organic compounds
1,4-Dihexyl-1,2,3,4-tetrahydroquinoxaline-2,3-dione
aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: elbourakadi25@gmail.com
The title compound, C20H30N2O2, has crystallographically imposed C2 symmetry; the hexyl side chain adopts a tttg (t = trans and g = gauche) conformation. In the crystal, C—H⋯O hydrogen bonds link the molecules into chains extending along the b-axis direction. These chains pack to form zigzag sheets lying parallel to (101).
Keywords: crystal structure; quinoxaline; hydrogen bond.
CCDC reference: 1561049
Structure description
This work was carried out in a continuation of our previous work on the synthesis and crystal structures of new quinoxaline-2,3-dione derivatives (Ferfra et al., 2001; El Bourakadi et al., 2017a,b).
The title molecule (Fig. 1) has crystallographically imposed C2 rotation symmetry. In the bicyclic unit, the dihedral angle between the two rings is 3.64 (7)°. The n-hexyl side chain adopts a tttg (t = trans and g = gauche) conformation, as indicated by the following torsion angles: N1—C5—C6—C7 = 178.85 (13)°, C5—C6—C7—C8 = −179.63 (15)°, C6—C7—C8—C9 = −179.30 (16)°, and C7—C8—C9—C10 = 70.8 (3)°. In the crystal, molecules form chains extending along the b-axis direction through C1—H1⋯O1 hydrogen bonds (Table 1 and Fig. 2). These chains pack to form zigzag sheets lying parallel to (101), possibly aided by weak C5—H5a⋯π(Cg2) interactions [Cg2 is the centroid of the aromatic ring at (−x + , y − , −z + )], with H⋯Cg = 3.84 Å and C—H⋯Cg = 138° (Fig. 3).
Synthesis and crystallization
A mixture of quinoxaline-2,3-dione (1.0 g, 6.17 mmol), potassium carbonate (1.7 g, 12.33 mmol), bromohexane (1.73 ml, 12.33 mmol) and tetra-n-butylammonium bromide as a catalyst in N,N-dimethylformamide (60 ml) was stirred at room temperature for 48 h. After completion of the reaction (monitored by thin-layer chromatography), the solvent was removed under vacuum and the residue was chromatographed on a silica-gel column using hexane and ethyl acetate (80:20 v/v) as The compound obtained was recrystallzed from ethanol solution to afford the title compound as colourless blocks.
Refinement
details are given in Table 2Structural data
CCDC reference: 1561049
https://doi.org/10.1107/S2414314617010197/hb4157sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314617010197/hb4157Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314617010197/hb4157Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2414314617010197/hb4157Isup4.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Bruker, 2016).C20H30N2O2 | F(000) = 720 |
Mr = 330.46 | Dx = 1.160 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.357 (3) Å | Cell parameters from 2136 reflections |
b = 9.209 (2) Å | θ = 2.7–27.4° |
c = 16.743 (4) Å | µ = 0.08 mm−1 |
β = 113.277 (3)° | T = 295 K |
V = 1891.9 (7) Å3 | Block, colourless |
Z = 4 | 0.28 × 0.25 × 0.18 mm |
Bruker SMART APEX CCD diffractometer | 2323 independent reflections |
Radiation source: fine-focus sealed tube | 1475 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 28.3°, θmin = 2.7° |
ω scans | h = −17→17 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −12→12 |
Tmin = 0.72, Tmax = 0.99 | l = −21→22 |
8628 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.196 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0925P)2 + 0.3797P] where P = (Fo2 + 2Fc2)/3 |
2323 reflections | (Δ/σ)max < 0.001 |
110 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
Experimental. The diffraction data were collected in three sets of 363 frames (0.5° width in ω) at φ = 0, 120 and 240°. A scan time of 60 sec/frame was used. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.58538 (12) | 0.26991 (13) | 0.72515 (11) | 0.0825 (5) | |
N1 | 0.58320 (10) | 0.51512 (13) | 0.71964 (8) | 0.0427 (4) | |
C1 | 0.53793 (13) | 0.90866 (18) | 0.73135 (12) | 0.0572 (5) | |
H1 | 0.5624 | 0.9960 | 0.7177 | 0.069* | |
C2 | 0.57667 (12) | 0.77985 (17) | 0.71467 (10) | 0.0500 (4) | |
H2 | 0.6282 | 0.7807 | 0.6902 | 0.060* | |
C3 | 0.54071 (10) | 0.64763 (15) | 0.73341 (9) | 0.0387 (4) | |
C4 | 0.54659 (13) | 0.38519 (17) | 0.73476 (11) | 0.0523 (4) | |
C5 | 0.67419 (13) | 0.51352 (18) | 0.69052 (11) | 0.0485 (4) | |
H5A | 0.7150 | 0.4241 | 0.7099 | 0.058* | |
H5B | 0.7229 | 0.5937 | 0.7176 | 0.058* | |
C6 | 0.63673 (13) | 0.52534 (19) | 0.59270 (11) | 0.0515 (4) | |
H6A | 0.5950 | 0.6139 | 0.5727 | 0.062* | |
H6B | 0.5896 | 0.4439 | 0.5652 | 0.062* | |
C7 | 0.73340 (14) | 0.5263 (2) | 0.56635 (11) | 0.0561 (5) | |
H7A | 0.7807 | 0.6071 | 0.5948 | 0.067* | |
H7B | 0.7747 | 0.4375 | 0.5866 | 0.067* | |
C8 | 0.70034 (17) | 0.5390 (2) | 0.46884 (13) | 0.0676 (6) | |
H8A | 0.6597 | 0.6283 | 0.4488 | 0.081* | |
H8B | 0.6523 | 0.4589 | 0.4405 | 0.081* | |
C9 | 0.79629 (19) | 0.5382 (3) | 0.44171 (14) | 0.0778 (6) | |
H9A | 0.7709 | 0.5675 | 0.3813 | 0.093* | |
H9B | 0.8492 | 0.6095 | 0.4761 | 0.093* | |
C10 | 0.8516 (3) | 0.3937 (3) | 0.4521 (2) | 0.1177 (10) | |
H10A | 0.7992 | 0.3214 | 0.4204 | 0.177* | |
H10B | 0.8832 | 0.3679 | 0.5126 | 0.177* | |
H10C | 0.9078 | 0.3991 | 0.4301 | 0.177* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.1072 (12) | 0.0452 (8) | 0.1324 (13) | 0.0121 (7) | 0.0871 (11) | −0.0001 (7) |
N1 | 0.0406 (7) | 0.0436 (7) | 0.0549 (8) | 0.0030 (5) | 0.0307 (6) | 0.0019 (5) |
C1 | 0.0525 (10) | 0.0403 (9) | 0.0791 (12) | −0.0077 (7) | 0.0264 (8) | 0.0037 (8) |
C2 | 0.0438 (9) | 0.0476 (9) | 0.0668 (10) | −0.0059 (7) | 0.0306 (8) | 0.0017 (7) |
C3 | 0.0343 (7) | 0.0391 (8) | 0.0479 (8) | 0.0002 (5) | 0.0218 (6) | 0.0002 (6) |
C4 | 0.0642 (11) | 0.0406 (8) | 0.0686 (11) | 0.0034 (7) | 0.0438 (9) | −0.0002 (7) |
C5 | 0.0396 (8) | 0.0610 (10) | 0.0558 (10) | 0.0072 (7) | 0.0306 (7) | 0.0027 (7) |
C6 | 0.0446 (9) | 0.0628 (10) | 0.0552 (10) | 0.0012 (7) | 0.0282 (7) | −0.0001 (7) |
C7 | 0.0522 (10) | 0.0712 (11) | 0.0555 (10) | −0.0018 (8) | 0.0328 (8) | −0.0013 (8) |
C8 | 0.0656 (12) | 0.0890 (14) | 0.0603 (11) | −0.0026 (10) | 0.0377 (10) | 0.0003 (9) |
C9 | 0.0850 (15) | 0.0988 (16) | 0.0699 (12) | −0.0136 (12) | 0.0524 (11) | −0.0046 (10) |
C10 | 0.140 (2) | 0.116 (2) | 0.145 (2) | 0.0097 (19) | 0.108 (2) | −0.0140 (18) |
O1—C4 | 1.2195 (18) | C6—H6A | 0.9700 |
N1—C4 | 1.3537 (19) | C6—H6B | 0.9700 |
N1—C3 | 1.4027 (17) | C7—C8 | 1.518 (2) |
N1—C5 | 1.4777 (17) | C7—H7A | 0.9700 |
C1—C2 | 1.366 (2) | C7—H7B | 0.9700 |
C1—C1i | 1.385 (3) | C8—C9 | 1.520 (3) |
C1—H1 | 0.9300 | C8—H8A | 0.9700 |
C2—C3 | 1.3895 (19) | C8—H8B | 0.9700 |
C2—H2 | 0.9300 | C9—C10 | 1.498 (4) |
C3—C3i | 1.403 (3) | C9—H9A | 0.9700 |
C4—C4i | 1.520 (3) | C9—H9B | 0.9700 |
C5—C6 | 1.515 (2) | C10—H10A | 0.9600 |
C5—H5A | 0.9700 | C10—H10B | 0.9600 |
C5—H5B | 0.9700 | C10—H10C | 0.9600 |
C6—C7 | 1.521 (2) | ||
C4—N1—C3 | 122.59 (12) | H6A—C6—H6B | 108.0 |
C4—N1—C5 | 117.25 (12) | C8—C7—C6 | 113.14 (15) |
C3—N1—C5 | 120.12 (11) | C8—C7—H7A | 109.0 |
C2—C1—C1i | 119.73 (9) | C6—C7—H7A | 109.0 |
C2—C1—H1 | 120.1 | C8—C7—H7B | 109.0 |
C1i—C1—H1 | 120.1 | C6—C7—H7B | 109.0 |
C1—C2—C3 | 121.46 (14) | H7A—C7—H7B | 107.8 |
C1—C2—H2 | 119.3 | C7—C8—C9 | 113.57 (17) |
C3—C2—H2 | 119.3 | C7—C8—H8A | 108.9 |
C2—C3—N1 | 121.79 (12) | C9—C8—H8A | 108.9 |
C2—C3—C3i | 118.72 (8) | C7—C8—H8B | 108.9 |
N1—C3—C3i | 119.49 (7) | C9—C8—H8B | 108.9 |
O1—C4—N1 | 122.75 (15) | H8A—C8—H8B | 107.7 |
O1—C4—C4i | 119.42 (9) | C10—C9—C8 | 113.86 (19) |
N1—C4—C4i | 117.83 (8) | C10—C9—H9A | 108.8 |
N1—C5—C6 | 113.11 (13) | C8—C9—H9A | 108.8 |
N1—C5—H5A | 109.0 | C10—C9—H9B | 108.8 |
C6—C5—H5A | 109.0 | C8—C9—H9B | 108.8 |
N1—C5—H5B | 109.0 | H9A—C9—H9B | 107.7 |
C6—C5—H5B | 109.0 | C9—C10—H10A | 109.5 |
H5A—C5—H5B | 107.8 | C9—C10—H10B | 109.5 |
C5—C6—C7 | 111.00 (14) | H10A—C10—H10B | 109.5 |
C5—C6—H6A | 109.4 | C9—C10—H10C | 109.5 |
C7—C6—H6A | 109.4 | H10A—C10—H10C | 109.5 |
C5—C6—H6B | 109.4 | H10B—C10—H10C | 109.5 |
C7—C6—H6B | 109.4 | ||
C1i—C1—C2—C3 | 0.7 (3) | C3—N1—C4—C4i | 1.9 (3) |
C1—C2—C3—N1 | −177.46 (15) | C5—N1—C4—C4i | 179.67 (16) |
C1—C2—C3—C3i | 2.9 (3) | C4—N1—C5—C6 | 96.77 (17) |
C4—N1—C3—C2 | −177.72 (14) | C3—N1—C5—C6 | −85.38 (17) |
C5—N1—C3—C2 | 4.5 (2) | N1—C5—C6—C7 | 178.85 (13) |
C4—N1—C3—C3i | 2.0 (3) | C5—C6—C7—C8 | −179.63 (15) |
C5—N1—C3—C3i | −175.77 (15) | C6—C7—C8—C9 | −179.30 (16) |
C3—N1—C4—O1 | −177.92 (16) | C7—C8—C9—C10 | 70.8 (3) |
C5—N1—C4—O1 | −0.1 (3) |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O1ii | 0.93 | 2.54 | 3.396 (2) | 153 |
Symmetry code: (ii) x, y+1, z. |
References
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
El Bourakadi, K., El Bakri, Y., Sebhaoui, J., Rayni, I., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170520. Google Scholar
El Bourakadi, K., El Bakri, Y., Sebhaoui, J., Rayni, I., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170656. Google Scholar
Ferfra, S., Ahabchane, N. H., Mustaphi, N. E., Essassi, E. M., Bellan, J. & Pierrot, M. (2001). Phosphorus Sulfur Silicon, 175, 169–181. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.