organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Chloro-1-ethyl-6-nitro-1H-indazole

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: dedah6211672@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 17 June 2017; accepted 1 July 2017; online 13 July 2017)

In the title compound, C9H8ClN3O2, the terminal C atom of the ethyl group deviates from the indazole ring (r.m.s. deviation = 0.008 Å) by 1.588 (3) Å. The dihedral angle between the ring system and the attached nitro group is 2.8 (3)°. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into zigzag chains propagating along [001]. In addition, weak ππ stacking inter­actions [centroid–centroid separations = 3.6809 (10) and 3.7393 (11) Å] help to consolidate the packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As a continuation of our studies on indazole derivatives (Mohamed Abdelahi et al., 2017[Mohamed Abdelahi, M. M., El Bakri, Y., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170432.]), we report here the synthesis and crystal structure of the title compound, C9H8ClN3O2.

The molecular structure of the title compound is illustrated in Fig. 1[link]. Apart from the terminal carbon atom (C9) of the ethyl moiety, it is essentially planar, as evident from the dihedral angle between the indazole ring plane and nitro group of 2.8 (3)°. Atom C9 deviates from the ring plane by 1.588 (3) Å.

[Figure 1]
Figure 1
The molecular structure of the title compound, with atom labelling and 30% probability displacement ellipsoids.

In the crystal, a weak C4—H4⋯O2i inter­action (Table 1[link]) links the mol­ecules into zigzag chains propagating along the c-axis direction (Fig. 2[link]). In addition, weak ππ stacking inter­actions are observed [Cg1⋯Cg2ii = 3.6809 (10) Å, Cg2⋯Cg2ii = 3.7393 (11) Å, where Cg1 is the centroid of the N1/N2/C7/C2/C1 ring and Cg2 is the centroid of the C2–C7 ring; symmetry code: (ii) 2 − x, −y, 2 − z].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.52 3.280 (3) 139
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The packing viewed along the a-axis direction. Dashed lines indicate weak C—H⋯O inter­actions linking the mol­ecules into [001] zigzag chains. H atoms not involved in the hydrogen bonds have been omitted for clarity.

Synthesis and crystallization

To a solution of 6-nitro-1H-indazole (0.8 g, 5 mmol) in tetra­hydro­furan (30 ml) were added bromo­ethane (0.8 g, 5 mmol), potassium carbonate (1.24 g, 9 mmol) and a catalytic qu­antity of tetra-n-butyl­ammonium iodide. The mixture was stirred at room temperature for 48 h. The solution was filtered and the solvent removed under reduced pressure. The residue was recrystallized from ethanol solution to afford yellow plates of the title compound (yield: 68%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C9H8ClN3O2
Mr 225.63
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 7.4984 (3), 16.2805 (7), 8.3363 (3)
β (°) 97.403 (4)
V3) 1009.19 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.24
Crystal size (mm) 0.22 × 0.20 × 0.06
 
Data collection
Diffractometer Rigaku Oxford diffraction
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.493, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3567, 1916, 1572
Rint 0.020
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.03
No. of reflections 1916
No. of parameters 137
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.23
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

3-Chloro-1-ethyl-6-nitro-1H-indazole top
Crystal data top
C9H8ClN3O2F(000) = 464
Mr = 225.63Dx = 1.485 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 7.4984 (3) ÅCell parameters from 1252 reflections
b = 16.2805 (7) Åθ = 6.0–70.9°
c = 8.3363 (3) ŵ = 3.24 mm1
β = 97.403 (4)°T = 293 K
V = 1009.19 (7) Å3Plate, yellow
Z = 40.22 × 0.20 × 0.06 mm
Data collection top
Rigaku Oxford diffraction
diffractometer
1916 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source1572 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 16.0416 pixels mm-1θmax = 71.4°, θmin = 5.4°
ω scansh = 79
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1916
Tmin = 0.493, Tmax = 1.000l = 910
3567 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0591P)2 + 0.080P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1916 reflectionsΔρmax = 0.20 e Å3
137 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All the H atoms were placed in calculated positions and refined using the riding model with C—H bond lengths of 0.93 Å (CH), 0.97 Å (CH2) or 0.96 Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) or 1.5 (CH3) times Ueq of the parent atom. The methyl group was allowed to rotate, but not to tip, to best fit the electron density.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.34194 (8)0.57002 (5)0.22541 (6)0.0741 (2)
O10.0801 (2)0.38775 (13)1.0161 (2)0.0801 (5)
O20.0722 (3)0.28363 (12)0.8569 (3)0.1041 (8)
N10.3183 (2)0.63770 (11)0.5077 (2)0.0555 (4)
N20.2742 (2)0.61772 (10)0.6560 (2)0.0506 (4)
N30.0963 (2)0.35657 (12)0.8854 (3)0.0628 (5)
C10.2999 (2)0.57001 (14)0.4224 (2)0.0516 (4)
C20.2448 (2)0.50247 (12)0.5101 (2)0.0453 (4)
C30.2059 (2)0.41950 (13)0.4800 (3)0.0528 (5)
H30.21240.39690.37850.063*
C40.1581 (3)0.37243 (12)0.6036 (3)0.0556 (5)
H40.13290.31690.58760.067*
C50.1473 (2)0.40879 (12)0.7548 (2)0.0487 (4)
C60.1812 (2)0.48984 (12)0.7903 (2)0.0459 (4)
H60.17100.51210.89140.055*
C70.2320 (2)0.53656 (11)0.6633 (2)0.0432 (4)
C80.3023 (3)0.67764 (13)0.7875 (3)0.0585 (5)
H8A0.22370.66460.86770.070*
H8B0.27040.73190.74510.070*
C90.4930 (3)0.67852 (18)0.8667 (4)0.0791 (7)
H9A0.57000.69690.79050.119*
H9B0.52760.62410.90270.119*
H9C0.50380.71510.95770.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0669 (4)0.1084 (5)0.0482 (3)0.0074 (3)0.0124 (2)0.0114 (3)
O10.0843 (12)0.0871 (13)0.0730 (11)0.0025 (10)0.0251 (9)0.0224 (10)
O20.1397 (19)0.0585 (11)0.1091 (17)0.0275 (12)0.0026 (14)0.0253 (11)
N10.0531 (9)0.0547 (9)0.0587 (9)0.0002 (7)0.0078 (7)0.0092 (8)
N20.0570 (9)0.0410 (8)0.0542 (9)0.0021 (7)0.0091 (7)0.0008 (7)
N30.0548 (10)0.0561 (10)0.0754 (13)0.0035 (8)0.0001 (8)0.0195 (9)
C10.0413 (9)0.0646 (12)0.0490 (10)0.0044 (8)0.0054 (7)0.0071 (9)
C20.0378 (8)0.0516 (10)0.0458 (9)0.0060 (7)0.0027 (7)0.0006 (8)
C30.0488 (10)0.0549 (11)0.0536 (11)0.0079 (8)0.0028 (8)0.0130 (9)
C40.0517 (10)0.0405 (9)0.0724 (13)0.0040 (8)0.0001 (9)0.0066 (9)
C50.0408 (9)0.0456 (9)0.0583 (11)0.0028 (7)0.0015 (7)0.0064 (8)
C60.0441 (9)0.0474 (9)0.0460 (9)0.0023 (7)0.0053 (7)0.0003 (7)
C70.0384 (8)0.0418 (9)0.0487 (9)0.0020 (7)0.0030 (6)0.0022 (7)
C80.0593 (12)0.0447 (10)0.0732 (13)0.0006 (9)0.0148 (9)0.0122 (9)
C90.0680 (14)0.0823 (17)0.0850 (17)0.0009 (13)0.0020 (12)0.0333 (14)
Geometric parameters (Å, º) top
Cl1—C11.712 (2)C3—C41.369 (3)
O1—N31.222 (3)C4—H40.9300
O2—N31.220 (3)C4—C51.404 (3)
N1—N21.360 (2)C5—C61.369 (3)
N1—C11.309 (3)C6—H60.9300
N2—C71.362 (2)C6—C71.396 (3)
N2—C81.462 (3)C8—H8A0.9700
N3—C51.470 (3)C8—H8B0.9700
C1—C21.411 (3)C8—C91.496 (3)
C2—C31.398 (3)C9—H9A0.9600
C2—C71.407 (2)C9—H9B0.9600
C3—H30.9300C9—H9C0.9600
C1—N1—N2105.75 (17)C6—C5—N3117.14 (18)
N1—N2—C7110.95 (16)C6—C5—C4124.74 (19)
N1—N2—C8119.57 (17)C5—C6—H6122.5
C7—N2—C8128.75 (17)C5—C6—C7115.00 (17)
O1—N3—C5119.02 (19)C7—C6—H6122.5
O2—N3—O1123.3 (2)N2—C7—C2107.41 (16)
O2—N3—C5117.7 (2)N2—C7—C6130.55 (17)
N1—C1—Cl1120.10 (17)C6—C7—C2122.03 (17)
N1—C1—C2113.08 (18)N2—C8—H8A109.2
C2—C1—Cl1126.83 (17)N2—C8—H8B109.2
C3—C2—C1136.70 (19)N2—C8—C9112.00 (18)
C3—C2—C7120.51 (18)H8A—C8—H8B107.9
C7—C2—C1102.79 (17)C9—C8—H8A109.2
C2—C3—H3120.8C9—C8—H8B109.2
C4—C3—C2118.32 (18)C8—C9—H9A109.5
C4—C3—H3120.8C8—C9—H9B109.5
C3—C4—H4120.3C8—C9—H9C109.5
C3—C4—C5119.39 (18)H9A—C9—H9B109.5
C5—C4—H4120.3H9A—C9—H9C109.5
C4—C5—N3118.12 (19)H9B—C9—H9C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.523.280 (3)139
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMohamed Abdelahi, M. M., El Bakri, Y., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170432.  Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds