organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-Chloro-1,4-di­ethyl­quinoxaline-2,3(1H,4H)-dione

aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Mohammed V University in Rabat, BP 1014, Avenue Ibn Batouta, Rabat, Morocco
*Correspondence e-mail: alieljanati@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 13 July 2017; accepted 16 July 2017; online 21 July 2017)

In the title compound, C12H13ClN2O2, the terminal C atoms of the ethyl groups deviate from the mean plane of the quinoxaline-2,3(1H,4H)-dione ring (r.m.s. deviation = 0.016 Å) in opposite directions by −1.451 (2) and 1.472 (2) Å. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into [100] chains and aromatic ππ stacking inter­actions [shortest centroid–centroid separation = 3.6631 (9) Å] are also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As a continuation of our studies of substituted quinoxaline derivatives (El Janati et al., 2017[El Janati, A., Kandri Rodi, Y., Jasinski, J. P., Kaur, M., Ouzidan, Y. & Essassi, E. M. (2017). IUCrData, 2, x170901.]), we now report the synthesis and structure of the title compound (Fig. 1[link]) prepared by the condensation reaction of 6-chloro­quinoxaline-2,3(1H,4H)-dione with iodo­ethane.

[Figure 1]
Figure 1
The mol­ecular structure showing 30% probability displacement ellipsoids for the non-H atoms.

The terminal C atoms of the ethyl groups deviate from the mean plane of the quinoxaline-2,3(1H,4H)-dione ring (r.m.s. deviation = 0.016 Å) in opposite directions, by −1.451 (2) and 1.472 (2) Å, for C10 and C12, respectively. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into [100] chains with O2 acting as a double acceptor (Table 1[link], Fig. 2[link]). Aromatic ππ stacking inter­actions occur between the chains: Cg2⋯Cg2([{1\over 2}] − x,y,-z) = 3.6632 (2) Å and Cg1⋯Cg2([{1\over 2}] − x, [{1\over 2}] − y, [{1\over 2}] − z) = 3.9508 (2) Å, where Cg1 and Cg2 are the centroids of the N1/C1/C2/N2/C3/C8 and C3–C8 rings, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O2i 0.93 2.53 3.440 (2) 167
C9—H9B⋯O2i 0.97 2.35 3.180 (2) 144
Symmetry code: (i) [x-{\script{1\over 2}}, -y+1, z].
[Figure 2]
Figure 2
The packing viewed along the c axis. Dashed lines indicate weak C—H⋯O inter­actions with atom O2 serving as a double acceptor, linking the mol­ecules into [100] chains. H atoms not involved in the packing are omitted for clarity.

Synthesis and crystallization

To a solution of 6-chloro-1,4-di­hydro­quinoxaline-2,3-dione 0.30 g (1.53 mmol) in DMF (20 ml), were added 0.52 g (3.84 mmol) of potassium carbonate and 0.1 mmol of tetra-n-butyl ammonium. After 10 min of stirring, 3.85 mmol of iodo­ethane was added, then the mixture was allowed to stir at room temperature for 36 h. After filtration, the DMF was evaporated under reduced pressure and the residue obtained was dissolved in di­chloro­methane. The organic phase was dried over Na2SO4 and then concentrated. The mixture obtained was chromatographed on a silica gel column [eluent: hexa­ne/ethyl acetate (3/1)]. Crystals were obtained when the solvent was allowed to evaporate.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H13ClN2O2
Mr 252.69
Crystal system, space group Monoclinic, I2/a
Temperature (K) 293
a, b, c (Å) 14.6454 (8), 12.0415 (5), 15.1149 (9)
β (°) 115.621 (7)
V3) 2403.5 (3)
Z 8
Radiation type Cu Kα
μ (mm−1) 2.76
Crystal size (mm) 0.22 × 0.18 × 0.12
 
Data collection
Diffractometer Rigaku, Oxford diffraction
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.])
Tmin, Tmax 0.749, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4349, 2291, 1944
Rint 0.015
(sin θ/λ)max−1) 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.128, 1.03
No. of reflections 2291
No. of parameters 156
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.31
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.]), SHELXT2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015b); program(s) used to refine structure: SHELXL (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

6-Chloro-1,4-diethylquinoxaline-2,3(1H,4H)-dione top
Crystal data top
C12H13ClN2O2F(000) = 1056
Mr = 252.69Dx = 1.397 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 14.6454 (8) ÅCell parameters from 1748 reflections
b = 12.0415 (5) Åθ = 3.5–71.4°
c = 15.1149 (9) ŵ = 2.76 mm1
β = 115.621 (7)°T = 293 K
V = 2403.5 (3) Å3Irregular, orange
Z = 80.22 × 0.18 × 0.12 mm
Data collection top
Rigaku, Oxford diffraction
diffractometer
2291 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 16.0416 pixels mm-1θmax = 71.3°, θmin = 4.9°
ω scansh = 1517
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
k = 1414
Tmin = 0.749, Tmax = 1.000l = 1618
4349 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0765P)2 + 0.5895P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2291 reflectionsΔρmax = 0.23 e Å3
156 parametersΔρmin = 0.31 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All the H atoms were placed in calculated positions and refined using the riding model with C—H bond lengths of 0.93 Å (CH) or 0.97 Å (CH2) or 0.96 Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH) or 1.5 (CH3) times Ueq of the parent atom. Idealized Me groups were refined as rotating groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.13648 (4)0.04185 (5)0.36551 (4)0.0703 (2)
O10.45160 (11)0.58336 (12)0.38236 (13)0.0645 (4)
O20.56068 (10)0.39761 (13)0.40065 (12)0.0646 (4)
N10.31793 (10)0.48193 (12)0.37493 (10)0.0429 (3)
N20.42883 (10)0.28937 (12)0.38566 (10)0.0429 (3)
C10.41348 (13)0.49391 (16)0.38203 (13)0.0464 (4)
C20.47412 (13)0.38917 (16)0.39038 (13)0.0465 (4)
C30.33032 (12)0.28080 (14)0.37896 (10)0.0392 (4)
C40.28666 (13)0.17761 (15)0.37675 (11)0.0446 (4)
H40.32250.11280.37990.054*
C50.18971 (14)0.17216 (16)0.36987 (12)0.0484 (4)
C60.13456 (13)0.26574 (18)0.36620 (12)0.0496 (4)
H60.06960.26010.36230.059*
C70.17739 (13)0.36817 (16)0.36843 (12)0.0454 (4)
H70.14080.43210.36610.054*
C80.27497 (12)0.37745 (15)0.37412 (10)0.0392 (4)
C90.25998 (14)0.58452 (16)0.36690 (15)0.0525 (4)
H9A0.30670.64580.39470.063*
H9B0.22120.57620.40470.063*
C100.18908 (18)0.6114 (2)0.26220 (18)0.0694 (6)
H10A0.22680.61660.22390.104*
H10B0.15610.68100.25990.104*
H10C0.13920.55380.23610.104*
C110.49092 (14)0.18977 (17)0.39550 (14)0.0514 (4)
H11A0.54180.20650.37250.062*
H11B0.44820.13090.35470.062*
C120.54246 (17)0.15049 (17)0.50063 (16)0.0628 (5)
H12A0.58700.08990.50550.094*
H12B0.49230.12620.52130.094*
H12C0.58090.21040.54180.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0777 (4)0.0587 (3)0.0866 (4)0.0233 (2)0.0469 (3)0.0045 (2)
O10.0571 (8)0.0507 (8)0.0965 (11)0.0130 (6)0.0433 (8)0.0084 (7)
O20.0429 (7)0.0682 (9)0.0922 (11)0.0037 (6)0.0380 (7)0.0008 (8)
N10.0392 (7)0.0452 (8)0.0479 (7)0.0025 (6)0.0221 (6)0.0040 (6)
N20.0403 (7)0.0482 (8)0.0447 (7)0.0005 (6)0.0225 (6)0.0036 (6)
C10.0422 (8)0.0493 (10)0.0517 (9)0.0068 (7)0.0242 (7)0.0054 (7)
C20.0402 (8)0.0550 (10)0.0494 (9)0.0019 (7)0.0241 (7)0.0016 (7)
C30.0392 (7)0.0481 (9)0.0334 (7)0.0039 (7)0.0186 (6)0.0033 (6)
C40.0506 (9)0.0462 (9)0.0419 (8)0.0024 (7)0.0245 (7)0.0019 (7)
C50.0524 (9)0.0551 (10)0.0430 (8)0.0154 (8)0.0256 (7)0.0030 (7)
C60.0434 (8)0.0630 (11)0.0488 (9)0.0078 (8)0.0261 (7)0.0008 (8)
C70.0405 (8)0.0559 (10)0.0447 (8)0.0003 (7)0.0231 (7)0.0011 (7)
C80.0392 (8)0.0485 (9)0.0327 (7)0.0043 (7)0.0182 (6)0.0026 (6)
C90.0465 (9)0.0466 (9)0.0669 (11)0.0023 (8)0.0269 (8)0.0100 (8)
C100.0692 (13)0.0590 (12)0.0808 (14)0.0115 (10)0.0331 (11)0.0122 (11)
C110.0481 (9)0.0526 (10)0.0605 (10)0.0039 (8)0.0302 (8)0.0069 (8)
C120.0639 (12)0.0498 (10)0.0673 (12)0.0076 (9)0.0214 (10)0.0022 (9)
Geometric parameters (Å, º) top
Cl1—C51.7407 (19)C6—C71.378 (3)
O1—C11.212 (2)C7—H70.9300
O2—C21.213 (2)C7—C81.399 (2)
N1—C11.364 (2)C9—H9A0.9700
N1—C81.404 (2)C9—H9B0.9700
N1—C91.474 (2)C9—C101.505 (3)
N2—C21.359 (2)C10—H10A0.9600
N2—C31.406 (2)C10—H10B0.9600
N2—C111.473 (2)C10—H10C0.9600
C1—C21.516 (3)C11—H11A0.9700
C3—C41.391 (2)C11—H11B0.9700
C3—C81.402 (2)C11—C121.510 (3)
C4—H40.9300C12—H12A0.9600
C4—C51.380 (2)C12—H12B0.9600
C5—C61.373 (3)C12—H12C0.9600
C6—H60.9300
C1—N1—C8122.40 (15)C3—C8—N1119.77 (14)
C1—N1—C9116.90 (15)C7—C8—N1120.93 (16)
C8—N1—C9120.69 (14)C7—C8—C3119.30 (16)
C2—N2—C3122.07 (15)N1—C9—H9A109.2
C2—N2—C11116.65 (14)N1—C9—H9B109.2
C3—N2—C11121.12 (14)N1—C9—C10112.20 (16)
O1—C1—N1123.32 (18)H9A—C9—H9B107.9
O1—C1—C2119.13 (16)C10—C9—H9A109.2
N1—C1—C2117.55 (16)C10—C9—H9B109.2
O2—C2—N2122.68 (18)C9—C10—H10A109.5
O2—C2—C1118.88 (17)C9—C10—H10B109.5
N2—C2—C1118.43 (15)C9—C10—H10C109.5
C4—C3—N2120.94 (15)H10A—C10—H10B109.5
C4—C3—C8119.39 (15)H10A—C10—H10C109.5
C8—C3—N2119.67 (15)H10B—C10—H10C109.5
C3—C4—H4120.3N2—C11—H11A109.3
C5—C4—C3119.45 (17)N2—C11—H11B109.3
C5—C4—H4120.3N2—C11—C12111.54 (15)
C4—C5—Cl1118.37 (15)H11A—C11—H11B108.0
C6—C5—Cl1119.48 (14)C12—C11—H11A109.3
C6—C5—C4122.15 (17)C12—C11—H11B109.3
C5—C6—H6120.7C11—C12—H12A109.5
C5—C6—C7118.69 (16)C11—C12—H12B109.5
C7—C6—H6120.7C11—C12—H12C109.5
C6—C7—H7119.5H12A—C12—H12B109.5
C6—C7—C8121.02 (17)H12A—C12—H12C109.5
C8—C7—H7119.5H12B—C12—H12C109.5
Cl1—C5—C6—C7179.16 (13)C4—C3—C8—N1179.12 (14)
O1—C1—C2—O22.5 (3)C4—C3—C8—C70.8 (2)
O1—C1—C2—N2177.21 (17)C4—C5—C6—C70.7 (3)
N1—C1—C2—O2177.15 (16)C5—C6—C7—C80.1 (2)
N1—C1—C2—N23.1 (2)C6—C7—C8—N1179.05 (15)
N2—C3—C4—C5179.83 (13)C6—C7—C8—C30.9 (2)
N2—C3—C8—N10.7 (2)C8—N1—C1—O1179.63 (17)
N2—C3—C8—C7179.38 (13)C8—N1—C1—C20.7 (2)
C1—N1—C8—C31.2 (2)C8—N1—C9—C1081.9 (2)
C1—N1—C8—C7178.90 (14)C8—C3—C4—C50.0 (2)
C1—N1—C9—C1097.43 (19)C9—N1—C1—O10.3 (3)
C2—N2—C3—C4178.34 (15)C9—N1—C1—C2179.98 (15)
C2—N2—C3—C81.8 (2)C9—N1—C8—C3178.14 (14)
C2—N2—C11—C1293.20 (19)C9—N1—C8—C71.8 (2)
C3—N2—C2—O2176.57 (16)C11—N2—C2—O21.1 (3)
C3—N2—C2—C13.7 (2)C11—N2—C2—C1179.15 (15)
C3—N2—C11—C1282.3 (2)C11—N2—C3—C43.1 (2)
C3—C4—C5—Cl1179.10 (12)C11—N2—C3—C8177.12 (14)
C3—C4—C5—C60.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.932.533.440 (2)167
C9—H9B···O2i0.972.353.180 (2)144
Symmetry code: (i) x1/2, y+1, z.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (Grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEl Janati, A., Kandri Rodi, Y., Jasinski, J. P., Kaur, M., Ouzidan, Y. & Essassi, E. M. (2017). IUCrData, 2, x170901.  Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds