organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­ethyl 4-(3-eth­­oxy-4-hy­dr­oxy­phen­yl)-2,6-di­methyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

aDepartment of Studies in Chemistry, Central College Campus, Bangalore University, Bangalore 560 001, Karnataka, India
*Correspondence e-mail: noorsb@rediffmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 July 2017; accepted 10 July 2017; online 18 July 2017)

In the title compound, C21H27NO6, the 1,4-di­hydro­pyridine ring adopts a shallow boat conformation, with the 3-eth­oxy-4-hy­droxy­phenyl substituent in an axial orientation [dihedral angle between ring planes = 85.49 (12)°]. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into (001) sheets. The packing is consolidated by C—H⋯O and ππ stacking inter­actions, which leads to a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Hantzsch 1,4-di­hydro­pyridines (1,4-DHPs) display a number of biological activities (Reddy et al., 2017[Reddy, B. P., Rajesh, K. & Vijayakumar, V. (2017). Org. Prep. Proced. Int. 44, 153-158.]). As part of our ongoing studies of 1,4-di­hydro­pyridines (Prasad & Begum, 2016[Prasad, N. L. & Begum, N. S. (2016). IUCrData, 1, x160722.]), we report herein the synthesis and crystal structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

The dihedral angle between 3-eth­oxy-4-hy­droxy­phenyl and di­hydroxy­pyridine rings is 85.49 (12)°. The heterocyclic ring is significantly puckered and adopts a boat conformation, with atoms C2 and C5 displaced by −0.036 (2) and −0.229 (2) Å, respectively, from the mean plane of the other four atoms (C3/C4/C6/N1). The C=O group of the exocyclic ester at atom C5 adopts a trans orientation with respect to the C5=C6 double bond [C6=C5—C11=O4 = −173.5 (3)°], whereas the carbonyl group attached to atom C3 adopts a cis orientation [C2—C3—C8=O2 = 17.8 (4)°]. This may be due to the presence of the bulky 3-eth­oxy-4-hy­droxy­phenyl substituent. Otherwise, the bond lengths and angles in the title compound are in good agreement with the corresponding data reported for related structures (Bai et al., 2009[Bai, M.-S., Chen, Y.-Y., Niu, D.-L. & Peng, L. (2009). Acta Cryst. E65, o799.]).

In the crystal, mol­ecules are linked by various types of hydrogen bonds (Table 1[link]). The N1—H1⋯O4i and O5—H5⋯O2ii inter­actions generate (001) sheets incorporating R22(20) loops (Fig. 2[link]). The weak C13—H13C⋯O5i hydrogen bonds form infinite chains along the c-axis direction (Fig. 3[link]). In addition, two weak C—H⋯π inter­actions involving both rings as acceptors are observed, which connect the layers into a three-dimensional network (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C14–C19 and N1/C2–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.88 2.11 2.898 (4) 149
O5—H5⋯O2ii 0.84 2.38 3.035 (5) 135
C13—H13C⋯O5i 0.98 2.62 3.519 (3) 152
C1—H1BCg1iii 0.98 2.69 3.370 (2) 136
C20—H20BCg2iii 0.99 2.66 3.654 (2) 146
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The unit-cell packing of the title compound, showing O—H⋯O and N—H⋯O hydrogen-bond inter­actions with dotted lines. H atoms not involved in hydrogen bonding have been omitted.
[Figure 3]
Figure 3
The partial unit-cell packing of the title compound, showing C—H⋯O hydrogen-bond inter­actions with dotted lines. H atoms not involved in hydrogen bonding have been omitted.
[Figure 4]
Figure 4
The unit-cell packing, depicting the C—H⋯π inter­actions with dotted lines.

Synthesis and crystallization

A mixture of 3-eth­oxy-4-hy­droxy­benzaldehyde (1 mmol), ethyl aceto­acetate (2 mmol) and aqueous ammonia (1.5 mmol) was refluxed in dry ethanol (20 mmol) for 12 h (Fig. 5[link]). The progress of the reaction was monitored by thin-layer chromatoghraphy (TLC). Upon completion, the reaction mixture was cooled to room temperature and allowed to stand for 2 d to allow the formation of solid. The resulting solid product was washed with methanol and recrystallized from ethanol to yield colourless blocks (yield 87%; m.p. 423–425 K). TLC information: n-hexa­ne–ethyl acetate (8:2), RF = 0.25. Colourless solid; IR (KBr cm−1): 3496, 3310, 3246, 1686, 1639, 1490, 1192, 1088, 1019, 758, 696; 1H NMR (500 MHz, CDCl3): δ 6.81 (d, J = 2.5 Hz, 1H), 6.69–6.74 (m, 2H), 5.58 (s, 1H), 5.49 (s, 1H), 4.89 (s, 1H), 4.02–4.13 (m, 6H), 2.30 (s, 6H), 1.39 (t, J = 7.5 Hz, 3H), 1.21 (t, J = 7.5 Hz, 6H); 13C NMR (100 MHz, DMSO-d6): δ 14.7, 15.3, 18.7, 38.6, 59.3, 64.2, 102.7, 113.7, 115.7, 120.1, 140.0, 145.3, 145.5, 146.2, 167.6; MS (m/z): 388 M − 1, 387 M − 2 (base peak), 359, 358, 330, 301, 252.

[Figure 5]
Figure 5
The reaction scheme for the preparation of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed at calculated positions in the riding-model approximation, with C—H = 0.95, 1.00 and 0.96 Å for aromatic, methyne and methyl H atoms, respectively, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C21H27NO6
Mr 389.44
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.6064 (16), 15.924 (2), 13.129 (2)
β (°) 96.013 (5)
V3) 1997.4 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.16 × 0.15 × 0.15
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.985, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 15758, 3520, 2204
Rint 0.087
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.151, 1.02
No. of reflections 3520
No. of parameters 259
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.32
Computer programs: SMART and SAINT (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Diethyl 4-(3-ethoxy-4-hydroxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate top
Crystal data top
C21H27NO6F(000) = 832
Mr = 389.44Dx = 1.295 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.6064 (16) ÅCell parameters from 3520 reflections
b = 15.924 (2) Åθ = 2.0–25.0°
c = 13.129 (2) ŵ = 0.10 mm1
β = 96.013 (5)°T = 100 K
V = 1997.4 (5) Å3Block, colorless
Z = 40.16 × 0.15 × 0.15 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3520 independent reflections
Radiation source: fine-focus sealed tube2204 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1111
Tmin = 0.985, Tmax = 0.986k = 1718
15758 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0777P)2]
where P = (Fo2 + 2Fc2)/3
3520 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1199 (3)0.27480 (17)0.8627 (2)0.0200 (7)
H1A0.07680.32440.82820.030*
H1B0.15050.28850.93430.030*
H1C0.05150.22900.86000.030*
C20.4545 (3)0.16274 (15)0.8465 (2)0.0174 (6)
C30.5028 (3)0.18745 (15)0.7580 (2)0.0175 (6)
C40.4016 (3)0.22685 (16)0.67425 (19)0.0157 (6)
H40.45480.26800.63580.019*
C50.2851 (3)0.27365 (15)0.71935 (19)0.0152 (6)
C60.2435 (3)0.24810 (16)0.8102 (2)0.0173 (6)
C70.5302 (3)0.11523 (17)0.9340 (2)0.0245 (7)
H7A0.61210.08720.91090.037*
H7B0.46730.07310.95870.037*
H7C0.56060.15430.98960.037*
C80.6507 (3)0.17556 (16)0.7410 (2)0.0198 (7)
C90.8343 (3)0.22798 (18)0.6487 (2)0.0263 (7)
H9A0.87650.17170.66120.032*
H9B0.88450.26810.69700.032*
C100.8471 (4)0.2542 (3)0.5425 (3)0.0666 (13)
H10A0.80040.21300.49510.100*
H10B0.94630.25770.53160.100*
H10C0.80320.30930.53010.100*
C110.2228 (3)0.34133 (16)0.6544 (2)0.0173 (6)
C120.0678 (3)0.45631 (16)0.6272 (2)0.0256 (7)
H12A0.02670.43350.56060.031*
H12B0.14270.49640.61440.031*
C130.0426 (3)0.49978 (18)0.6804 (2)0.0365 (9)
H13A0.11580.45950.69330.055*
H13B0.08360.54540.63710.055*
H13C0.00050.52290.74570.055*
C140.3440 (3)0.15860 (16)0.59973 (19)0.0158 (6)
C150.2251 (3)0.11367 (16)0.6148 (2)0.0192 (6)
H150.17580.12680.67180.023*
C160.1759 (3)0.04974 (16)0.5487 (2)0.0211 (7)
H160.09430.01920.56070.025*
C170.2463 (3)0.03096 (16)0.4654 (2)0.0204 (7)
C180.3672 (3)0.07531 (16)0.4488 (2)0.0179 (6)
C190.4164 (3)0.13826 (16)0.5158 (2)0.0169 (6)
H190.49950.16780.50490.020*
C200.5481 (3)0.09391 (16)0.3377 (2)0.0208 (7)
H20A0.62760.08230.39010.025*
H20B0.53150.15530.33510.025*
C210.5797 (3)0.06224 (17)0.2347 (2)0.0258 (7)
H21A0.60270.00230.23960.039*
H21B0.65940.09330.21270.039*
H21C0.49770.07050.18470.039*
N10.3203 (2)0.18583 (13)0.86434 (16)0.0177 (5)
H10.28130.15940.91300.021*
O10.68648 (18)0.22551 (11)0.66499 (14)0.0221 (5)
O20.7345 (2)0.12903 (13)0.78730 (16)0.0373 (6)
O30.12502 (18)0.38864 (11)0.69286 (14)0.0231 (5)
O40.25831 (19)0.35563 (11)0.56969 (14)0.0229 (5)
O50.1961 (2)0.03123 (12)0.39926 (14)0.0288 (5)
H50.24640.03450.35080.043*
O60.42503 (19)0.05071 (10)0.36239 (13)0.0223 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0189 (16)0.0278 (16)0.0138 (14)0.0007 (13)0.0048 (13)0.0006 (13)
C20.0195 (16)0.0164 (15)0.0159 (15)0.0018 (12)0.0002 (13)0.0022 (12)
C30.0197 (15)0.0157 (15)0.0176 (15)0.0003 (12)0.0036 (13)0.0021 (12)
C40.0161 (15)0.0174 (15)0.0140 (14)0.0021 (12)0.0033 (12)0.0012 (12)
C50.0162 (15)0.0140 (14)0.0154 (14)0.0025 (12)0.0026 (12)0.0050 (12)
C60.0175 (15)0.0172 (15)0.0172 (15)0.0009 (12)0.0010 (13)0.0023 (12)
C70.0290 (18)0.0265 (16)0.0179 (16)0.0017 (14)0.0026 (14)0.0017 (13)
C80.0256 (17)0.0200 (16)0.0140 (15)0.0010 (14)0.0034 (14)0.0032 (13)
C90.0165 (16)0.0268 (17)0.0367 (18)0.0040 (13)0.0087 (14)0.0052 (15)
C100.029 (2)0.127 (4)0.047 (2)0.005 (2)0.0204 (19)0.028 (2)
C110.0154 (15)0.0172 (15)0.0201 (16)0.0046 (12)0.0048 (13)0.0065 (13)
C120.0296 (18)0.0226 (16)0.0251 (17)0.0089 (14)0.0046 (14)0.0081 (13)
C130.0288 (19)0.038 (2)0.044 (2)0.0140 (15)0.0100 (16)0.0063 (16)
C140.0144 (15)0.0177 (15)0.0150 (15)0.0005 (12)0.0005 (12)0.0025 (12)
C150.0221 (16)0.0207 (15)0.0151 (14)0.0006 (13)0.0036 (13)0.0007 (13)
C160.0189 (16)0.0236 (16)0.0211 (16)0.0055 (13)0.0045 (13)0.0013 (13)
C170.0268 (17)0.0169 (15)0.0168 (15)0.0020 (13)0.0008 (13)0.0021 (13)
C180.0196 (16)0.0186 (15)0.0159 (15)0.0058 (13)0.0044 (13)0.0005 (13)
C190.0146 (14)0.0171 (15)0.0190 (15)0.0013 (12)0.0018 (12)0.0039 (13)
C200.0201 (16)0.0204 (16)0.0221 (16)0.0012 (13)0.0032 (13)0.0024 (13)
C210.0283 (17)0.0270 (17)0.0236 (16)0.0067 (14)0.0097 (14)0.0006 (14)
N10.0192 (13)0.0205 (13)0.0142 (12)0.0031 (10)0.0060 (10)0.0053 (10)
O10.0166 (11)0.0250 (11)0.0255 (11)0.0004 (9)0.0055 (9)0.0030 (9)
O20.0276 (13)0.0487 (14)0.0368 (13)0.0149 (11)0.0086 (11)0.0188 (11)
O30.0231 (11)0.0248 (10)0.0230 (11)0.0096 (9)0.0094 (9)0.0038 (9)
O40.0301 (12)0.0226 (11)0.0173 (11)0.0037 (9)0.0088 (9)0.0020 (9)
O50.0351 (13)0.0277 (11)0.0249 (12)0.0104 (10)0.0086 (10)0.0106 (10)
O60.0259 (12)0.0230 (11)0.0192 (11)0.0019 (9)0.0087 (9)0.0043 (9)
Geometric parameters (Å, º) top
C1—C61.497 (3)C11—O31.343 (3)
C1—H1A0.9800C12—O31.451 (3)
C1—H1B0.9800C12—C131.499 (4)
C1—H1C0.9800C12—H12A0.9900
C2—C31.354 (3)C12—H12B0.9900
C2—N11.384 (3)C13—H13A0.9800
C2—C71.498 (4)C13—H13B0.9800
C3—C81.473 (4)C13—H13C0.9800
C3—C41.525 (4)C14—C151.379 (3)
C4—C51.516 (3)C14—C191.401 (3)
C4—C141.527 (3)C15—C161.389 (3)
C4—H41.0000C15—H150.9500
C5—C61.359 (3)C16—C171.377 (4)
C5—C111.463 (4)C16—H160.9500
C6—N11.387 (3)C17—O51.371 (3)
C7—H7A0.9800C17—C181.396 (4)
C7—H7B0.9800C18—O61.372 (3)
C7—H7C0.9800C18—C191.384 (4)
C8—O21.210 (3)C19—H190.9500
C8—O11.349 (3)C20—O61.434 (3)
C9—O11.458 (3)C20—C211.504 (3)
C9—C101.473 (4)C20—H20A0.9900
C9—H9A0.9900C20—H20B0.9900
C9—H9B0.9900C21—H21A0.9800
C10—H10A0.9800C21—H21B0.9800
C10—H10B0.9800C21—H21C0.9800
C10—H10C0.9800N1—H10.8800
C11—O41.218 (3)O5—H50.8400
C6—C1—H1A109.5O3—C12—H12A110.1
C6—C1—H1B109.5C13—C12—H12A110.1
H1A—C1—H1B109.5O3—C12—H12B110.1
C6—C1—H1C109.5C13—C12—H12B110.1
H1A—C1—H1C109.5H12A—C12—H12B108.4
H1B—C1—H1C109.5C12—C13—H13A109.5
C3—C2—N1118.5 (2)C12—C13—H13B109.5
C3—C2—C7128.5 (2)H13A—C13—H13B109.5
N1—C2—C7113.0 (2)C12—C13—H13C109.5
C2—C3—C8121.0 (3)H13A—C13—H13C109.5
C2—C3—C4119.2 (2)H13B—C13—H13C109.5
C8—C3—C4119.7 (2)C15—C14—C19118.7 (2)
C5—C4—C3111.2 (2)C15—C14—C4121.8 (2)
C5—C4—C14111.5 (2)C19—C14—C4119.4 (2)
C3—C4—C14109.3 (2)C14—C15—C16121.5 (2)
C5—C4—H4108.2C14—C15—H15119.2
C3—C4—H4108.2C16—C15—H15119.2
C14—C4—H4108.2C17—C16—C15119.5 (3)
C6—C5—C11126.3 (2)C17—C16—H16120.2
C6—C5—C4119.5 (2)C15—C16—H16120.2
C11—C5—C4114.1 (2)O5—C17—C16119.4 (2)
C5—C6—N1118.4 (2)O5—C17—C18120.6 (2)
C5—C6—C1129.8 (2)C16—C17—C18120.0 (2)
N1—C6—C1111.8 (2)O6—C18—C19126.3 (2)
C2—C7—H7A109.5O6—C18—C17113.6 (2)
C2—C7—H7B109.5C19—C18—C17120.1 (2)
H7A—C7—H7B109.5C18—C19—C14120.2 (2)
C2—C7—H7C109.5C18—C19—H19119.9
H7A—C7—H7C109.5C14—C19—H19119.9
H7B—C7—H7C109.5O6—C20—C21106.9 (2)
O2—C8—O1121.7 (2)O6—C20—H20A110.3
O2—C8—C3127.1 (3)C21—C20—H20A110.3
O1—C8—C3111.2 (2)O6—C20—H20B110.3
O1—C9—C10109.0 (3)C21—C20—H20B110.3
O1—C9—H9A109.9H20A—C20—H20B108.6
C10—C9—H9A109.9C20—C21—H21A109.5
O1—C9—H9B109.9C20—C21—H21B109.5
C10—C9—H9B109.9H21A—C21—H21B109.5
H9A—C9—H9B108.3C20—C21—H21C109.5
C9—C10—H10A109.5H21A—C21—H21C109.5
C9—C10—H10B109.5H21B—C21—H21C109.5
H10A—C10—H10B109.5C2—N1—C6123.9 (2)
C9—C10—H10C109.5C2—N1—H1118.0
H10A—C10—H10C109.5C6—N1—H1118.0
H10B—C10—H10C109.5C8—O1—C9116.9 (2)
O4—C11—O3120.8 (2)C11—O3—C12115.4 (2)
O4—C11—C5122.2 (2)C17—O5—H5109.5
O3—C11—C5117.0 (2)C18—O6—C20117.7 (2)
O3—C12—C13108.0 (2)
N1—C2—C3—C8171.1 (2)C3—C4—C14—C1988.5 (3)
C7—C2—C3—C85.8 (4)C19—C14—C15—C160.5 (4)
N1—C2—C3—C49.9 (4)C4—C14—C15—C16177.8 (2)
C7—C2—C3—C4173.2 (2)C14—C15—C16—C170.6 (4)
C2—C3—C4—C530.2 (3)C15—C16—C17—O5178.9 (2)
C8—C3—C4—C5150.7 (2)C15—C16—C17—C180.9 (4)
C2—C3—C4—C1493.3 (3)O5—C17—C18—O60.6 (4)
C8—C3—C4—C1485.7 (3)C16—C17—C18—O6179.1 (2)
C3—C4—C5—C628.9 (3)O5—C17—C18—C19179.6 (2)
C14—C4—C5—C693.4 (3)C16—C17—C18—C190.1 (4)
C3—C4—C5—C11154.3 (2)O6—C18—C19—C14177.9 (2)
C14—C4—C5—C1183.4 (3)C17—C18—C19—C141.0 (4)
C11—C5—C6—N1176.3 (2)C15—C14—C19—C181.2 (4)
C4—C5—C6—N17.3 (4)C4—C14—C19—C18178.6 (2)
C11—C5—C6—C16.3 (5)C3—C2—N1—C615.6 (4)
C4—C5—C6—C1170.1 (2)C7—C2—N1—C6161.8 (2)
C2—C3—C8—O217.7 (4)C5—C6—N1—C217.0 (4)
C4—C3—C8—O2161.2 (3)C1—C6—N1—C2165.1 (2)
C2—C3—C8—O1161.4 (2)O2—C8—O1—C96.7 (4)
C4—C3—C8—O119.6 (3)C3—C8—O1—C9172.5 (2)
C6—C5—C11—O4173.5 (3)C10—C9—O1—C8156.5 (3)
C4—C5—C11—O43.1 (4)O4—C11—O3—C120.3 (3)
C6—C5—C11—O37.5 (4)C5—C11—O3—C12178.7 (2)
C4—C5—C11—O3175.9 (2)C13—C12—O3—C11177.8 (2)
C5—C4—C14—C1534.5 (3)C19—C18—O6—C200.2 (4)
C3—C4—C14—C1588.8 (3)C17—C18—O6—C20178.7 (2)
C5—C4—C14—C19148.2 (2)C21—C20—O6—C18173.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C14–C19 and N1/C2–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.882.112.898 (4)149
O5—H5···O2ii0.842.383.035 (5)135
C13—H13C···O5i0.982.623.519 (3)152
C1—H1B···Cg1iii0.982.693.370 (2)136
C20—H20B···Cg2iii0.992.663.654 (2)146
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

NLP is thankful to the University Grants Commission (UGC), India, for the UGC–JRF.

References

First citationBai, M.-S., Chen, Y.-Y., Niu, D.-L. & Peng, L. (2009). Acta Cryst. E65, o799.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPrasad, N. L. & Begum, N. S. (2016). IUCrData, 1, x160722.  Google Scholar
First citationReddy, B. P., Rajesh, K. & Vijayakumar, V. (2017). Org. Prep. Proced. Int. 44, 153–158.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds