web of Science CrossRef PubMed CAS Google Scholar
Scott, L. J., Dunn, C. J., Mallarkey, G. & Sharpe, M. (2002). Drugs, 62, 1503–1538. Web of Science CrossRef PubMed CAS Google Scholar
Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o423–o424. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sebbar, N. K., Ellouz, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2016). IUCrData, 1, x161012. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sperry, J. & Wright, D. (2005). Curr. Opin. Drug Discov. Dev. 8, 723–740. CAS Google Scholar
Zarrinmayeh, H., Nunes, A. M., Ornstein, P. L., Zimmerman, D. M., Arnold, M. B., Schober, D. A., Gackenheimer, S. L., Bruns, R. F., Hipskind, P. A., Britton, T. C., Cantrell, B. E. & Gehlert, D. R. (1998). J. Med. Chem. 41, 2709–2719. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhu, Z., Lippa, B., Drach, J. C. & Townsend, L. B. (2000). J. Med. Chem. 43, 2430–2437. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.