organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,4-Bis(4-bromo­but­­oxy)benzene

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, S.D.N.B. Vaishnav College for Women, Chromepet, Chennai 600 044, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: lakssdnbvc@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 June 2017; accepted 6 July 2017; online 18 July 2017)

The complete mol­ecule of the title compound, C14H20Br2O2, is generated by crystallographic inversion symmetry and the 4-bromo­but­oxy side chain adopts an extended conformation. In the crystal, weak C—H⋯π inter­actions are observed, which help to consolidate a herringbone packing motif.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Compounds with alk­yloxy substituents act as inter­mediates to engineer soluble electroluminescent oligomers and polymers for LED applications (Huang et al., 2007[Huang, S.-P., Huang, G.-S. & Chen, S.-A. (2007). Synth. Met. 157, 863-871.]). As part of our studies in this area, we now describe the synthesis and structure of the title compound.

The asymmetric unit, contains one-half of the mol­ecule, while the other half is generated through crystallographic inversion symmetry [symmetry code: (i) −x, 1 − y, −z] (Fig. 1[link]). The bromo­alkoxyl tail is roughly co-planar with the attached benzene ring with a C6—C5—O1—C4 torsion angle of −2.2 (3)°. The bromo­alkoxyl tail adopts an extended conformation as shown by the C5—O1—C4—C3, O1—C4—C3—C2, C4—C3—C2—C1 and C3—C2—C1—Br1 torsion angles of −179.55 (19), −176.29 (18), 177.5 (2) and 179.19 (17)°, respectively. The packing of the mol­ecules features weak C—H⋯π inter­actions (Table 1[link]), which lead to a herringbone arrangement when viewed along [100] (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2BCg1i 0.97 2.84 3.664 (3) 144
Symmetry code: (i) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level [symmetry code: (a) −x, 1 − y, −z].
[Figure 2]
Figure 2
The packing of the mol­ecules viewed along the a-axis direction.

Synthesis and crystallization

A mixture of (1.0 equiv.) of resorcinol and potassium carbonate (2.0 equiv.) in acetone (50 ml) was stirred for 15 minutes at 60° C. 1,4-Di­bromo­butane (2.1 equiv.) was added to the reaction mixture and stirred at 60° C for 7 h. After completion of the reaction, the solvent was removed under reduced pressure and the residue was extracted with CHCl3 (3 × 100 ml), washed with water (2 × 100 ml), brine (150 ml) and dried over anhydrous Na2SO4, filtered and concentrated in vacuo. The residue obtained was purified by column chromatography using CHCl3:hexane (1:9) as eluent to afford the title compound as a white solid, which was recrystallized from methanol solution to yield colourless blocks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H20Br2O2
Mr 380.12
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 9.0845 (10), 5.3436 (5), 15.3509 (15)
β (°) 95.567 (4)
V3) 741.68 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 5.46
Crystal size (mm) 0.35 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.525, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 7040, 1310, 1126
Rint 0.027
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.052, 1.06
No. of reflections 1310
No. of parameters 82
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.33
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Bruno et al., 2002); software used to prepare material for publication: publCIF (Westrip, 2010).

1,4-Bis(4-bromobutoxy)benzene top
Crystal data top
C14H20Br2O2F(000) = 380
Mr = 380.12Dx = 1.702 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.0845 (10) ÅCell parameters from 3047 reflections
b = 5.3436 (5) Åθ = 2.7–24.9°
c = 15.3509 (15) ŵ = 5.46 mm1
β = 95.567 (4)°T = 296 K
V = 741.68 (13) Å3Block, colourless
Z = 20.35 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1310 independent reflections
Radiation source: fine-focus sealed tube1126 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and φ scanθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.525, Tmax = 0.745k = 66
7040 measured reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0214P)2 + 0.4039P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1310 reflectionsΔρmax = 0.32 e Å3
82 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were included in the refinement at calculated positions (C—H = 0.93–0.98 Å), with Uiso(H) = 1.2Ueq(C) using a riding-model approximation.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0397 (3)1.4815 (5)0.34901 (18)0.0487 (7)
H1A0.12201.57070.32770.058*
H1B0.07961.36420.39340.058*
C20.0404 (3)1.3397 (4)0.27508 (15)0.0354 (6)
H2A0.08121.45610.23060.043*
H2B0.12161.24720.29620.043*
C30.0642 (3)1.1585 (4)0.23511 (15)0.0343 (6)
H3A0.14311.25230.21190.041*
H3B0.10851.04780.28040.041*
C40.0151 (3)1.0047 (4)0.16294 (15)0.0323 (5)
H4A0.09740.91620.18450.039*
H4B0.05321.11210.11500.039*
C50.0386 (3)0.6709 (4)0.06653 (14)0.0288 (5)
C60.1050 (3)0.6624 (4)0.02794 (15)0.0305 (5)
H60.17590.77080.04640.037*
C70.1431 (3)0.4919 (4)0.03832 (14)0.0307 (5)
H70.23990.48640.06420.037*
O10.08882 (18)0.8306 (3)0.13368 (11)0.0376 (4)
Br10.08821 (3)1.72008 (5)0.40166 (2)0.04831 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0408 (17)0.0559 (16)0.0491 (16)0.0108 (13)0.0028 (13)0.0206 (13)
C20.0386 (15)0.0339 (12)0.0338 (13)0.0018 (11)0.0035 (11)0.0026 (10)
C30.0347 (15)0.0358 (13)0.0324 (13)0.0015 (11)0.0027 (11)0.0056 (10)
C40.0335 (14)0.0322 (12)0.0314 (12)0.0024 (10)0.0038 (11)0.0037 (10)
C50.0323 (13)0.0283 (11)0.0256 (12)0.0017 (10)0.0021 (10)0.0006 (9)
C60.0274 (13)0.0322 (12)0.0321 (12)0.0037 (10)0.0035 (10)0.0028 (10)
C70.0248 (13)0.0353 (12)0.0313 (12)0.0012 (10)0.0001 (10)0.0015 (10)
O10.0323 (10)0.0402 (9)0.0390 (9)0.0043 (8)0.0022 (8)0.0147 (8)
Br10.0566 (2)0.04394 (17)0.04603 (18)0.00749 (13)0.01338 (13)0.01054 (12)
Geometric parameters (Å, º) top
C1—C21.494 (3)C4—O11.428 (3)
C1—Br11.952 (2)C4—H4A0.9700
C1—H1A0.9700C4—H4B0.9700
C1—H1B0.9700C5—C61.381 (3)
C2—C31.526 (3)C5—O11.381 (3)
C2—H2A0.9700C5—C7i1.387 (3)
C2—H2B0.9700C6—C71.384 (3)
C3—C41.506 (3)C6—H60.9300
C3—H3A0.9700C7—C5i1.387 (3)
C3—H3B0.9700C7—H70.9300
C2—C1—Br1112.34 (19)H3A—C3—H3B107.9
C2—C1—H1A109.1O1—C4—C3107.66 (19)
Br1—C1—H1A109.1O1—C4—H4A110.2
C2—C1—H1B109.1C3—C4—H4A110.2
Br1—C1—H1B109.1O1—C4—H4B110.2
H1A—C1—H1B107.9C3—C4—H4B110.2
C1—C2—C3110.6 (2)H4A—C4—H4B108.5
C1—C2—H2A109.5C6—C5—O1124.8 (2)
C3—C2—H2A109.5C6—C5—C7i119.5 (2)
C1—C2—H2B109.5O1—C5—C7i115.7 (2)
C3—C2—H2B109.5C5—C6—C7119.7 (2)
H2A—C2—H2B108.1C5—C6—H6120.2
C4—C3—C2111.7 (2)C7—C6—H6120.2
C4—C3—H3A109.3C6—C7—C5i120.8 (2)
C2—C3—H3A109.3C6—C7—H7119.6
C4—C3—H3B109.3C5i—C7—H7119.6
C2—C3—H3B109.3C5—O1—C4117.18 (18)
Br1—C1—C2—C3179.19 (17)C5—C6—C7—C5i0.0 (4)
C1—C2—C3—C4177.5 (2)C6—C5—O1—C42.2 (3)
C2—C3—C4—O1176.29 (18)C7i—C5—O1—C4178.59 (18)
O1—C5—C6—C7179.2 (2)C3—C4—O1—C5179.55 (19)
C7i—C5—C6—C70.0 (4)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2B···Cg1ii0.972.843.664 (3)144
Symmetry code: (ii) x1/2, y1/2, z3/2.
 

Acknowledgements

The authors thank the single-crystal XRD facility, SAIF IIT Madras, Chennai, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHuang, S.-P., Huang, G.-S. & Chen, S.-A. (2007). Synth. Met. 157, 863–871.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds